[ONNX] Do not generate values for constants. (#1272)

* Do not generate values for constants.

* Add an onnx based example using squeezenet.
This commit is contained in:
Laurent Mazare 2023-11-05 11:23:14 +01:00 committed by GitHub
parent d1d89bac1f
commit 928a9d906e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 106 additions and 37 deletions

View File

@ -16,6 +16,7 @@ candle-datasets = { path = "../candle-datasets", version = "0.3.0" }
candle-nn = { path = "../candle-nn", version = "0.3.0" }
candle-transformers = { path = "../candle-transformers", version = "0.3.0" }
candle-flash-attn = { path = "../candle-flash-attn", version = "0.3.0", optional = true }
candle-onnx = { path = "../candle-onnx", version = "0.3.0" }
cudarc = { workspace = true, optional = true }
half = { workspace = true, optional = true }
image = { workspace = true }

View File

@ -0,0 +1,10 @@
## Using ONNX models in Candle
This example demonstrates how to run ONNX based models in Candle, the model
being used here is a small sequeezenet variant.
You can run the example with the following command:
```bash
cargo run --example squeezenet-onnx --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
```

View File

@ -0,0 +1,57 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{IndexOp, D};
use clap::Parser;
#[derive(Parser)]
struct Args {
#[arg(long)]
image: String,
#[arg(long)]
model: Option<String>,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => hf_hub::api::sync::Api::new()?
.model("lmz/candle-onnx".into())
.get("squeezenet1.1-7.onnx")?,
};
let model = candle_onnx::read_file(model)?;
let graph = model.graph.as_ref().unwrap();
let mut inputs = std::collections::HashMap::new();
inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?);
let mut outputs = candle_onnx::simple_eval(&model, inputs)?;
let logits = outputs.remove(&graph.output[0].name).unwrap();
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
// Sort the predictions and take the top 5
let mut top: Vec<_> = prs.iter().enumerate().collect();
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
let top = top.into_iter().take(5).collect::<Vec<_>>();
// Print the top predictions
for &(i, p) in &top {
println!(
"{:50}: {:.2}%",
candle_examples::imagenet::CLASSES[i],
p * 100.0
);
}
Ok(())
}

View File

@ -35,33 +35,34 @@ pub fn main() -> Result<()> {
}
Command::SimpleEval { file } => {
let model = candle_onnx::read_file(file)?;
let inputs = model
.graph
.as_ref()
.unwrap()
.input
.iter()
.map(|input| {
use candle_onnx::onnx::tensor_proto::DataType;
let graph = model.graph.as_ref().unwrap();
let constants: std::collections::HashSet<_> =
graph.initializer.iter().map(|i| i.name.as_str()).collect();
let mut inputs = std::collections::HashMap::new();
for input in graph.input.iter() {
use candle_onnx::onnx::tensor_proto::DataType;
if constants.contains(input.name.as_str()) {
continue;
}
let type_ = input.r#type.as_ref().expect("no type for input");
let type_ = type_.value.as_ref().expect("no type.value for input");
let value = match type_ {
candle_onnx::onnx::type_proto::Value::TensorType(tt) => {
let dt = match DataType::try_from(tt.elem_type) {
Ok(dt) => match candle_onnx::dtype(dt) {
Some(dt) => dt,
None => {
anyhow::bail!(
"unsupported 'value' data-type {dt:?} for {}",
input.name
)
}
},
type_ => anyhow::bail!("unsupported input type {type_:?}"),
};
let shape = tt.shape.as_ref().expect("no tensortype.shape for input");
let dims = shape
let type_ = input.r#type.as_ref().expect("no type for input");
let type_ = type_.value.as_ref().expect("no type.value for input");
let value = match type_ {
candle_onnx::onnx::type_proto::Value::TensorType(tt) => {
let dt = match DataType::try_from(tt.elem_type) {
Ok(dt) => match candle_onnx::dtype(dt) {
Some(dt) => dt,
None => {
anyhow::bail!(
"unsupported 'value' data-type {dt:?} for {}",
input.name
)
}
},
type_ => anyhow::bail!("unsupported input type {type_:?}"),
};
let shape = tt.shape.as_ref().expect("no tensortype.shape for input");
let dims = shape
.dim
.iter()
.map(|dim| match dim.value.as_ref().expect("no dim value") {
@ -69,16 +70,16 @@ pub fn main() -> Result<()> {
candle_onnx::onnx::tensor_shape_proto::dimension::Value::DimParam(_) => anyhow::bail!("DimParam is unsupported for input {}", input.name),
})
.collect::<Result<Vec<usize>>>()?;
Tensor::zeros(dims, dt, &Device::Cpu)?
}
type_ => anyhow::bail!("unsupported input type {type_:?}"),
};
Ok::<_, anyhow::Error>((input.name.clone(), value))
})
.collect::<Result<_>>()?;
Tensor::zeros(dims, dt, &Device::Cpu)?
}
type_ => anyhow::bail!("unsupported input type {type_:?}"),
};
println!("input {}: {value:?}", input.name);
inputs.insert(input.name.clone(), value);
}
let outputs = candle_onnx::simple_eval(&model, inputs)?;
for (name, value) in outputs.iter() {
println!("{name}: {value:?}")
println!("output {name}: {value:?}")
}
}
}

View File

@ -382,7 +382,7 @@ pub fn simple_eval(
Some([p]) => *p as usize,
Some([p1, p2, p3, p4]) => {
if p1 != p2 || p1 != p3 || p1 != p4 {
bail!("pads to be the same {pads:?} {}", node.name)
bail!("pads have to be the same {pads:?} {}", node.name)
}
*p1 as usize
}
@ -396,7 +396,7 @@ pub fn simple_eval(
Some([p1, p2]) => {
if p1 != p2 {
bail!(
"strides to be the same on both axis {pads:?} {}",
"strides have to be the same on both axis {pads:?} {}",
node.name
)
}
@ -412,7 +412,7 @@ pub fn simple_eval(
Some([p1, p2]) => {
if p1 != p2 {
bail!(
"dilations to be the same on both axis {pads:?} {}",
"dilations have to be the same on both axis {pads:?} {}",
node.name
)
}