Sketch the Falcon model. (#93)

* Sketch the Falcon model.

* Add more substance to the falcon example.

* Falcon (wip).

* Falcon (wip again).

* Falcon inference.

* Get the weights from the api and properly generate the model.

* Use the proper model.

* Fix the file/revision names.

* Fix bias handling.

* Recompute the rot embeddings.

* Fix the input shape.

* Add the release-with-debug profile.

* Silly bugfix.

* More bugfixes.

* Stricter shape checking in matmul.
This commit is contained in:
Laurent Mazare 2023-07-06 19:01:21 +01:00 committed by GitHub
parent cae9212b70
commit 4afa461b34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 697 additions and 9 deletions

View File

@ -6,3 +6,7 @@ members = [
"candle-hub",
"candle-pyo3",
]
[profile.release-with-debug]
inherits = "release"
debug = true

View File

@ -476,27 +476,28 @@ impl Tensor {
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
return Err(Error::ShapeMismatchBinaryOp {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
});
})?
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
if k != k2 {
return Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
});
}
let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]);
let batching: usize = a_dims[..dim - 2].iter().product();
let batching_b: usize = b_dims[..dim - 2].iter().product();
if k != k2 || batching != batching_b {
Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
})?
}
let storage = self.storage.matmul(
&rhs.storage,
@ -660,6 +661,11 @@ impl Tensor {
self.shape().dims()
}
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(self.shape(), "dim")?;
Ok(self.dims()[dim])
}
pub fn layout(&self) -> &Layout {
&self.layout
}

View File

@ -0,0 +1,88 @@
#![allow(dead_code)]
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::{Error as E, Result};
use candle::{DType, Device, Tensor};
use clap::Parser;
mod model;
use model::{Config, Falcon, VarBuilder};
const DTYPE: DType = DType::F16;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(long)]
prompt: String,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
#[arg(long, default_value = "tiiuae/falcon-7b")]
model_id: String,
#[arg(long, default_value = "refs/pr/43")]
revision: String,
}
#[tokio::main]
async fn main() -> Result<()> {
use candle_hub::{api::Api, Repo, RepoType};
use tokenizers::Tokenizer;
let args = Args::parse();
let device = if args.cpu {
Device::Cpu
} else {
Device::new_cuda(0)?
};
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = Repo::with_revision(args.model_id, RepoType::Model, args.revision);
let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
let filename = api.get(&repo, rfilename).await?;
filenames.push(filename);
}
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let weights = filenames
.iter()
.map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
.collect::<Result<Vec<_>>>()?;
let weights = weights
.iter()
.map(|f| Ok(f.deserialize()?))
.collect::<Result<Vec<_>>>()?;
let vb = VarBuilder::from_safetensors(weights, DTYPE, &device);
let config = Config::falcon7b();
config.validate()?;
let mut model = Falcon::load(&vb, config)?;
println!("loaded the model in {:?}", start.elapsed());
let tokens = tokenizer
.encode(args.prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
let logits = model.forward(&tokens)?;
println!("{}", logits);
Ok(())
}

View File

@ -0,0 +1,590 @@
use anyhow::Result;
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor, D};
use std::collections::HashMap;
pub struct VarBuilder<'a> {
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
dtype: DType,
device: Device,
}
impl<'a> VarBuilder<'a> {
pub fn from_safetensors(
safetensors: Vec<SafeTensors<'a>>,
dtype: DType,
device: &Device,
) -> Self {
let mut routing = HashMap::new();
for (index, sf) in safetensors.iter().enumerate() {
for k in sf.names() {
routing.insert(k.to_string(), index);
}
}
Self {
safetensors: Some((routing, safetensors)),
device: device.clone(),
dtype,
}
}
pub fn zeros(dtype: DType, device: &Device) -> Self {
Self {
safetensors: None,
device: device.clone(),
dtype,
}
}
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
let s: Shape = s.into();
match &self.safetensors {
None => Tensor::zeros(s, self.dtype, &self.device),
Some((routing, safetensors)) => {
// Unwrap or 0 just to let the proper error flow.
let index = routing.get(tensor_name).unwrap_or(&0);
let tensor = safetensors[*index]
.tensor(tensor_name, &self.device)?
.to_dtype(self.dtype)?;
if *tensor.shape() != s {
let msg = format!("shape mismatch for {tensor_name}");
Err(candle::Error::UnexpectedShape {
msg,
expected: s,
got: tensor.shape().clone(),
})?
}
Ok(tensor)
}
}
}
}
#[derive(Debug)]
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = if bias {
Some(vb.get(size2, &format!("{p}.bias"))?)
} else {
None
};
Ok(Self { weight, bias })
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
#[derive(Debug)]
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
) {
(Ok(weight), Ok(bias)) => (weight, bias),
(Err(err), _) | (_, Err(err)) => {
if let (Ok(weight), Ok(bias)) = (
vb.get(size, &format!("{p}.gamma")),
vb.get(size, &format!("{p}.beta")),
) {
(weight, bias)
} else {
return Err(err.into());
}
}
};
Ok(Self { weight, bias, eps })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
}
#[derive(Debug)]
struct Dropout {
pr: f64,
}
impl Dropout {
fn new(pr: f64) -> Self {
Self { pr }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
// TODO
Ok(x.clone())
}
}
#[derive(Debug)]
struct Embedding {
embeddings: Tensor,
hidden_size: usize,
}
impl Embedding {
fn new(embeddings: Tensor, hidden_size: usize) -> Self {
Self {
embeddings,
hidden_size,
}
}
fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
Ok(Self::new(embeddings, hidden_size))
}
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
let mut final_dims = indexes.dims().to_vec();
final_dims.push(self.hidden_size);
let indexes = indexes.flatten_all()?;
let values = Tensor::embedding(&indexes, &self.embeddings)?;
let values = values.reshape(final_dims)?;
Ok(values)
}
}
// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py
#[derive(Debug)]
pub struct Config {
vocab_size: usize,
hidden_size: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
layer_norm_epsilon: f64,
initializer_range: f64,
use_cache: bool,
bos_token_id: u32,
eos_token_id: u32,
hidden_dropout: f64,
attention_dropout: f64,
n_head_kv: Option<usize>,
alibi: bool,
new_decoder_architecture: bool,
multi_query: bool,
parallel_attn: bool,
bias: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
vocab_size: 65024,
hidden_size: 4544,
num_hidden_layers: 32,
num_attention_heads: 71,
layer_norm_epsilon: 1e-5,
initializer_range: 0.02,
use_cache: true,
bos_token_id: 11,
eos_token_id: 11,
hidden_dropout: 0.0,
attention_dropout: 0.0,
n_head_kv: None,
alibi: false,
new_decoder_architecture: false,
multi_query: true,
parallel_attn: true,
bias: false,
}
}
}
impl Config {
pub fn validate(&self) -> Result<()> {
if self.alibi {
anyhow::bail!("alibi is not supported");
}
if self.new_decoder_architecture {
anyhow::bail!("new_decoder_architecture is not supported");
}
if self.n_head_kv.is_some() {
anyhow::bail!("n_head_kv is not supported");
}
Ok(())
}
// https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
pub fn falcon7b() -> Self {
// This is currently on par with the defaults, the defaults come from the Python default
// arguments for the config initialization whereas the following come from the json config.
Self {
vocab_size: 65024,
hidden_size: 4544,
num_hidden_layers: 32,
num_attention_heads: 71,
layer_norm_epsilon: 1e-5,
initializer_range: 0.02,
use_cache: true,
bos_token_id: 11,
eos_token_id: 11,
hidden_dropout: 0.,
attention_dropout: 0.,
n_head_kv: None,
alibi: false,
new_decoder_architecture: false,
multi_query: true,
parallel_attn: true,
bias: false,
}
}
fn head_dim(&self) -> usize {
self.hidden_size / self.num_attention_heads
}
fn rotary(&self) -> bool {
!self.alibi
}
}
fn rotate_half(x: &Tensor) -> Result<Tensor> {
let l = x.dim(D::Minus1)?;
let x1 = x.narrow(D::Minus1, 0, l / 2)?;
let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?;
let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
Ok(x21)
}
#[derive(Debug)]
struct FalconRotaryEmbedding {
inv_freq: Tensor,
}
impl FalconRotaryEmbedding {
fn load(vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let head_dim = cfg.head_dim();
let inv_freq: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32))
.collect();
let inv_freq = Tensor::new(inv_freq.as_slice(), &vb.device)?;
Ok(Self { inv_freq })
}
fn cos_sin(
&mut self,
seq_len: usize,
device: &Device,
dtype: DType,
) -> Result<(Tensor, Tensor)> {
// TODO: Add the cache.
let t: Vec<_> = (0..seq_len).map(|c| c as u32).collect();
let t = Tensor::new(t.as_slice(), device)?.to_dtype(dtype)?;
let inv_freq = self.inv_freq.to_dtype(dtype)?;
let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?;
let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
let cos = emb.cos()?;
let sin = emb.sin()?;
Ok((cos, sin))
}
fn forward(&mut self, query: &Tensor, key: &Tensor) -> Result<(Tensor, Tensor)> {
let (_batch, seq_len, _head_dim) = query.shape().r3()?;
let (cos, sin) = self.cos_sin(seq_len, &query.device(), query.dtype())?;
let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?;
let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?;
Ok((qs, ks))
}
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
#[derive(Debug)]
struct FalconAttention {
query_key_value: Linear,
dense: Linear,
maybe_rotary: Option<FalconRotaryEmbedding>,
inv_norm_factor: f64,
multi_query: bool,
num_heads: usize,
head_dim: usize,
n_head_kv: usize,
}
impl FalconAttention {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let maybe_rotary = if cfg.rotary() {
let rotary = FalconRotaryEmbedding::load(vb, cfg)?;
Some(rotary)
} else {
None
};
let head_dim = cfg.head_dim();
let hidden_size = cfg.hidden_size;
let qkv_out_dim = if cfg.multi_query {
hidden_size + 2 * head_dim
} else {
3 * hidden_size
};
let query_key_value = Linear::load(
hidden_size,
qkv_out_dim,
cfg.bias,
&format!("{p}.query_key_value"),
vb,
)?;
let dense = Linear::load(
hidden_size,
hidden_size,
cfg.bias,
&format!("{p}.dense"),
vb,
)?;
Ok(Self {
query_key_value,
dense,
maybe_rotary,
inv_norm_factor: 1. / (head_dim as f64).sqrt(),
multi_query: cfg.multi_query,
num_heads: cfg.num_attention_heads,
n_head_kv: cfg.n_head_kv.unwrap_or(1),
head_dim,
})
}
fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
let (b_sz, seq_len, _) = fused_qkv.shape().r3()?;
if !self.multi_query {
let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?;
let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?;
let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?;
let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?;
Ok((q, k, v))
} else {
let fused_qkv =
fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?;
let d = fused_qkv.dim(D::Minus2)?;
let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?;
let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?;
let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?;
Ok((q, k, v))
}
}
fn forward(&mut self, x: &Tensor, mask: &Tensor) -> Result<Tensor> {
let fused_qkv = self.query_key_value.forward(x)?;
let head_dim = self.head_dim;
let (query, key, value) = self.split_heads(&fused_qkv)?;
let (b_sz, q_len, _, _) = query.shape().r4()?;
let query = query
.transpose(1, 2)?
.reshape((b_sz * self.num_heads, q_len, head_dim))?;
let key = key
.transpose(1, 2)?
.reshape((b_sz * self.n_head_kv, q_len, head_dim))?;
let value = value
.transpose(1, 2)?
.reshape((b_sz * self.n_head_kv, q_len, head_dim))?;
let (query, key) = if let Some(r) = &mut self.maybe_rotary {
r.forward(&query, &key)?
} else {
(query, key)
};
let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?;
// TODO: layer_past, use_cache?
let query = query.reshape((b_sz, self.num_heads, q_len, head_dim))?;
let key = key.reshape((b_sz, self.n_head_kv, q_len, head_dim))?;
let value = value.reshape((b_sz, self.n_head_kv, q_len, head_dim))?;
// Only handle alibi is None here, and non-flash attention.
let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?;
let attention_scores = (attention_scores + mask)?.softmax(D::Minus1)?;
let attn_output = attention_scores
.matmul(&value)?
.reshape((b_sz, self.num_heads, q_len, head_dim))?
.transpose(1, 2)?
.reshape((b_sz, q_len, self.num_heads * head_dim))?;
Ok(attn_output)
}
}
#[derive(Debug)]
struct FalconMlp {
dense_h_to_4h: Linear,
dense_4h_to_h: Linear,
dropout: Dropout,
}
impl FalconMlp {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let h = cfg.hidden_size;
let b = cfg.bias;
let dense_h_to_4h = Linear::load(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?;
let dense_4h_to_h = Linear::load(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?;
let dropout = Dropout::new(cfg.hidden_dropout);
Ok(Self {
dense_h_to_4h,
dense_4h_to_h,
dropout,
})
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = self.dense_4h_to_h.forward(x)?.gelu()?;
let x = self.dense_h_to_4h.forward(&x)?;
Ok(x)
}
}
#[derive(Debug)]
struct FalconDecoderLayer {
inp_layernorm: LayerNorm,
self_attention: FalconAttention,
post_attention_layernorm: Option<LayerNorm>,
mlp: FalconMlp,
parallel_attn: bool,
}
impl FalconDecoderLayer {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let mlp = FalconMlp::load(&format!("{p}.mlp"), vb, cfg)?;
let inp_layernorm = LayerNorm::load(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.input_layernorm"),
vb,
)?;
let self_attention = FalconAttention::load(&format!("{p}.self_attention"), vb, cfg)?;
let post_attention_layernorm = if cfg.parallel_attn {
None
} else {
let ln = LayerNorm::load(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.post_attention_layernorm"),
vb,
)?;
Some(ln)
};
Ok(Self {
inp_layernorm,
self_attention,
post_attention_layernorm,
mlp,
parallel_attn: cfg.parallel_attn,
})
}
fn forward(&mut self, x: &Tensor, mask: &Tensor) -> Result<Tensor> {
let residual = x.clone();
let ln_attn = self.inp_layernorm.forward(x)?;
let attn_output = self.self_attention.forward(&ln_attn, mask)?;
let (residual, ln_mlp) = match &self.post_attention_layernorm {
None => (residual, ln_attn),
Some(pal) => {
// This should include some dropout.
let residual = (&attn_output + &residual)?;
let ln_mlp = pal.forward(&residual)?;
(residual, ln_mlp)
}
};
let mlp_output = self.mlp.forward(&ln_mlp)?;
let mlp_output = if self.parallel_attn {
(mlp_output + attn_output)?
} else {
mlp_output
};
let output = (mlp_output + residual)?;
Ok(output)
}
}
#[derive(Debug)]
pub struct Falcon {
word_embeddings: Embedding,
h: Vec<FalconDecoderLayer>,
ln_f: LayerNorm,
config: Config,
}
fn make_causal_mask(t: usize) -> Result<Tensor> {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
Ok(mask)
}
fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> {
// let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?;
let mask = make_causal_mask(seq_len)?;
let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?;
Ok(mask)
}
impl Falcon {
pub fn load(vb: &VarBuilder, cfg: Config) -> Result<Self> {
let word_embeddings = Embedding::load(
cfg.vocab_size,
cfg.hidden_size,
"transformer.word_embeddings",
vb,
)?;
let h = (0..cfg.num_hidden_layers)
.map(|i| FalconDecoderLayer::load(&format!("transformer.h.{i}"), vb, &cfg))
.collect::<Result<Vec<_>>>()?;
let ln_f = LayerNorm::load(
cfg.hidden_size,
cfg.layer_norm_epsilon,
"transformer.ln_f",
vb,
)?;
Ok(Self {
word_embeddings,
h,
ln_f,
config: cfg,
})
}
pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
let (b_sz, seq_len) = input_ids.shape().r2()?;
let mut hidden_state = self.word_embeddings.forward(input_ids)?;
let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(&input_ids.device())?;
for block in self.h.iter_mut() {
hidden_state = block.forward(&hidden_state, &causal_mask)?;
}
let hidden_state = self.ln_f.forward(&hidden_state)?;
Ok(hidden_state)
}
}