Add the Qwen2 model (#1684)
* Initial check-in for the qwen2 model. * More qwen2 inference. * Polish the qwen example. * Fix the rope basis. * Get the inference to work. * Support different model sizes.
This commit is contained in:
parent
0dee8ea19b
commit
5657e596cd
|
@ -0,0 +1,281 @@
|
|||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::qwen2::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("</s>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the </s> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, clap::ValueEnum, PartialEq, Eq)]
|
||||
enum WhichModel {
|
||||
#[value(name = "0.5b")]
|
||||
W0_5b,
|
||||
#[value(name = "1.8b")]
|
||||
W1_8b,
|
||||
#[value(name = "4b")]
|
||||
W4b,
|
||||
#[value(name = "7b")]
|
||||
W7b,
|
||||
#[value(name = "14b")]
|
||||
W14b,
|
||||
#[value(name = "72b")]
|
||||
W72b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long, default_value = "0.5b")]
|
||||
model: WhichModel,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => {
|
||||
let size = match args.model {
|
||||
WhichModel::W0_5b => "0.5B",
|
||||
WhichModel::W1_8b => "1.8B",
|
||||
WhichModel::W4b => "4B",
|
||||
WhichModel::W7b => "7B",
|
||||
WhichModel::W14b => "14B",
|
||||
WhichModel::W72b => "72B",
|
||||
};
|
||||
format!("Qwen/Qwen1.5-{size}")
|
||||
}
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => match args.model {
|
||||
WhichModel::W0_5b | WhichModel::W1_8b => vec![repo.get("model.safetensors")?],
|
||||
WhichModel::W4b | WhichModel::W7b | WhichModel::W14b | WhichModel::W72b => {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
},
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config_file = repo.get("config.json")?;
|
||||
let config: Config = serde_json::from_slice(&std::fs::read(config_file)?)?;
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
|
@ -30,6 +30,7 @@ pub mod quantized_mixformer;
|
|||
pub mod quantized_mpt;
|
||||
pub mod quantized_stable_lm;
|
||||
pub mod quantized_t5;
|
||||
pub mod qwen2;
|
||||
pub mod repvgg;
|
||||
pub mod resnet;
|
||||
pub mod segment_anything;
|
||||
|
|
|
@ -0,0 +1,377 @@
|
|||
use crate::models::with_tracing::{linear, linear_no_bias, Linear};
|
||||
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||
use candle_nn::{Activation, VarBuilder};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
|
||||
pub struct Config {
|
||||
pub vocab_size: usize,
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub max_position_embeddings: usize,
|
||||
pub sliding_window: usize,
|
||||
pub max_window_layers: usize,
|
||||
pub tie_word_embeddings: bool,
|
||||
pub rope_theta: f64,
|
||||
pub rms_norm_eps: f64,
|
||||
pub use_sliding_window: bool,
|
||||
pub hidden_act: Activation,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RmsNorm {
|
||||
inner: candle_nn::RmsNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn new(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
|
||||
let inner = candle_nn::rms_norm(size, eps, vb)?;
|
||||
Ok(Self { inner, span })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for RmsNorm {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(x)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
|
||||
let last_dim = xs.dim(D::Minus1)?;
|
||||
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
|
||||
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
|
||||
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = cfg.hidden_size / cfg.num_attention_heads;
|
||||
let max_seq_len = cfg.max_position_embeddings;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
fn apply_rotary_emb_qkv(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
|
||||
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
|
||||
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
struct MLP {
|
||||
gate_proj: Linear,
|
||||
up_proj: Linear,
|
||||
down_proj: Linear,
|
||||
act_fn: Activation,
|
||||
}
|
||||
|
||||
impl MLP {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let hidden_sz = cfg.hidden_size;
|
||||
let intermediate_sz = cfg.intermediate_size;
|
||||
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
|
||||
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
|
||||
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
gate_proj,
|
||||
up_proj,
|
||||
down_proj,
|
||||
act_fn: cfg.hidden_act,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for MLP {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
||||
let rhs = xs.apply(&self.up_proj)?;
|
||||
(lhs * rhs)?.apply(&self.down_proj)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Attention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
head_dim: usize,
|
||||
hidden_size: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let hidden_sz = cfg.hidden_size;
|
||||
let num_heads = cfg.num_attention_heads;
|
||||
let num_kv_heads = cfg.num_key_value_heads;
|
||||
let num_kv_groups = num_heads / num_kv_heads;
|
||||
let head_dim = hidden_sz / num_heads;
|
||||
let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
|
||||
let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
num_kv_groups,
|
||||
head_dim,
|
||||
hidden_size: hidden_sz,
|
||||
rotary_emb,
|
||||
kv_cache: None,
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_kv_groups;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (b_sz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let query_states = self.q_proj.forward(xs)?;
|
||||
let key_states = self.k_proj.forward(xs)?;
|
||||
let value_states = self.v_proj.forward(xs)?;
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let (query_states, key_states) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||
|
||||
let attn_weights = match attention_mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||
};
|
||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||
attn_weights.matmul(&value_states)?
|
||||
};
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_sz, q_len, self.hidden_size))?
|
||||
.apply(&self.o_proj)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
mlp: MLP,
|
||||
input_layernorm: RmsNorm,
|
||||
post_attention_layernorm: RmsNorm,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
||||
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
||||
let input_layernorm =
|
||||
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
let post_attention_layernorm = RmsNorm::new(
|
||||
cfg.hidden_size,
|
||||
cfg.rms_norm_eps,
|
||||
vb.pp("post_attention_layernorm"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
mlp,
|
||||
input_layernorm,
|
||||
post_attention_layernorm,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = self.input_layernorm.forward(xs)?;
|
||||
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
|
||||
residual + xs
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.self_attn.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: candle_nn::Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
norm: RmsNorm,
|
||||
lm_head: Linear,
|
||||
sliding_window: usize,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_m = vb.pp("model");
|
||||
let embed_tokens =
|
||||
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_l = vb_m.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
||||
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
norm,
|
||||
lm_head,
|
||||
sliding_window: cfg.sliding_window,
|
||||
device: vb.device().clone(),
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
// Sliding window mask?
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| {
|
||||
(0..tgt_len).map(move |j| {
|
||||
if i < j || j + self.sliding_window < i {
|
||||
f32::NEG_INFINITY
|
||||
} else {
|
||||
0.
|
||||
}
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = input_ids.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
||||
Some(mask)
|
||||
};
|
||||
let mut xs = self.embed_tokens.forward(input_ids)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
||||
}
|
||||
xs.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue