Soft Non-Maximum Suppression (#2400)
* Soft NMS with thresholds * NMS Test * Soft nms w/ boxes removed below threshold * Soft nms test * No longer removing bounding boxes to fit Soft-NMS focus * Initialize confidence * Added comments * Refactored out updating based on IOU/sigma * Score_threshold -> confidence_threshold for clarity * Remove bboxes below confidence threshold * Softnms basic functionality test * Softnms confidence decay test * Softnms confidence threshold test * Softnms no overlapping bbox test * Testing confidence after no overlap test * Single bbox and no bbox tests * Signify test completion * Handling result of test functions * Checking all pairs of bboxes instead of a forward pass * Equal confidence overlap test * Clarified tests for implementation * No longer dropping boxes, just setting to 0.0 * Formatted w/ cargo
This commit is contained in:
parent
6e6c1c99b0
commit
14db029494
|
@ -50,3 +50,61 @@ pub fn non_maximum_suppression<D>(bboxes: &mut [Vec<Bbox<D>>], threshold: f32) {
|
|||
bboxes_for_class.truncate(current_index);
|
||||
}
|
||||
}
|
||||
|
||||
// Updates confidences starting at highest and comparing subsequent boxes.
|
||||
fn update_confidences<D>(
|
||||
bboxes_for_class: &[Bbox<D>],
|
||||
updated_confidences: &mut [f32],
|
||||
iou_threshold: f32,
|
||||
sigma: f32,
|
||||
) {
|
||||
let len = bboxes_for_class.len();
|
||||
for current_index in 0..len {
|
||||
let current_bbox = &bboxes_for_class[current_index];
|
||||
for index in (current_index + 1)..len {
|
||||
let iou_val = iou(current_bbox, &bboxes_for_class[index]);
|
||||
if iou_val > iou_threshold {
|
||||
// Decay calculation from page 4 of: https://arxiv.org/pdf/1704.04503
|
||||
let decay = (-iou_val * iou_val / sigma).exp();
|
||||
let updated_confidence = bboxes_for_class[index].confidence * decay;
|
||||
updated_confidences[index] = updated_confidence;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sorts the bounding boxes by confidence and applies soft non-maximum suppression.
|
||||
// This function is based on the algorithm described in https://arxiv.org/pdf/1704.04503
|
||||
pub fn soft_non_maximum_suppression<D>(
|
||||
bboxes: &mut [Vec<Bbox<D>>],
|
||||
iou_threshold: Option<f32>,
|
||||
confidence_threshold: Option<f32>,
|
||||
sigma: Option<f32>,
|
||||
) {
|
||||
let iou_threshold = iou_threshold.unwrap_or(0.5);
|
||||
let confidence_threshold = confidence_threshold.unwrap_or(0.1);
|
||||
let sigma = sigma.unwrap_or(0.5);
|
||||
|
||||
for bboxes_for_class in bboxes.iter_mut() {
|
||||
// Sort boxes by confidence in descending order
|
||||
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
|
||||
let mut updated_confidences = bboxes_for_class
|
||||
.iter()
|
||||
.map(|bbox| bbox.confidence)
|
||||
.collect::<Vec<_>>();
|
||||
update_confidences(
|
||||
bboxes_for_class,
|
||||
&mut updated_confidences,
|
||||
iou_threshold,
|
||||
sigma,
|
||||
);
|
||||
// Update confidences, set to 0.0 if below threshold
|
||||
for (i, &confidence) in updated_confidences.iter().enumerate() {
|
||||
bboxes_for_class[i].confidence = if confidence < confidence_threshold {
|
||||
0.0
|
||||
} else {
|
||||
confidence
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,222 @@
|
|||
use candle::Result;
|
||||
use candle_transformers::object_detection::{
|
||||
non_maximum_suppression, soft_non_maximum_suppression, Bbox,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn nms_basic() -> Result<()> {
|
||||
// Boxes based upon https://thepythoncode.com/article/non-maximum-suppression-using-opencv-in-python
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 245.0,
|
||||
ymin: 305.0,
|
||||
xmax: 575.0,
|
||||
ymax: 490.0,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
}, // Box 1
|
||||
Bbox {
|
||||
xmin: 235.0,
|
||||
ymin: 300.0,
|
||||
xmax: 485.0,
|
||||
ymax: 515.0,
|
||||
confidence: 0.8,
|
||||
data: (),
|
||||
}, // Box 2
|
||||
Bbox {
|
||||
xmin: 305.0,
|
||||
ymin: 270.0,
|
||||
xmax: 540.0,
|
||||
ymax: 500.0,
|
||||
confidence: 0.6,
|
||||
data: (),
|
||||
}, // Box 3
|
||||
]];
|
||||
|
||||
non_maximum_suppression(&mut bboxes, 0.5);
|
||||
let bboxes = bboxes.into_iter().next().unwrap();
|
||||
assert_eq!(bboxes.len(), 1);
|
||||
assert_eq!(bboxes[0].confidence, 0.9);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_basic_functionality() -> Result<()> {
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.5,
|
||||
data: (),
|
||||
},
|
||||
Bbox {
|
||||
xmin: 0.1,
|
||||
ymin: 0.1,
|
||||
xmax: 1.1,
|
||||
ymax: 1.1,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
},
|
||||
Bbox {
|
||||
xmin: 0.2,
|
||||
ymin: 0.2,
|
||||
xmax: 1.2,
|
||||
ymax: 1.2,
|
||||
confidence: 0.6,
|
||||
data: (),
|
||||
},
|
||||
]];
|
||||
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
|
||||
// Should decay boxes following highest confidence box
|
||||
assert!(bboxes[0][0].confidence == 0.9);
|
||||
assert!(bboxes[0][1].confidence < 0.5);
|
||||
assert!(bboxes[0][2].confidence < 0.6);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_confidence_decay() -> Result<()> {
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
}, // Reference box
|
||||
Bbox {
|
||||
xmin: 0.1,
|
||||
ymin: 0.1,
|
||||
xmax: 1.1,
|
||||
ymax: 1.1,
|
||||
confidence: 0.8,
|
||||
data: (),
|
||||
}, // Overlapping box
|
||||
]];
|
||||
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
|
||||
// Check that confidence of the overlapping box is decayed
|
||||
assert!(bboxes[0][0].confidence == 0.9);
|
||||
assert!(bboxes[0][1].confidence < 0.8);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_confidence_threshold() -> Result<()> {
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
},
|
||||
Bbox {
|
||||
xmin: 0.1,
|
||||
ymin: 0.1,
|
||||
xmax: 1.1,
|
||||
ymax: 1.1,
|
||||
confidence: 0.05,
|
||||
data: (),
|
||||
},
|
||||
]];
|
||||
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
|
||||
// Box with confidence below the threshold should be removed
|
||||
assert_eq!(bboxes[0].len(), 2);
|
||||
assert_eq!(bboxes[0][0].confidence, 0.9);
|
||||
assert_eq!(bboxes[0][1].confidence, 0.00);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_no_overlap() -> Result<()> {
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
},
|
||||
Bbox {
|
||||
xmin: 2.0,
|
||||
ymin: 2.0,
|
||||
xmax: 3.0,
|
||||
ymax: 3.0,
|
||||
confidence: 0.8,
|
||||
data: (),
|
||||
},
|
||||
]];
|
||||
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
|
||||
// Both boxes should remain as they do not significantly overlap
|
||||
assert_eq!(bboxes[0].len(), 2);
|
||||
assert_eq!(bboxes[0][0].confidence, 0.9);
|
||||
assert_eq!(bboxes[0][1].confidence, 0.8);
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn softnms_no_bbox() -> Result<()> {
|
||||
let mut bboxes: Vec<Vec<Bbox<()>>> = vec![];
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
assert!(bboxes.is_empty());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_single_bbox() -> Result<()> {
|
||||
let mut bboxes = vec![vec![Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.9,
|
||||
data: (),
|
||||
}]];
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
assert_eq!(bboxes[0].len(), 1);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn softnms_equal_confidence_overlap() -> Result<()> {
|
||||
let mut bboxes = vec![vec![
|
||||
Bbox {
|
||||
xmin: 0.0,
|
||||
ymin: 0.0,
|
||||
xmax: 1.0,
|
||||
ymax: 1.0,
|
||||
confidence: 0.5,
|
||||
data: (),
|
||||
},
|
||||
Bbox {
|
||||
xmin: 0.1,
|
||||
ymin: 0.1,
|
||||
xmax: 1.1,
|
||||
ymax: 1.1,
|
||||
confidence: 0.5,
|
||||
data: (),
|
||||
},
|
||||
]];
|
||||
|
||||
soft_non_maximum_suppression(&mut bboxes, Some(0.5), Some(0.1), Some(0.5));
|
||||
|
||||
// First box will be reference box, second box should be decayed
|
||||
// Implementation must change to have both be decayed
|
||||
assert_eq!(bboxes[0].len(), 2);
|
||||
assert!(bboxes[0][0].confidence == 0.5);
|
||||
assert!(bboxes[0][1].confidence < 0.5);
|
||||
Ok(())
|
||||
}
|
Loading…
Reference in New Issue