Simplify the KvCache api. (#2207)
This commit is contained in:
parent
31cf64147b
commit
45e235a747
|
@ -217,7 +217,6 @@ fn main() -> anyhow::Result<()> {
|
|||
match args.which {
|
||||
Which::Phi2 => Model::Phi2(Phi2::from_gguf(model, &mut file, &device)?),
|
||||
Which::Phi3 => Model::Phi3(Phi3::from_gguf(
|
||||
1,
|
||||
args.use_flash_attn,
|
||||
model,
|
||||
&mut file,
|
||||
|
|
|
@ -1,30 +1,25 @@
|
|||
use candle::{DType, Device, Result, Shape, Tensor};
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Cache {
|
||||
all_data: Tensor,
|
||||
// all_data is an option on a Tensor, this makes it possible to only create the actual tensor
|
||||
// on the first call where the batch size is easily known.
|
||||
// Also this makes it safe to clone a KvCache that has been reseted (as in it will not share
|
||||
// its internal state with the cloned instance).
|
||||
all_data: Option<Tensor>,
|
||||
dim: usize,
|
||||
current_seq_len: usize,
|
||||
max_seq_len: usize,
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new<S: Into<Shape>, D: candle::shape::Dim>(
|
||||
dim: D,
|
||||
shape: S,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
let dim = dim.to_index(&shape, "kv-cache")?;
|
||||
let max_seq_len = shape.dims()[dim];
|
||||
let all_data = Tensor::zeros(shape, dtype, dev)?;
|
||||
Ok(Self {
|
||||
all_data,
|
||||
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
||||
Self {
|
||||
all_data: None,
|
||||
dim,
|
||||
current_seq_len: 0,
|
||||
max_seq_len,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
|
@ -39,20 +34,34 @@ impl Cache {
|
|||
self.max_seq_len
|
||||
}
|
||||
|
||||
pub fn all_data(&self) -> &Tensor {
|
||||
pub fn all_data(&self) -> &Option<Tensor> {
|
||||
&self.all_data
|
||||
}
|
||||
|
||||
pub fn current_data(&self) -> Result<Tensor> {
|
||||
self.all_data.narrow(self.dim, 0, self.current_seq_len)
|
||||
pub fn current_data(&self) -> Result<Option<Tensor>> {
|
||||
let data = match self.all_data.as_ref() {
|
||||
None => None,
|
||||
Some(d) => Some(d.narrow(self.dim, 0, self.current_seq_len)?),
|
||||
};
|
||||
Ok(data)
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.current_seq_len = 0
|
||||
self.current_seq_len = 0;
|
||||
self.all_data = None;
|
||||
}
|
||||
|
||||
pub fn append(&mut self, src: &Tensor) -> Result<()> {
|
||||
let seq_len = src.dim(self.dim)?;
|
||||
// This doesn't seem very idiomatic but because the creation can fail, it's tricky to use
|
||||
// self.all_data.get_or_insert_with.
|
||||
if self.all_data.is_none() {
|
||||
let mut shape = src.dims().to_vec();
|
||||
shape[self.dim] = self.max_seq_len;
|
||||
let ad = Tensor::zeros(shape, src.dtype(), src.device())?;
|
||||
self.all_data = Some(ad)
|
||||
};
|
||||
let ad = self.all_data.as_mut().unwrap();
|
||||
if self.current_seq_len + seq_len > self.max_seq_len {
|
||||
candle::bail!(
|
||||
"kv-cache: above max-seq-len {}+{seq_len}>{}",
|
||||
|
@ -60,8 +69,7 @@ impl Cache {
|
|||
self.max_seq_len
|
||||
)
|
||||
}
|
||||
self.all_data
|
||||
.slice_set(src, self.dim, self.current_seq_len)?;
|
||||
ad.slice_set(src, self.dim, self.current_seq_len)?;
|
||||
self.current_seq_len += seq_len;
|
||||
Ok(())
|
||||
}
|
||||
|
@ -74,17 +82,10 @@ pub struct KvCache {
|
|||
}
|
||||
|
||||
impl KvCache {
|
||||
pub fn new<S: Into<Shape>, D: candle::shape::Dim>(
|
||||
dim: D,
|
||||
shape: S,
|
||||
dtype: DType,
|
||||
dev: &Device,
|
||||
) -> Result<Self> {
|
||||
let shape = shape.into();
|
||||
let dim = dim.to_index(&shape, "kv-cache")?;
|
||||
let k = Cache::new(dim, &shape, dtype, dev)?;
|
||||
let v = Cache::new(dim, &shape, dtype, dev)?;
|
||||
Ok(Self { k, v })
|
||||
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
||||
let k = Cache::new(dim, max_seq_len);
|
||||
let v = Cache::new(dim, max_seq_len);
|
||||
Self { k, v }
|
||||
}
|
||||
|
||||
pub fn k_cache(&self) -> &Cache {
|
||||
|
@ -103,19 +104,35 @@ impl KvCache {
|
|||
&mut self.v
|
||||
}
|
||||
|
||||
pub fn k(&self) -> Result<Tensor> {
|
||||
pub fn k(&self) -> Result<Option<Tensor>> {
|
||||
self.k.current_data()
|
||||
}
|
||||
|
||||
pub fn v(&self) -> Result<Tensor> {
|
||||
pub fn v(&self) -> Result<Option<Tensor>> {
|
||||
self.v.current_data()
|
||||
}
|
||||
|
||||
pub fn append(&mut self, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||
self.k.append(k)?;
|
||||
self.v.append(v)?;
|
||||
let k = self.k.current_data()?;
|
||||
let v = self.v.current_data()?;
|
||||
let out_k = self.k.current_data()?;
|
||||
let out_v = self.v.current_data()?;
|
||||
let k = match out_k {
|
||||
None => {
|
||||
let mut shape = k.dims().to_vec();
|
||||
shape[self.k.dim] = 0;
|
||||
Tensor::zeros(shape, k.dtype(), k.device())?
|
||||
}
|
||||
Some(k) => k,
|
||||
};
|
||||
let v = match out_v {
|
||||
None => {
|
||||
let mut shape = v.dims().to_vec();
|
||||
shape[self.k.dim] = 0;
|
||||
Tensor::zeros(shape, v.dtype(), v.device())?
|
||||
}
|
||||
Some(v) => v,
|
||||
};
|
||||
Ok((k, v))
|
||||
}
|
||||
|
||||
|
|
|
@ -203,7 +203,6 @@ fn precomput_freqs_cis(
|
|||
|
||||
impl ModelWeights {
|
||||
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
|
||||
batch_size: usize,
|
||||
use_flash_attn: bool,
|
||||
ct: gguf_file::Content,
|
||||
reader: &mut R,
|
||||
|
@ -252,12 +251,7 @@ impl ModelWeights {
|
|||
)?;
|
||||
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let kv_cache = KvCache::new(
|
||||
2,
|
||||
(batch_size, head_count_kv, max_seq_len, head_dim),
|
||||
DType::F32,
|
||||
device,
|
||||
)?;
|
||||
let kv_cache = KvCache::new(2, max_seq_len);
|
||||
layers.push(LayerWeights {
|
||||
attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
|
||||
attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
|
||||
|
|
Loading…
Reference in New Issue