burn/examples/mnist
Yu Sun 330552afb4
docs(book-&-examples): modify book and examples with new `prelude` module (#1372)
2024-02-28 13:25:25 -05:00
..
examples docs(book-&-examples): modify book and examples with new `prelude` module (#1372) 2024-02-28 13:25:25 -05:00
src docs(book-&-examples): modify book and examples with new `prelude` module (#1372) 2024-02-28 13:25:25 -05:00
Cargo.toml [refactor] Move burn crates to their own crates directory (#1336) 2024-02-20 13:57:55 -05:00
README.md Update TORCH_CUDA_VERSION usage (#1284) 2024-02-10 12:01:45 -05:00

README.md

MNIST

The example is showing you how to:

  • Define your own custom module (MLP).
  • Create the data pipeline from a raw dataset to a batched multi-threaded fast DataLoader.
  • Configure a learner to display and log metrics as well as to keep training checkpoints.

The example can be run like so:

git clone https://github.com/tracel-ai/burn.git
cd burn
# Use the --release flag to really speed up training.
echo "Using ndarray backend"
cargo run --example mnist --release --features ndarray                # CPU NdArray Backend - f32 - single thread
cargo run --example mnist --release --features ndarray-blas-openblas  # CPU NdArray Backend - f32 - blas with openblas
cargo run --example mnist --release --features ndarray-blas-netlib    # CPU NdArray Backend - f32 - blas with netlib
echo "Using tch backend"
export TORCH_CUDA_VERSION=cu121                                       # Set the cuda version
cargo run --example mnist --release --features tch-gpu                # GPU Tch Backend - f32
cargo run --example mnist --release --features tch-cpu                # CPU Tch Backend - f32
echo "Using wgpu backend"
cargo run --example mnist --release --features wgpu