[ONNX] Do not generate values for constants. (#1272)
* Do not generate values for constants. * Add an onnx based example using squeezenet.
This commit is contained in:
parent
d1d89bac1f
commit
928a9d906e
|
@ -16,6 +16,7 @@ candle-datasets = { path = "../candle-datasets", version = "0.3.0" }
|
|||
candle-nn = { path = "../candle-nn", version = "0.3.0" }
|
||||
candle-transformers = { path = "../candle-transformers", version = "0.3.0" }
|
||||
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.0", optional = true }
|
||||
candle-onnx = { path = "../candle-onnx", version = "0.3.0" }
|
||||
cudarc = { workspace = true, optional = true }
|
||||
half = { workspace = true, optional = true }
|
||||
image = { workspace = true }
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
## Using ONNX models in Candle
|
||||
|
||||
This example demonstrates how to run ONNX based models in Candle, the model
|
||||
being used here is a small sequeezenet variant.
|
||||
|
||||
You can run the example with the following command:
|
||||
|
||||
```bash
|
||||
cargo run --example squeezenet-onnx --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
```
|
|
@ -0,0 +1,57 @@
|
|||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{IndexOp, D};
|
||||
use clap::Parser;
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let image = candle_examples::imagenet::load_image224(args.image)?;
|
||||
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let model = match args.model {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => hf_hub::api::sync::Api::new()?
|
||||
.model("lmz/candle-onnx".into())
|
||||
.get("squeezenet1.1-7.onnx")?,
|
||||
};
|
||||
|
||||
let model = candle_onnx::read_file(model)?;
|
||||
let graph = model.graph.as_ref().unwrap();
|
||||
let mut inputs = std::collections::HashMap::new();
|
||||
inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?);
|
||||
let mut outputs = candle_onnx::simple_eval(&model, inputs)?;
|
||||
let logits = outputs.remove(&graph.output[0].name).unwrap();
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||
.i(0)?
|
||||
.to_vec1::<f32>()?;
|
||||
|
||||
// Sort the predictions and take the top 5
|
||||
let mut top: Vec<_> = prs.iter().enumerate().collect();
|
||||
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
|
||||
let top = top.into_iter().take(5).collect::<Vec<_>>();
|
||||
|
||||
// Print the top predictions
|
||||
for &(i, p) in &top {
|
||||
println!(
|
||||
"{:50}: {:.2}%",
|
||||
candle_examples::imagenet::CLASSES[i],
|
||||
p * 100.0
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
|
@ -35,33 +35,34 @@ pub fn main() -> Result<()> {
|
|||
}
|
||||
Command::SimpleEval { file } => {
|
||||
let model = candle_onnx::read_file(file)?;
|
||||
let inputs = model
|
||||
.graph
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.input
|
||||
.iter()
|
||||
.map(|input| {
|
||||
use candle_onnx::onnx::tensor_proto::DataType;
|
||||
let graph = model.graph.as_ref().unwrap();
|
||||
let constants: std::collections::HashSet<_> =
|
||||
graph.initializer.iter().map(|i| i.name.as_str()).collect();
|
||||
let mut inputs = std::collections::HashMap::new();
|
||||
for input in graph.input.iter() {
|
||||
use candle_onnx::onnx::tensor_proto::DataType;
|
||||
if constants.contains(input.name.as_str()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let type_ = input.r#type.as_ref().expect("no type for input");
|
||||
let type_ = type_.value.as_ref().expect("no type.value for input");
|
||||
let value = match type_ {
|
||||
candle_onnx::onnx::type_proto::Value::TensorType(tt) => {
|
||||
let dt = match DataType::try_from(tt.elem_type) {
|
||||
Ok(dt) => match candle_onnx::dtype(dt) {
|
||||
Some(dt) => dt,
|
||||
None => {
|
||||
anyhow::bail!(
|
||||
"unsupported 'value' data-type {dt:?} for {}",
|
||||
input.name
|
||||
)
|
||||
}
|
||||
},
|
||||
type_ => anyhow::bail!("unsupported input type {type_:?}"),
|
||||
};
|
||||
let shape = tt.shape.as_ref().expect("no tensortype.shape for input");
|
||||
let dims = shape
|
||||
let type_ = input.r#type.as_ref().expect("no type for input");
|
||||
let type_ = type_.value.as_ref().expect("no type.value for input");
|
||||
let value = match type_ {
|
||||
candle_onnx::onnx::type_proto::Value::TensorType(tt) => {
|
||||
let dt = match DataType::try_from(tt.elem_type) {
|
||||
Ok(dt) => match candle_onnx::dtype(dt) {
|
||||
Some(dt) => dt,
|
||||
None => {
|
||||
anyhow::bail!(
|
||||
"unsupported 'value' data-type {dt:?} for {}",
|
||||
input.name
|
||||
)
|
||||
}
|
||||
},
|
||||
type_ => anyhow::bail!("unsupported input type {type_:?}"),
|
||||
};
|
||||
let shape = tt.shape.as_ref().expect("no tensortype.shape for input");
|
||||
let dims = shape
|
||||
.dim
|
||||
.iter()
|
||||
.map(|dim| match dim.value.as_ref().expect("no dim value") {
|
||||
|
@ -69,16 +70,16 @@ pub fn main() -> Result<()> {
|
|||
candle_onnx::onnx::tensor_shape_proto::dimension::Value::DimParam(_) => anyhow::bail!("DimParam is unsupported for input {}", input.name),
|
||||
})
|
||||
.collect::<Result<Vec<usize>>>()?;
|
||||
Tensor::zeros(dims, dt, &Device::Cpu)?
|
||||
}
|
||||
type_ => anyhow::bail!("unsupported input type {type_:?}"),
|
||||
};
|
||||
Ok::<_, anyhow::Error>((input.name.clone(), value))
|
||||
})
|
||||
.collect::<Result<_>>()?;
|
||||
Tensor::zeros(dims, dt, &Device::Cpu)?
|
||||
}
|
||||
type_ => anyhow::bail!("unsupported input type {type_:?}"),
|
||||
};
|
||||
println!("input {}: {value:?}", input.name);
|
||||
inputs.insert(input.name.clone(), value);
|
||||
}
|
||||
let outputs = candle_onnx::simple_eval(&model, inputs)?;
|
||||
for (name, value) in outputs.iter() {
|
||||
println!("{name}: {value:?}")
|
||||
println!("output {name}: {value:?}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -382,7 +382,7 @@ pub fn simple_eval(
|
|||
Some([p]) => *p as usize,
|
||||
Some([p1, p2, p3, p4]) => {
|
||||
if p1 != p2 || p1 != p3 || p1 != p4 {
|
||||
bail!("pads to be the same {pads:?} {}", node.name)
|
||||
bail!("pads have to be the same {pads:?} {}", node.name)
|
||||
}
|
||||
*p1 as usize
|
||||
}
|
||||
|
@ -396,7 +396,7 @@ pub fn simple_eval(
|
|||
Some([p1, p2]) => {
|
||||
if p1 != p2 {
|
||||
bail!(
|
||||
"strides to be the same on both axis {pads:?} {}",
|
||||
"strides have to be the same on both axis {pads:?} {}",
|
||||
node.name
|
||||
)
|
||||
}
|
||||
|
@ -412,7 +412,7 @@ pub fn simple_eval(
|
|||
Some([p1, p2]) => {
|
||||
if p1 != p2 {
|
||||
bail!(
|
||||
"dilations to be the same on both axis {pads:?} {}",
|
||||
"dilations have to be the same on both axis {pads:?} {}",
|
||||
node.name
|
||||
)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue