parent
6110ad8d4f
commit
888d886dd8
|
@ -36,6 +36,7 @@ serde_json = { workspace = true }
|
|||
symphonia = { version = "0.5.3", features = ["all"], optional = true }
|
||||
tokenizers = { workspace = true, features = ["onig"] }
|
||||
cpal = { version = "0.15.2", optional = true }
|
||||
pdf2image = { version = "0.1.2" , optional = true}
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
|
@ -117,3 +118,7 @@ required-features = ["depth_anything_v2"]
|
|||
[[example]]
|
||||
name = "silero-vad"
|
||||
required-features = ["onnx"]
|
||||
|
||||
[[example]]
|
||||
name = "colpali"
|
||||
required-features = ["pdf2image"]
|
|
@ -0,0 +1,18 @@
|
|||
# Colpali
|
||||
|
||||
[HuggingFace Model Card](https://huggingface.co/vidore/colpali-v1.2-merged)
|
||||
|
||||
```
|
||||
wget https://arxiv.org/pdf/1706.03762.pdf
|
||||
cargo run --features cuda,pdf2image --release --example colpali -- --prompt "What is Positional Encoding" --pdf "1706.03762.pdf"
|
||||
```
|
||||
|
||||
```
|
||||
Prompt: what is position encoding?
|
||||
top 3 page numbers that contain similarity to the prompt
|
||||
-----------------------------------
|
||||
Page: 6
|
||||
Page: 11
|
||||
Page: 15
|
||||
-----------------------------------
|
||||
```
|
|
@ -0,0 +1,268 @@
|
|||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::colpali::Model;
|
||||
use candle_transformers::models::{colpali, paligemma};
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use image::DynamicImage;
|
||||
use pdf2image::{RenderOptionsBuilder, PDF};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct PageRetriever {
|
||||
model: Model,
|
||||
config: paligemma::Config,
|
||||
pdf: PDF,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
range: pdf2image::Pages,
|
||||
batch_size: usize,
|
||||
top_k: usize,
|
||||
}
|
||||
|
||||
impl PageRetriever {
|
||||
fn new(
|
||||
model: Model,
|
||||
config: paligemma::Config,
|
||||
pdf: PDF,
|
||||
tokenizer: Tokenizer,
|
||||
device: &Device,
|
||||
range: Option<pdf2image::Pages>,
|
||||
batch_size: usize,
|
||||
top_k: usize,
|
||||
) -> Self {
|
||||
let page_count = pdf.page_count();
|
||||
Self {
|
||||
model,
|
||||
config,
|
||||
pdf,
|
||||
device: device.clone(),
|
||||
tokenizer,
|
||||
range: range.unwrap_or_else(|| pdf2image::Pages::Range(1..=page_count)),
|
||||
batch_size,
|
||||
top_k,
|
||||
}
|
||||
}
|
||||
|
||||
fn get_images_from_pdf(&self) -> Result<Vec<DynamicImage>> {
|
||||
let pages = self
|
||||
.pdf
|
||||
.render(self.range.clone(), RenderOptionsBuilder::default().build()?)?;
|
||||
Ok(pages)
|
||||
}
|
||||
|
||||
fn tokenize_batch(&self, prompts: Vec<&str>) -> Result<Tensor> {
|
||||
let tokens = self.tokenizer.encode_batch(prompts, true).map_err(E::msg)?;
|
||||
let token_ids = tokens
|
||||
.iter()
|
||||
.map(|tokens| {
|
||||
let tokens = tokens.get_ids().to_vec();
|
||||
Tensor::new(tokens.as_slice(), &self.device)
|
||||
})
|
||||
.collect::<candle::Result<Vec<_>>>()?;
|
||||
let input = Tensor::stack(&token_ids, 0)?;
|
||||
Ok(input)
|
||||
}
|
||||
|
||||
fn images_to_tensor(
|
||||
&self,
|
||||
pages: &[DynamicImage],
|
||||
image_size: usize,
|
||||
) -> anyhow::Result<Tensor> {
|
||||
let mut images = vec![];
|
||||
for page in pages.iter() {
|
||||
let img = page.resize_to_fill(
|
||||
image_size as u32,
|
||||
image_size as u32,
|
||||
image::imageops::FilterType::Triangle,
|
||||
);
|
||||
let img = img.to_rgb8();
|
||||
let img = img.into_raw();
|
||||
let img = Tensor::from_vec(img, (image_size, image_size, 3), &Device::Cpu)?
|
||||
.permute((2, 0, 1))?
|
||||
.to_dtype(DType::F32)?
|
||||
.affine(2. / 255., -1.)?;
|
||||
images.push(img);
|
||||
}
|
||||
let images = Tensor::stack(&images, 0)?;
|
||||
Ok(images)
|
||||
}
|
||||
|
||||
fn retrieve(&mut self, prompt: &str) -> Result<Vec<usize>> {
|
||||
let dtype = if self.device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
|
||||
let dummy_prompt: &str = "Describe the image";
|
||||
|
||||
let input = self.tokenize_batch(vec![prompt])?;
|
||||
let dummy_input = self.tokenize_batch(vec![dummy_prompt])?;
|
||||
|
||||
let pages = self.get_images_from_pdf()?;
|
||||
let mut all_scores = Vec::new();
|
||||
for batch in pages.chunks(self.batch_size) {
|
||||
let page_images = self
|
||||
.images_to_tensor(batch, self.config.vision_config.image_size)?
|
||||
.to_device(&self.device)?
|
||||
.to_dtype(dtype)?;
|
||||
let dummy_input = dummy_input.repeat((page_images.dims()[0], 0))?;
|
||||
|
||||
let image_embeddings = self.model.forward_images(&page_images, &dummy_input)?;
|
||||
let text_embeddings = self.model.forward_text(&input)?;
|
||||
|
||||
let scores = text_embeddings
|
||||
.unsqueeze(1)?
|
||||
.broadcast_matmul(&image_embeddings.unsqueeze(0)?.transpose(3, 2)?)?
|
||||
.max(3)?
|
||||
.sum(2)?;
|
||||
let batch_scores: Vec<f32> = scores
|
||||
.to_dtype(DType::F32)?
|
||||
.to_vec2()?
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
all_scores.extend(batch_scores);
|
||||
}
|
||||
|
||||
let mut indices: Vec<usize> = (0..all_scores.len()).collect();
|
||||
indices.sort_by(|a, b| all_scores[*b].partial_cmp(&all_scores[*a]).unwrap());
|
||||
|
||||
let top_k_indices = indices[0..self.top_k].to_vec();
|
||||
|
||||
Ok(top_k_indices)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// number of top pages to show.
|
||||
#[arg(long, default_value_t = 3)]
|
||||
top_k: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
pdf: String,
|
||||
|
||||
#[arg(long)]
|
||||
start: Option<u32>,
|
||||
|
||||
#[arg(long)]
|
||||
end: Option<u32>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "vidore/colpali-v1.2-merged".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => api
|
||||
.repo(Repo::with_revision(
|
||||
"vidore/colpali".to_string(),
|
||||
RepoType::Model,
|
||||
"main".to_string(),
|
||||
))
|
||||
.get("tokenizer.json")?,
|
||||
};
|
||||
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
|
||||
let config: paligemma::Config = paligemma::Config::paligemma_3b_448();
|
||||
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let device = candle_examples::device(false)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = colpali::Model::new(&config, vb)?;
|
||||
|
||||
let pdf = PDF::from_file(args.pdf)?;
|
||||
|
||||
// check if start and end given in arg
|
||||
let range = if let (Some(start), Some(end)) = (args.start, args.end) {
|
||||
pdf2image::Pages::Range(start..=end)
|
||||
} else {
|
||||
pdf2image::Pages::Range(1..=pdf.page_count()) // can use pdf2image::Pages::All but there is a bug in the library which causes the first page to rendered twice.
|
||||
};
|
||||
|
||||
let mut retriever =
|
||||
PageRetriever::new(model, config, pdf, tokenizer, &device, Some(range), 4, 3);
|
||||
let top_k_indices = retriever.retrieve(&args.prompt)?;
|
||||
|
||||
println!("Prompt: {}", args.prompt);
|
||||
println!(
|
||||
"top {} page numbers that contain similarity to the prompt",
|
||||
retriever.top_k
|
||||
);
|
||||
println!("-----------------------------------");
|
||||
for index in top_k_indices {
|
||||
println!("Page: {:?}", index + 1);
|
||||
}
|
||||
println!("-----------------------------------");
|
||||
Ok(())
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
use candle::{Module, Result, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
|
||||
use super::paligemma;
|
||||
use candle_nn::{linear, Linear};
|
||||
|
||||
pub struct Model {
|
||||
pub model: paligemma::Model,
|
||||
pub custom_text_projection: Linear,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(config: &paligemma::Config, vb: VarBuilder) -> Result<Self> {
|
||||
let model = paligemma::Model::new(config, vb.pp("model"))?;
|
||||
let custom_text_projection = linear(
|
||||
config.text_config.hidden_size,
|
||||
128,
|
||||
vb.pp("custom_text_proj"),
|
||||
)?;
|
||||
|
||||
Ok(Self {
|
||||
model,
|
||||
custom_text_projection,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward_images(&mut self, pixel_values: &Tensor, input_ids: &Tensor) -> Result<Tensor> {
|
||||
let outputs = self
|
||||
.model
|
||||
.setup_without_projection(pixel_values, input_ids)?;
|
||||
let outputs = self.custom_text_projection.forward(&outputs)?;
|
||||
let outputs = outputs.broadcast_div(&outputs.sqr()?.sum_keepdim(2)?.sqrt()?)?;
|
||||
Ok(outputs)
|
||||
}
|
||||
|
||||
pub fn forward_text(&mut self, input_ids: &Tensor) -> Result<Tensor> {
|
||||
let outputs = self.model.forward_without_projection(input_ids)?;
|
||||
let outputs = self.custom_text_projection.forward(&outputs)?;
|
||||
let outputs = outputs.broadcast_div(&outputs.sqr()?.sum_keepdim(2)?.sqrt()?)?;
|
||||
Ok(outputs)
|
||||
}
|
||||
}
|
|
@ -403,7 +403,6 @@ impl Model {
|
|||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn forward_embeds(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
|
@ -420,6 +419,21 @@ impl Model {
|
|||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
// Forward the model and return the hidden states without the lm_head
|
||||
pub fn forward_embeds_without_projection(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attn_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (_, _, _) = xs.dims3()?;
|
||||
let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attn_mask, seqlen_offset)?
|
||||
}
|
||||
Ok(xs)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
|
|
|
@ -7,6 +7,7 @@ pub mod blip_text;
|
|||
pub mod chatglm;
|
||||
pub mod clip;
|
||||
pub mod codegeex4_9b;
|
||||
pub mod colpali;
|
||||
pub mod convmixer;
|
||||
pub mod convnext;
|
||||
pub mod dac;
|
||||
|
|
|
@ -33,6 +33,29 @@ impl Config {
|
|||
projection_dim: 2048,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn paligemma_3b_448() -> Self {
|
||||
Self {
|
||||
vision_config: siglip::VisionConfig::paligemma_3b_448(),
|
||||
text_config: gemma::Config {
|
||||
hidden_size: 2048,
|
||||
intermediate_size: 16384,
|
||||
num_attention_heads: 8,
|
||||
num_hidden_layers: 18,
|
||||
num_key_value_heads: 1,
|
||||
// Default values.
|
||||
rope_theta: 10000.,
|
||||
head_dim: 256,
|
||||
hidden_act: Some(candle_nn::Activation::GeluPytorchTanh),
|
||||
hidden_activation: None,
|
||||
attention_bias: false,
|
||||
max_position_embeddings: 8192,
|
||||
rms_norm_eps: 1e-6,
|
||||
vocab_size: 257216,
|
||||
},
|
||||
projection_dim: 2048,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
@ -102,6 +125,28 @@ impl Model {
|
|||
self.language_model.forward(input_ids, pos)
|
||||
}
|
||||
|
||||
pub fn forward_without_projection(&mut self, input_ids: &Tensor) -> Result<Tensor> {
|
||||
self.clear_kv_cache();
|
||||
let input_embeds = self.language_model.embed_tokens().forward(input_ids)?;
|
||||
self.language_model
|
||||
.forward_embeds_without_projection(&input_embeds, None, 0)
|
||||
}
|
||||
pub fn setup_without_projection(
|
||||
&mut self,
|
||||
pixel_values: &Tensor,
|
||||
input_ids: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
self.clear_kv_cache();
|
||||
let image_features = self
|
||||
.vision_tower
|
||||
.forward(pixel_values)?
|
||||
.apply(&self.multi_modal_projector)?;
|
||||
let image_features = crate::models::clip::div_l2_norm(&image_features)?;
|
||||
let text_features = self.language_model.embed_tokens().forward(input_ids)?;
|
||||
let input_embeds = Tensor::cat(&[image_features, text_features], 1)?;
|
||||
self.language_model
|
||||
.forward_embeds_without_projection(&input_embeds, None, 0)
|
||||
}
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.pos = 0;
|
||||
self.language_model.clear_kv_cache()
|
||||
|
|
Loading…
Reference in New Issue