Add the SmolLM2 models. (#2595)

* Add the SmolLM2 models.

* More SmolLM2 support.
This commit is contained in:
Laurent Mazare 2024-11-03 17:11:12 +01:00 committed by GitHub
parent 530ab96036
commit 3fba2b5fc4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 73 additions and 18 deletions

View File

@ -43,6 +43,18 @@ enum Which {
Solar10_7B,
#[value(name = "tiny-llama-1.1b-chat")]
TinyLlama1_1BChat,
#[value(name = "SmoLM2-1.7B")]
SmolLM2_1B,
#[value(name = "SmoLM2-1.7B-Instruct")]
SmolLM2_1BInstruct,
#[value(name = "SmoLM2-360M")]
SmolLM2_360M,
#[value(name = "SmoLM2-360M-Instruct")]
SmolLM2_360MInstruct,
#[value(name = "SmoLM2-135M")]
SmolLM2_135M,
#[value(name = "SmoLM2-135M-Instruct")]
SmolLM2_135MInstruct,
}
#[derive(Parser, Debug)]
@ -134,19 +146,28 @@ fn main() -> Result<()> {
};
let (llama, tokenizer_filename, mut cache, config) = {
let api = Api::new()?;
let model_id = args.model_id.unwrap_or_else(|| match args.which {
Which::V1 => "Narsil/amall-7b".to_string(),
Which::V2 => "meta-llama/Llama-2-7b-hf".to_string(),
Which::V3 => "meta-llama/Meta-Llama-3-8B".to_string(),
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct".to_string(),
Which::V31 => "meta-llama/Llama-3.1-8B".to_string(),
Which::V31Instruct => "meta-llama/Llama-3.1-8B-Instruct".to_string(),
Which::V32_1b => "meta-llama/Llama-3.2-1B".to_string(),
Which::V32_1bInstruct => "meta-llama/Llama-3.2-1B-Instruct".to_string(),
Which::V32_3b => "meta-llama/Llama-3.2-3B".to_string(),
Which::V32_3bInstruct => "meta-llama/Llama-3.2-3B-Instruct".to_string(),
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0".to_string(),
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0".to_string(),
let model_id = args.model_id.unwrap_or_else(|| {
let str = match args.which {
Which::V1 => "Narsil/amall-7b",
Which::V2 => "meta-llama/Llama-2-7b-hf",
Which::V3 => "meta-llama/Meta-Llama-3-8B",
Which::V3Instruct => "meta-llama/Meta-Llama-3-8B-Instruct",
Which::V31 => "meta-llama/Llama-3.1-8B",
Which::V31Instruct => "meta-llama/Llama-3.1-8B-Instruct",
Which::V32_1b => "meta-llama/Llama-3.2-1B",
Which::V32_1bInstruct => "meta-llama/Llama-3.2-1B-Instruct",
Which::V32_3b => "meta-llama/Llama-3.2-3B",
Which::V32_3bInstruct => "meta-llama/Llama-3.2-3B-Instruct",
Which::Solar10_7B => "upstage/SOLAR-10.7B-v1.0",
Which::TinyLlama1_1BChat => "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
Which::SmolLM2_135M => "HuggingFaceTB/SmolLM2-135M",
Which::SmolLM2_135MInstruct => "HuggingFaceTB/SmolLM2-135M-Instruct",
Which::SmolLM2_360M => "HuggingFaceTB/SmolLM2-360M",
Which::SmolLM2_360MInstruct => "HuggingFaceTB/SmolLM2-360M-Instruct",
Which::SmolLM2_1B => "HuggingFaceTB/SmolLM2-1.7B",
Which::SmolLM2_1BInstruct => "HuggingFaceTB/SmolLM2-1.7B-Instruct",
};
str.to_string()
});
println!("loading the model weights from {model_id}");
let revision = args.revision.unwrap_or("main".to_string());
@ -169,7 +190,15 @@ fn main() -> Result<()> {
| Which::Solar10_7B => {
candle_examples::hub_load_safetensors(&api, "model.safetensors.index.json")?
}
Which::V32_1b | Which::V32_1bInstruct | Which::TinyLlama1_1BChat => {
Which::SmolLM2_360M
| Which::SmolLM2_360MInstruct
| Which::SmolLM2_135M
| Which::SmolLM2_135MInstruct
| Which::SmolLM2_1B
| Which::SmolLM2_1BInstruct
| Which::V32_1b
| Which::V32_1bInstruct
| Which::TinyLlama1_1BChat => {
vec![api.get("model.safetensors")?]
}
};

View File

@ -71,6 +71,10 @@ enum Which {
L8b,
#[value(name = "phi3")]
Phi3,
#[value(name = "SmoLM2-360M-Instruct")]
SmolLM2_360MInstruct,
#[value(name = "SmoLM2-1.7B-Instruct")]
SmolLM2_1BInstruct,
}
impl Which {
@ -88,7 +92,9 @@ impl Which {
| Self::Leo7b
| Self::Leo13b
| Self::L8b
| Self::Phi3 => false,
| Self::Phi3
| Self::SmolLM2_1BInstruct
| Self::SmolLM2_360MInstruct => false,
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
// same way. Starling is a fine tuned version of OpenChat.
Self::OpenChat35
@ -124,6 +130,8 @@ impl Which {
| Self::OpenChat35
| Self::Starling7bAlpha
| Self::L8b
| Self::SmolLM2_1BInstruct
| Self::SmolLM2_360MInstruct
| Self::Phi3 => false,
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
}
@ -150,6 +158,8 @@ impl Which {
| Self::Zephyr7bAlpha
| Self::Zephyr7bBeta
| Self::L8b
| Self::SmolLM2_1BInstruct
| Self::SmolLM2_360MInstruct
| Self::Phi3 => false,
Self::OpenChat35 | Self::Starling7bAlpha => true,
}
@ -179,6 +189,8 @@ impl Which {
Self::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
Self::L8b => "meta-llama/Meta-Llama-3-8B",
Self::Phi3 => "microsoft/Phi-3-mini-4k-instruct",
Self::SmolLM2_360MInstruct => "HuggingFaceTB/SmolLM2-360M-Instruct",
Self::SmolLM2_1BInstruct => "HuggingFaceTB/SmolLM2-1.7B-Instruct",
}
}
}
@ -343,6 +355,14 @@ impl Args {
"microsoft/Phi-3-mini-4k-instruct-gguf",
"Phi-3-mini-4k-instruct-q4.gguf",
),
Which::SmolLM2_360MInstruct => (
"HuggingFaceTB/SmolLM2-360M-Instruct-GGUF",
"smollm2-360m-instruct-q8_0.gguf",
),
Which::SmolLM2_1BInstruct => (
"HuggingFaceTB/SmolLM2-1.7B-Instruct-GGUF",
"smollm2-1.7b-instruct-q4_k_m.gguf",
),
};
let revision = if self.which == Which::Phi3 {
"5eef2ce24766d31909c0b269fe90c817a8f263fb"
@ -455,6 +475,8 @@ fn main() -> anyhow::Result<()> {
| Which::Leo7b
| Which::Leo13b
| Which::L8b
| Which::SmolLM2_1BInstruct
| Which::SmolLM2_360MInstruct
| Which::Phi3 => 1,
Which::Mixtral
| Which::MixtralInstruct
@ -573,6 +595,7 @@ fn main() -> anyhow::Result<()> {
}
let eos_token = match args.which {
Which::SmolLM2_360MInstruct | Which::SmolLM2_1BInstruct => "<|endoftext|>",
Which::L8b => "<|end_of_text|>",
_ => match args.which.is_open_chat() {
true => "<|end_of_turn|>",

View File

@ -351,13 +351,16 @@ impl ModelWeights {
let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base, device)?;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let tok_embeddings_q = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings_q.dequantize(device)?;
let norm = RmsNorm::from_qtensor(
ct.tensor(reader, "output_norm.weight", device)?,
rms_norm_eps,
)?;
let output = ct.tensor(reader, "output.weight", device)?;
let output = match ct.tensor(reader, "output.weight", device) {
Ok(tensor) => tensor,
Err(_) => tok_embeddings_q,
};
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");