mirror of https://github.com/tracel-ai/burn.git
73 lines
1.6 KiB
Rust
73 lines
1.6 KiB
Rust
use backend_comparison::persistence::save;
|
|
use burn::tensor::{backend::Backend, Distribution, Shape, Tensor};
|
|
use burn_common::benchmark::{run_benchmark, Benchmark};
|
|
|
|
// Files retrieved during build to avoid reimplementing ResNet for benchmarks
|
|
mod block {
|
|
extern crate alloc;
|
|
include!(concat!(env!("OUT_DIR"), "/block.rs"));
|
|
}
|
|
|
|
mod model {
|
|
include!(concat!(env!("OUT_DIR"), "/resnet.rs"));
|
|
}
|
|
|
|
pub struct ResNetBenchmark<B: Backend> {
|
|
shape: Shape,
|
|
device: B::Device,
|
|
}
|
|
|
|
impl<B: Backend> Benchmark for ResNetBenchmark<B> {
|
|
type Args = (model::ResNet<B>, Tensor<B, 4>);
|
|
|
|
fn name(&self) -> String {
|
|
"resnet50".into()
|
|
}
|
|
|
|
fn shapes(&self) -> Vec<Vec<usize>> {
|
|
vec![self.shape.dims.clone()]
|
|
}
|
|
|
|
fn execute(&self, (model, input): Self::Args) {
|
|
let _out = model.forward(input);
|
|
}
|
|
|
|
fn prepare(&self) -> Self::Args {
|
|
// 1k classes like ImageNet
|
|
let model = model::ResNet::resnet50(1000, &self.device);
|
|
let input = Tensor::random(self.shape.clone(), Distribution::Default, &self.device);
|
|
|
|
(model, input)
|
|
}
|
|
|
|
fn sync(&self) {
|
|
B::sync(&self.device)
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
fn bench<B: Backend>(
|
|
device: &B::Device,
|
|
feature_name: &str,
|
|
url: Option<&str>,
|
|
token: Option<&str>,
|
|
) {
|
|
let benchmark = ResNetBenchmark::<B> {
|
|
shape: [1, 3, 224, 224].into(),
|
|
device: device.clone(),
|
|
};
|
|
|
|
save::<B>(
|
|
vec![run_benchmark(benchmark)],
|
|
device,
|
|
feature_name,
|
|
url,
|
|
token,
|
|
)
|
|
.unwrap();
|
|
}
|
|
|
|
fn main() {
|
|
backend_comparison::bench_on_backend!();
|
|
}
|