mirror of https://github.com/tracel-ai/burn.git
167 lines
4.7 KiB
Rust
167 lines
4.7 KiB
Rust
use backend_comparison::persistence::save;
|
||
use burn::backend::Autodiff;
|
||
use burn::tensor::{backend::Backend, Distribution, Shape, Tensor};
|
||
use burn_common::benchmark::{run_benchmark, Benchmark};
|
||
use burn_common::sync_type::SyncType;
|
||
use core::f64::consts::SQRT_2;
|
||
use derive_new::new;
|
||
|
||
#[derive(Debug)]
|
||
enum GeluKind {
|
||
Reference,
|
||
WithReferenceErf,
|
||
WithCustomErf,
|
||
}
|
||
|
||
/// Benchmark how well a backend executes a custom activation function with a lot of basic tensor
|
||
/// operations.
|
||
#[derive(new)]
|
||
struct CustomGeluBenchmark<B: Backend, const D: usize> {
|
||
shape: Shape<D>,
|
||
device: B::Device,
|
||
kind: GeluKind,
|
||
autodiff: bool,
|
||
}
|
||
|
||
impl<B: Backend, const D: usize> Benchmark for CustomGeluBenchmark<B, D> {
|
||
type Args = Tensor<B, D>;
|
||
|
||
fn name(&self) -> String {
|
||
match self.autodiff {
|
||
true => format!("gelu_autodiff_{:?}", self.kind),
|
||
false => format!("gelu_{:?}", self.kind),
|
||
}
|
||
}
|
||
|
||
fn options(&self) -> Option<String> {
|
||
Some(format!("{:?}", self.kind))
|
||
}
|
||
|
||
fn shapes(&self) -> Vec<Vec<usize>> {
|
||
vec![self.shape.dims.into()]
|
||
}
|
||
|
||
fn execute(&self, tensor: Self::Args) {
|
||
match self.autodiff {
|
||
true => {
|
||
let tensor: Tensor<Autodiff<B>, D> = Tensor::from_inner(tensor).require_grad();
|
||
let output = match self.kind {
|
||
GeluKind::Reference => burn::tensor::activation::gelu(tensor.clone()),
|
||
GeluKind::WithReferenceErf => gelu_custom(tensor.clone(), Tensor::erf),
|
||
GeluKind::WithCustomErf => gelu_custom(tensor.clone(), erf_custom),
|
||
};
|
||
let mut gradients = output.sum().backward();
|
||
let _tmp = tensor.grad_remove(&mut gradients).unwrap();
|
||
}
|
||
|
||
false => {
|
||
match self.kind {
|
||
GeluKind::Reference => burn::tensor::activation::gelu(tensor),
|
||
GeluKind::WithReferenceErf => gelu_custom(tensor, Tensor::erf),
|
||
GeluKind::WithCustomErf => gelu_custom(tensor, erf_custom),
|
||
};
|
||
}
|
||
};
|
||
}
|
||
|
||
fn prepare(&self) -> Self::Args {
|
||
Tensor::random(self.shape.clone(), Distribution::Default, &self.device)
|
||
}
|
||
|
||
fn sync(&self) {
|
||
B::sync(&self.device, SyncType::Wait)
|
||
}
|
||
|
||
fn num_samples(&self) -> usize {
|
||
10
|
||
}
|
||
}
|
||
|
||
fn gelu_custom<B, const D: usize, Erf>(x: Tensor<B, D>, erf: Erf) -> Tensor<B, D>
|
||
where
|
||
B: Backend,
|
||
Erf: Fn(Tensor<B, D>) -> Tensor<B, D>,
|
||
{
|
||
let x = x.clone() * (erf(x / SQRT_2) + 1);
|
||
x / 2
|
||
}
|
||
|
||
fn erf_custom<B: Backend, const D: usize>(x: Tensor<B, D>) -> Tensor<B, D> {
|
||
let x1 = -erf_positive(-x.clone());
|
||
let x2 = erf_positive(x.clone());
|
||
let mask = x.greater_elem(0);
|
||
|
||
x1.mask_where(mask, x2)
|
||
}
|
||
|
||
/// An approximation of the error function: https://en.wikipedia.org/wiki/Error_function#Numerical_approximations
|
||
///
|
||
/// > (maximum error: 1.5×10−7)
|
||
/// > All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).
|
||
fn erf_positive<B: Backend, const D: usize>(x: Tensor<B, D>) -> Tensor<B, D> {
|
||
let p = 0.3275911;
|
||
let a1 = 0.254829592;
|
||
let a2 = -0.284496736;
|
||
let a3 = 1.421413741;
|
||
let a4 = -1.453152027;
|
||
let a5 = 1.061405429;
|
||
|
||
let x1 = x.clone().abs() * p + 1;
|
||
let t = x1.recip();
|
||
let tmp = (((((t.clone() * a5) + a4) * t.clone()) + a3) * t.clone() + a2) * t.clone() + a1;
|
||
|
||
-(tmp * t * (-x.clone() * x).exp()) + 1.0
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
fn bench<B: Backend>(
|
||
device: &B::Device,
|
||
feature_name: &str,
|
||
url: Option<&str>,
|
||
token: Option<&str>,
|
||
) {
|
||
const D: usize = 3;
|
||
let shape: Shape<D> = [32, 512, 2048].into();
|
||
|
||
let run = |autodiff: bool| {
|
||
let reference_gelu = CustomGeluBenchmark::<B, D>::new(
|
||
shape.clone(),
|
||
device.clone(),
|
||
GeluKind::Reference,
|
||
autodiff,
|
||
);
|
||
let reference_erf_gelu = CustomGeluBenchmark::<B, D>::new(
|
||
shape.clone(),
|
||
device.clone(),
|
||
GeluKind::WithReferenceErf,
|
||
autodiff,
|
||
);
|
||
let custom_erf_gelu = CustomGeluBenchmark::<B, D>::new(
|
||
shape.clone(),
|
||
device.clone(),
|
||
GeluKind::WithCustomErf,
|
||
autodiff,
|
||
);
|
||
|
||
save::<B>(
|
||
vec![
|
||
run_benchmark(reference_gelu),
|
||
run_benchmark(reference_erf_gelu),
|
||
run_benchmark(custom_erf_gelu),
|
||
],
|
||
device,
|
||
feature_name,
|
||
url,
|
||
token,
|
||
)
|
||
.unwrap();
|
||
};
|
||
|
||
run(false);
|
||
run(true);
|
||
}
|
||
|
||
fn main() {
|
||
backend_comparison::bench_on_backend!();
|
||
}
|