Add the pow operator. (#1583)
* Add the pow operator. * Support the pow operation in onnx.
This commit is contained in:
parent
88618255cb
commit
e6d86b0819
|
@ -2578,11 +2578,21 @@ impl Tensor {
|
|||
}
|
||||
|
||||
/// Returns log(sum(exp(tensor), dim)).
|
||||
pub fn logsumexp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||
let exp = self.exp()?;
|
||||
let sum = exp.sum(sum_dims)?;
|
||||
sum.log()
|
||||
}
|
||||
|
||||
/// Pointwise pow operation.
|
||||
pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.mul(&self.log()?)?.exp()
|
||||
}
|
||||
|
||||
/// Broadcasting version of `pow`.
|
||||
pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
|
||||
rhs.broadcast_mul(&self.log()?)?.exp()
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! bin_trait {
|
||||
|
|
|
@ -1245,11 +1245,23 @@ fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
|
|||
}
|
||||
|
||||
#[test]
|
||||
fn logsumexp() -> Result<()> {
|
||||
fn log_sum_exp() -> Result<()> {
|
||||
let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let output = input.logsumexp(D::Minus1)?;
|
||||
let output = input.log_sum_exp(D::Minus1)?;
|
||||
// The expectations obtained from pytorch.
|
||||
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
|
||||
assert_close(&output, &expected, 0.00001)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pow() -> Result<()> {
|
||||
let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||
let rhs = (&lhs - 2.)?;
|
||||
let res = lhs.pow(&rhs)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec2_round(&res, 4)?,
|
||||
[[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]]
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
|
|
@ -254,6 +254,12 @@ pub fn simple_eval(
|
|||
let output = input0.broadcast_div(input1)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Pow" => {
|
||||
let input0 = get(&node.input[0])?;
|
||||
let input1 = get(&node.input[1])?;
|
||||
let output = input0.broadcast_pow(input1)?;
|
||||
values.insert(node.output[0].clone(), output);
|
||||
}
|
||||
"Equal" => {
|
||||
let input0 = get(&node.input[0])?;
|
||||
let input1 = get(&node.input[1])?;
|
||||
|
|
Loading…
Reference in New Issue