mirror of https://github.com/tracel-ai/burn.git
164 lines
6.2 KiB
Python
Executable File
164 lines
6.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Originally copied and modified from: https://github.com/pytorch/examples/blob/main/mnist/main.py
|
|
# under the following license: BSD-3-Clause license
|
|
|
|
from __future__ import print_function
|
|
import argparse
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torchvision import datasets, transforms
|
|
from torch.optim.lr_scheduler import StepLR
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 8, 3)
|
|
self.conv2 = nn.Conv2d(8, 16, 3)
|
|
self.conv3 = nn.Conv2d(16, 24, 3)
|
|
self.norm1 = nn.BatchNorm2d(24)
|
|
self.dropout1 = nn.Dropout(0.3)
|
|
self.fc1 = nn.Linear(24 * 22 * 22, 32)
|
|
self.fc2 = nn.Linear(32, 10)
|
|
self.norm2 = nn.BatchNorm1d(10)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = F.relu(x)
|
|
x = self.conv2(x)
|
|
x = F.relu(x)
|
|
x = self.conv3(x)
|
|
x = F.relu(x)
|
|
x = self.norm1(x)
|
|
x = torch.flatten(x, 1)
|
|
x = self.fc1(x)
|
|
x = F.relu(x)
|
|
x = self.dropout1(x)
|
|
x = self.fc2(x)
|
|
x = self.norm2(x)
|
|
output = F.log_softmax(x, dim=1)
|
|
return output
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args.log_interval == 0:
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
epoch, batch_idx * len(data), len(train_loader.dataset),
|
|
100. * batch_idx / len(train_loader), loss.item()))
|
|
if args.dry_run:
|
|
break
|
|
|
|
|
|
def test(model, device, test_loader):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
# sum up batch loss
|
|
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
|
# get the index of the max log-probability
|
|
pred = output.argmax(dim=1, keepdim=True)
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
|
test_loss, correct, len(test_loader.dataset),
|
|
100. * correct / len(test_loader.dataset)))
|
|
|
|
|
|
def main():
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
|
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
|
help='input batch size for training (default: 64)')
|
|
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
|
help='input batch size for testing (default: 1000)')
|
|
parser.add_argument('--epochs', type=int, default=8, metavar='N',
|
|
help='number of epochs to train (default: 14)')
|
|
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
|
|
help='learning rate (default: 1.0)')
|
|
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
|
|
help='Learning rate step gamma (default: 0.7)')
|
|
parser.add_argument('--no-cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--no-mps', action='store_true', default=False,
|
|
help='disables macOS GPU training')
|
|
parser.add_argument('--dry-run', action='store_true', default=False,
|
|
help='quickly check a single pass')
|
|
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
|
help='random seed (default: 1)')
|
|
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--save-model', action='store_true', default=True,
|
|
help='For Saving the current Model')
|
|
parser.add_argument('--export-onnx', action='store_true', default=False,
|
|
help='For Saving the current Model in ONNX format')
|
|
args = parser.parse_args()
|
|
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
|
use_mps = not args.no_mps and torch.backends.mps.is_available()
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
if use_cuda:
|
|
device = torch.device("cuda")
|
|
elif use_mps:
|
|
device = torch.device("mps")
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
train_kwargs = {'batch_size': args.batch_size}
|
|
test_kwargs = {'batch_size': args.test_batch_size}
|
|
if use_cuda:
|
|
cuda_kwargs = {'num_workers': 1,
|
|
'pin_memory': True,
|
|
'shuffle': True}
|
|
train_kwargs.update(cuda_kwargs)
|
|
test_kwargs.update(cuda_kwargs)
|
|
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])
|
|
dataset1 = datasets.MNIST('/tmp/mnist-data', train=True, download=True,
|
|
transform=transform)
|
|
dataset2 = datasets.MNIST('/tmp/mnist-data', train=False,
|
|
transform=transform)
|
|
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
|
|
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
|
|
|
|
model = Net().to(device)
|
|
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
|
|
|
|
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
|
|
for epoch in range(1, args.epochs + 1):
|
|
train(args, model, device, train_loader, optimizer, epoch)
|
|
test(model, device, test_loader)
|
|
scheduler.step()
|
|
|
|
if args.save_model:
|
|
torch.save(model.state_dict(), "mnist.pt")
|
|
|
|
if args.export_onnx:
|
|
dummy_input = torch.randn(1, 1, 28, 28, device=device)
|
|
torch.onnx.export(model, dummy_input, "mnist.onnx",
|
|
verbose=True, opset_version=16)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|