# Supported ONNX Operators Note: some ONNX Ops listed below are pseudo Ops, such as `Linear`, `Conv1d`, `Conv2d` (or other with 1d, 2d suffixes used signify the dimensionality). These are not real ONNX Ops, but are used to represent the corresponding Burn Op. | ONNX OP | Import Support | Burn Support | | -------------------------------- | :------------: | :----------: | | [Abs][1] | ✅ | ✅ | | [Acos][2] | ❌ | ❌ | | [Acosh][3] | ❌ | ❌ | | [Add][4] | ✅ | ✅ | | [And][5] | ❌ | ❌ | | [ArgMax][6] | ✅ | ✅ | | [ArgMin][7] | ❌ | ❌ | | [Asin][8] | ❌ | ❌ | | [Asinh][9] | ❌ | ❌ | | [Atan][10] | ❌ | ❌ | | [Atanh][11] | ❌ | ❌ | | [AveragePool1d][12] | ✅ | ✅ | | [AveragePool2d][12] | ✅ | ✅ | | [BatchNormalization][14] | ✅ | ✅ | | [Bernoulli][15] | ❌ | ❌ | | [BitShift][16] | ❌ | ❌ | | [BitwiseAnd][17] | ❌ | ❌ | | [BitwiseNot][18] | ❌ | ❌ | | [BitwiseOr][19] | ❌ | ❌ | | [BitwiseXor][20] | ❌ | ❌ | | [BlackmanWindow][21] | ❌ | ❌ | | [Cast][22] | ✅ | ✅ | | [CastLike][23] | ❌ | ❌ | | [Ceil][24] | ❌ | ❌ | | [Celu][25] | ❌ | ❌ | | [CenterCropPad][26] | ❌ | ❌ | | [Clip][27] | ✅ | ✅ | | [Col2Im][28] | ❌ | ❌ | | [Compress][29] | ❌ | ❌ | | [Concat][30] | ✅ | ✅ | | [ConcatFromSequence][31] | ❌ | ❌ | | [Constant][32] | ✅ | ✅ | | [ConstantOfShape][33] | ✅ | ✅ | | [Conv1d][34] | ✅ | ✅ | | [Conv2d][34] | ✅ | ✅ | | [Conv3d][34] | ✅ | ✅ | | [ConvInteger][37] | ❌ | ❌ | | [ConvTranspose1d][38] | ❌ | ✅ | | [ConvTranspose2d][38] | ✅ | ✅ | | [ConvTranspose3d][38] | ✅ | ✅ | | [Cos][39] | ✅ | ✅ | | [Cosh][40] | ❌ | ❌ | | [CumSum][41] | ❌ | ❌ | | [DepthToSpace][42] | ❌ | ❌ | | [DequantizeLinear][43] | ❌ | ❌ | | [Det][44] | ❌ | ❌ | | [DFT][45] | ❌ | ❌ | | [Div][46] | ✅ | ✅ | | [Dropout][47] | ✅ | ✅ | | [DynamicQuantizeLinear][48] | ❌ | ❌ | | [Einsum][49] | ❌ | ❌ | | [Elu][50] | ❌ | ❌ | | [Equal][51] | ✅ | ✅ | | [Erf][52] | ✅ | ✅ | | [Exp][53] | ✅ | ✅ | | [Expand][54] | ✅ | ✅ | | [EyeLike][55] | ❌ | ❌ | | [Flatten][56] | ✅ | ✅ | | [Floor][57] | ❌ | ❌ | | [Gather][58] | ✅ | ✅ | | [GatherElements][59] | ✅ | ✅ | | [GatherND][60] | ❌ | ❌ | | [Gelu][61] | ✅ | ✅ | | [Gemm][62] | ❌ | ❌ | | [GlobalAveragePool][63] | ✅ | ✅ | | [GlobalLpPool][64] | ❌ | ❌ | | [GlobalMaxPool][65] | ❌ | ❌ | | [Greater][66] | ✅ | ✅ | | [GreaterOrEqual][67] | ✅ | ✅ | | [GridSample][68] | ❌ | ❌ | | [GroupNormalization][69] | ❌ | ✅ | | [GRU][70] | ❌ | ✅ | | [HammingWindow][71] | ❌ | ❌ | | [HannWindow][72] | ❌ | ❌ | | [Hardmax][73] | ❌ | ❌ | | [HardSigmoid][74] | ✅ | ✅ | | [HardSwish][75] | ❌ | ❌ | | [Identity][76] | ✅ | ✅ | | [If][77] | ❌ | ✅ | | [Im][78] | ❌ | ❌ | | [InstanceNormalization][79] | ❌ | ✅ | | [IsInf][80] | ❌ | ❌ | | [IsNaN][81] | ❌ | ❌ | | [LayerNormalization][82] | ✅ | ✅ | | [LeakyRelu][83] | ✅ | ✅ | | [Less][84] | ✅ | ✅ | | [LessOrEqual][85] | ✅ | ✅ | | Linear | ✅ | ✅ | | [Log][87] | ✅ | ✅ | | [LogSoftmax][88] | ✅ | ✅ | | [Loop][89] | ❌ | ❌ | | [LpNormalization][90] | ❌ | ❌ | | [LpPool][91] | ❌ | ❌ | | [LRN][92] | ❌ | ❌ | | [LSTM][93] | ❌ | ✅ | | [MatMul][94] | ✅ | ✅ | | [MatMulInteger][95] | ❌ | ✅ | | [Max][96] | ✅ | ✅ | | [MaxPool1d][97] | ✅ | ✅ | | [MaxPool2d][98] | ✅ | ✅ | | [MaxRoiPool][99] | ❌ | ❌ | | [MaxUnpool][100] | ❌ | ❌ | | [Mean][101] | ✅ | ✅ | | [MeanVarianceNormalization][102] | ❌ | ❌ | | [MelWeightMatrix][103] | ❌ | ❌ | | [Min][104] | ✅ | ✅ | | [Mish][105] | ❌ | ❌ | | [Mod][106] | ❌ | ❌ | | [Mul][107] | ✅ | ✅ | | [Multinomial][108] | ❌ | ❌ | | [Neg][109] | ✅ | ✅ | | [NegativeLogLikelihoodLoss][110] | ❌ | ❌ | | [NonMaxSuppression][112] | ❌ | ❌ | | [NonZero][113] | ❌ | ❌ | | [Not][114] | ✅ | ✅ | | [OneHot][115] | ❌ | ✅ | | [Optional][116] | ❌ | ❌ | | [OptionalGetElement][117] | ❌ | ❌ | | [OptionalHasElement][118] | ❌ | ❌ | | [Or][119] | ❌ | ❌ | | [Pad][120] | ✅ | ✅ | | [Pow][121] | ✅ | ✅ | | [PRelu][122] | ✅ | ✅ | | [QLinearConv][123] | ❌ | ❌ | | [QLinearMatMul][124] | ❌ | ❌ | | [QuantizeLinear][125] | ❌ | ❌ | | [RandomNormal][126] | ✅ | ✅ | | [RandomNormalLike][127] | ❌ | ✅ | | [RandomUniform][128] | ✅ | ✅ | | [RandomUniformLike][129] | ❌ | ✅ | | [Range][130] | ✅ | ✅ | | [Reciprocal][131] | ✅ | ✅ | | [ReduceL][132] | ❌ | ❌ | | [ReduceLogSum][133] | ❌ | ❌ | | [ReduceLogSumExp][134] | ❌ | ❌ | | [ReduceMax][135] | ✅ | ✅ | | [ReduceMean][136] | ✅ | ✅ | | [ReduceMin][137] | ✅ | ✅ | | [ReduceProd][138] | ✅ | ✅ | | [ReduceSum][139] | ✅ | ✅ | | [ReduceSumSquare][140] | ❌ | ❌ | | [Relu][141] | ✅ | ✅ | | [Reshape][142] | ✅ | ✅ | | [Resize][143] | ✅ | ✅ | | [ReverseSequence][144] | ❌ | ❌ | | [RNN][145] | ❌ | ✅ | | [RoiAlign][146] | ❌ | ❌ | | [Round][147] | ❌ | ❌ | | [Scan][148] | ❌ | ❌ | | [Scatter][149] | ❌ | ✅ | | [ScatterElements][150] | ❌ | ❌ | | [ScatterND][151] | ❌ | ❌ | | [Selu][152] | ❌ | ❌ | | [SequenceAt][153] | ❌ | ❌ | | [SequenceConstruct][154] | ❌ | ❌ | | [SequenceEmpty][155] | ❌ | ❌ | | [SequenceErase][156] | ❌ | ❌ | | [SequenceInsert][157] | ❌ | ❌ | | [SequenceLength][158] | ❌ | ❌ | | [SequenceMap][159] | ❌ | ❌ | | [Shape][160] | ✅ | ✅ | | [Shrink][161] | ❌ | ❌ | | [Sigmoid][162] | ✅ | ✅ | | [Sign][163] | ✅ | ✅ | | [Sin][164] | ✅ | ✅ | | [Sinh][165] | ❌ | ❌ | | [Size][166] | ❌ | ❌ | | [Slice][167] | ✅ | ✅ | | [Softmax][168] | ✅ | ✅ | | [SoftmaxCrossEntropyLoss][169] | ❌ | ❌ | | [Softplus][170] | ❌ | ❌ | | [Softsign][171] | ❌ | ❌ | | [SpaceToDepth][172] | ❌ | ❌ | | [Split][173] | ❌ | ❌ | | [SplitToSequence][174] | ❌ | ❌ | | [Sqrt][175] | ✅ | ✅ | | [Squeeze][176] | ✅ | ✅ | | [STFT][177] | ❌ | ❌ | | [StringNormalizer][178] | ❌ | ❌ | | [Sub][179] | ✅ | ✅ | | [Sum][180] | ✅ | ✅ | | [Tan][181] | ❌ | ❌ | | [Tanh][182] | ✅ | ✅ | | [TfIdfVectorizer][183] | ❌ | ❌ | | [ThresholdedRelu][184] | ❌ | ❌ | | [Tile][185] | ✅ | ✅ | | [TopK][186] | ❌ | ✅ | | [Transpose][187] | ✅ | ✅ | | [Trilu][188] | ❌ | ✅ | | [Unique][189] | ❌ | ❌ | | [Upsample][190] | ❌ | ❌ | | [Where][191] | ✅ | ✅ | | [Xor][192] | ❌ | ❌ | | [Unsqueeze][193] | ✅ | ✅ | [1]: https://onnx.ai/onnx/operators/onnx__Abs.html "ONNX Abs" [2]: https://onnx.ai/onnx/operators/onnx__Acos.html "ONNX Acos" [3]: https://onnx.ai/onnx/operators/onnx__Acosh.html "ONNX Acosh" [4]: https://onnx.ai/onnx/operators/onnx__Add.html "ONNX Add" [5]: https://onnx.ai/onnx/operators/onnx__And.html "ONNX And" [6]: https://onnx.ai/onnx/operators/onnx__ArgMax.html "ONNX ArgMax" [7]: https://onnx.ai/onnx/operators/onnx__ArgMin.html "ONNX ArgMin" [8]: https://onnx.ai/onnx/operators/onnx__Asin.html "ONNX Asin" [9]: https://onnx.ai/onnx/operators/onnx__Asinh.html "ONNX Asinh" [10]: https://onnx.ai/onnx/operators/onnx__Atan.html "ONNX Atan" [11]: https://onnx.ai/onnx/operators/onnx__Atanh.html "ONNX Atanh" [12]: https://onnx.ai/onnx/operators/onnx__AveragePool.html "ONNX AveragePool" [14]: https://onnx.ai/onnx/operators/onnx__BatchNormalization.html "ONNX BatchNormalization" [15]: https://onnx.ai/onnx/operators/onnx__Bernoulli.html "ONNX Bernoulli" [16]: https://onnx.ai/onnx/operators/onnx__BitShift.html "ONNX BitShift" [17]: https://onnx.ai/onnx/operators/onnx__BitwiseAnd.html "ONNX BitwiseAnd" [18]: https://onnx.ai/onnx/operators/onnx__BitwiseNot.html "ONNX BitwiseNot" [19]: https://onnx.ai/onnx/operators/onnx__BitwiseOr.html "ONNX BitwiseOr" [20]: https://onnx.ai/onnx/operators/onnx__BitwiseXor.html "ONNX BitwiseXor" [21]: https://onnx.ai/onnx/operators/onnx__BlackmanWindow.html "ONNX BlackmanWindow" [22]: https://onnx.ai/onnx/operators/onnx__Cast.html "ONNX Cast" [23]: https://onnx.ai/onnx/operators/onnx__CastLike.html "ONNX CastLike" [24]: https://onnx.ai/onnx/operators/onnx__Ceil.html "ONNX Ceil" [25]: https://onnx.ai/onnx/operators/onnx__Celu.html "ONNX Celu" [26]: https://onnx.ai/onnx/operators/onnx__CenterCropPad.html "ONNX CenterCropPad" [27]: https://onnx.ai/onnx/operators/onnx__Clip.html "ONNX Clip" [28]: https://onnx.ai/onnx/operators/onnx__Col2Im.html "ONNX Col2Im" [29]: https://onnx.ai/onnx/operators/onnx__Compress.html "ONNX Compress" [30]: https://onnx.ai/onnx/operators/onnx__Concat.html "ONNX Concat" [31]: https://onnx.ai/onnx/operators/onnx__ConcatFromSequence.html "ONNX ConcatFromSequence" [32]: https://onnx.ai/onnx/operators/onnx__Constant.html "ONNX Constant" [33]: https://onnx.ai/onnx/operators/onnx__ConstantOfShape.html "ONNX ConstantOfShape" [34]: https://onnx.ai/onnx/operators/onnx__Conv.html "ONNX Conv" [37]: https://onnx.ai/onnx/operators/onnx__ConvInteger.html "ONNX ConvInteger" [38]: https://onnx.ai/onnx/operators/onnx__ConvTranspose.html "ONNX ConvTranspose" [39]: https://onnx.ai/onnx/operators/onnx__Cos.html "ONNX Cos" [40]: https://onnx.ai/onnx/operators/onnx__Cosh.html "ONNX Cosh" [41]: https://onnx.ai/onnx/operators/onnx__CumSum.html "ONNX CumSum" [42]: https://onnx.ai/onnx/operators/onnx__DepthToSpace.html "ONNX DepthToSpace" [43]: https://onnx.ai/onnx/operators/onnx__DequantizeLinear.html "ONNX DequantizeLinear" [44]: https://onnx.ai/onnx/operators/onnx__Det.html "ONNX Det" [45]: https://onnx.ai/onnx/operators/onnx__DFT.html "ONNX DFT" [46]: https://onnx.ai/onnx/operators/onnx__Div.html "ONNX Div" [47]: https://onnx.ai/onnx/operators/onnx__Dropout.html "ONNX Dropout" [48]: https://onnx.ai/onnx/operators/onnx__DynamicQuantizeLinear.html "ONNX DynamicQuantizeLinear" [49]: https://onnx.ai/onnx/operators/onnx__Einsum.html "ONNX Einsum" [50]: https://onnx.ai/onnx/operators/onnx__Elu.html "ONNX Elu" [51]: https://onnx.ai/onnx/operators/onnx__Equal.html "ONNX Equal" [52]: https://onnx.ai/onnx/operators/onnx__Erf.html "ONNX Erf" [53]: https://onnx.ai/onnx/operators/onnx__Exp.html "ONNX Exp" [54]: https://onnx.ai/onnx/operators/onnx__Expand.html "ONNX Expand" [55]: https://onnx.ai/onnx/operators/onnx__EyeLike.html "ONNX EyeLike" [56]: https://onnx.ai/onnx/operators/onnx__Flatten.html "ONNX Flatten" [57]: https://onnx.ai/onnx/operators/onnx__Floor.html "ONNX Floor" [58]: https://onnx.ai/onnx/operators/onnx__Gather.html "ONNX Gather" [59]: https://onnx.ai/onnx/operators/onnx__GatherElements.html "ONNX GatherElements" [60]: https://onnx.ai/onnx/operators/onnx__GatherND.html "ONNX GatherND" [61]: https://onnx.ai/onnx/operators/onnx__Gelu.html "ONNX Gelu" [62]: https://onnx.ai/onnx/operators/onnx__Gemm.html "ONNX Gemm (Linear Layer)" [63]: https://onnx.ai/onnx/operators/onnx__GlobalAveragePool.html "ONNX GlobalAveragePool" [64]: https://onnx.ai/onnx/operators/onnx__GlobalLpPool.html "ONNX GlobalLpPool" [65]: https://onnx.ai/onnx/operators/onnx__GlobalMaxPool.html "ONNX GlobalMaxPool" [66]: https://onnx.ai/onnx/operators/onnx__Greater.html "ONNX Greater" [67]: https://onnx.ai/onnx/operators/onnx__GreaterOrEqual.html "ONNX GreaterOrEqual" [68]: https://onnx.ai/onnx/operators/onnx__GridSample.html "ONNX GridSample" [69]: https://onnx.ai/onnx/operators/onnx__GroupNormalization.html "ONNX GroupNormalization" [70]: https://onnx.ai/onnx/operators/onnx__GRU.html "ONNX GRU" [71]: https://onnx.ai/onnx/operators/onnx__HammingWindow.html "ONNX HammingWindow" [72]: https://onnx.ai/onnx/operators/onnx__HannWindow.html "ONNX HannWindow" [73]: https://onnx.ai/onnx/operators/onnx__Hardmax.html "ONNX Hardmax" [74]: https://onnx.ai/onnx/operators/onnx__HardSigmoid.html "ONNX HardSigmoid" [75]: https://onnx.ai/onnx/operators/onnx__HardSwish.html "ONNX HardSwish" [76]: https://onnx.ai/onnx/operators/onnx__Identity.html "ONNX Identity" [77]: https://onnx.ai/onnx/operators/onnx__If.html "ONNX If" [78]: https://onnx.ai/onnx/operators/onnx__Im.html "ONNX Im" [79]: https://onnx.ai/onnx/operators/onnx__InstanceNormalization.html "ONNX InstanceNormalization" [80]: https://onnx.ai/onnx/operators/onnx__IsInf.html "ONNX IsInf" [81]: https://onnx.ai/onnx/operators/onnx__IsNaN.html "ONNX IsNaN" [82]: https://onnx.ai/onnx/operators/onnx__LayerNormalization.html "ONNX LayerNormalization" [83]: https://onnx.ai/onnx/operators/onnx__LeakyRelu.html "ONNX LeakyRelu" [84]: https://onnx.ai/onnx/operators/onnx__Less.html "ONNX Less" [85]: https://onnx.ai/onnx/operators/onnx__LessOrEqual.html "ONNX LessOrEqual" [87]: https://onnx.ai/onnx/operators/onnx__Log.html "ONNX Log" [88]: https://onnx.ai/onnx/operators/onnx__LogSoftmax.html "ONNX LogSoftmax" [89]: https://onnx.ai/onnx/operators/onnx__Loop.html "ONNX Loop" [90]: https://onnx.ai/onnx/operators/onnx__LpNormalization.html "ONNX LpNormalization" [91]: https://onnx.ai/onnx/operators/onnx__LpPool.html "ONNX LpPool" [92]: https://onnx.ai/onnx/operators/onnx__LRN.html "ONNX LRN" [93]: https://onnx.ai/onnx/operators/onnx__LSTM.html "ONNX LSTM" [94]: https://onnx.ai/onnx/operators/onnx__MatMul.html "ONNX MatMul" [95]: https://onnx.ai/onnx/operators/onnx__MatMulInteger.html "ONNX MatMulInteger" [96]: https://onnx.ai/onnx/operators/onnx__Max.html "ONNX Max" [97]: https://onnx.ai/onnx/operators/onnx__MaxPool1d.html "ONNX MaxPool1d" [98]: https://onnx.ai/onnx/operators/onnx__MaxPool2d.html "ONNX MaxPool2d" [99]: https://onnx.ai/onnx/operators/onnx__MaxRoiPool.html "ONNX MaxRoiPool" [100]: https://onnx.ai/onnx/operators/onnx__MaxUnpool.html "ONNX MaxUnpool" [101]: https://onnx.ai/onnx/operators/onnx__Mean.html "ONNX Mean" [102]: https://onnx.ai/onnx/operators/onnx__MeanVarianceNormalization.html "ONNX MeanVarianceNormalization" [103]: https://onnx.ai/onnx/operators/onnx__MelWeightMatrix.html "ONNX MelWeightMatrix" [104]: https://onnx.ai/onnx/operators/onnx__Min.html "ONNX Min" [105]: https://onnx.ai/onnx/operators/onnx__Mish.html "ONNX Mish" [106]: https://onnx.ai/onnx/operators/onnx__Mod.html "ONNX Mod" [107]: https://onnx.ai/onnx/operators/onnx__Mul.html "ONNX Mul" [108]: https://onnx.ai/onnx/operators/onnx__Multinomial.html "ONNX Multinomial" [109]: https://onnx.ai/onnx/operators/onnx__Neg.html "ONNX Neg" [110]: https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html "ONNX NegativeLogLikelihoodLoss" [112]: https://onnx.ai/onnx/operators/onnx__NonMaxSuppression.html "ONNX NonMaxSuppression" [113]: https://onnx.ai/onnx/operators/onnx__NonZero.html "ONNX NonZero" [114]: https://onnx.ai/onnx/operators/onnx__Not.html "ONNX Not" [115]: https://onnx.ai/onnx/operators/onnx__OneHot.html "ONNX OneHot" [116]: https://onnx.ai/onnx/operators/onnx__Optional.html "ONNX Optional" [117]: https://onnx.ai/onnx/operators/onnx__OptionalGetElement.html "ONNX OptionalGetElement" [118]: https://onnx.ai/onnx/operators/onnx__OptionalHasElement.html "ONNX OptionalHasElement" [119]: https://onnx.ai/onnx/operators/onnx__Or.html "ONNX Or" [120]: https://onnx.ai/onnx/operators/onnx__Pad.html "ONNX Pad" [121]: https://onnx.ai/onnx/operators/onnx__Pow.html "ONNX Pow" [122]: https://onnx.ai/onnx/operators/onnx__PRelu.html "ONNX PRelu" [123]: https://onnx.ai/onnx/operators/onnx__QLinearConv.html "ONNX QLinearConv" [124]: https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html "ONNX QLinearMatMul" [125]: https://onnx.ai/onnx/operators/onnx__QuantizeLinear.html "ONNX QuantizeLinear" [126]: https://onnx.ai/onnx/operators/onnx__RandomNormal.html "ONNX RandomNormal" [127]: https://onnx.ai/onnx/operators/onnx__RandomNormalLike.html "ONNX RandomNormalLike" [128]: https://onnx.ai/onnx/operators/onnx__RandomUniform.html "ONNX RandomUniform" [129]: https://onnx.ai/onnx/operators/onnx__RandomUniformLike.html "ONNX RandomUniformLike" [130]: https://onnx.ai/onnx/operators/onnx__Range.html "ONNX Range" [131]: https://onnx.ai/onnx/operators/onnx__Reciprocal.html "ONNX Reciprocal" [132]: https://onnx.ai/onnx/operators/onnx__ReduceL.html "ONNX ReduceL" [133]: https://onnx.ai/onnx/operators/onnx__ReduceLogSum.html "ONNX ReduceLogSum" [134]: https://onnx.ai/onnx/operators/onnx__ReduceLogSumExp.html "ONNX ReduceLogSumExp" [135]: https://onnx.ai/onnx/operators/onnx__ReduceMax.html "ONNX ReduceMax" [136]: https://onnx.ai/onnx/operators/onnx__ReduceMean.html "ONNX ReduceMean" [137]: https://onnx.ai/onnx/operators/onnx__ReduceMin.html "ONNX ReduceMin" [138]: https://onnx.ai/onnx/operators/onnx__ReduceProd.html "ONNX ReduceProd" [139]: https://onnx.ai/onnx/operators/onnx__ReduceSum.html "ONNX ReduceSum" [140]: https://onnx.ai/onnx/operators/onnx__ReduceSumSquare.html "ONNX ReduceSumSquare" [141]: https://onnx.ai/onnx/operators/onnx__Relu.html "ONNX Relu" [142]: https://onnx.ai/onnx/operators/onnx__Reshape.html "ONNX Reshape" [143]: https://onnx.ai/onnx/operators/onnx__Resize.html "ONNX Resize" [144]: https://onnx.ai/onnx/operators/onnx__ReverseSequence.html "ONNX ReverseSequence" [145]: https://onnx.ai/onnx/operators/onnx__RNN.html "ONNX RNN" [146]: https://onnx.ai/onnx/operators/onnx__RoiAlign.html "ONNX RoiAlign" [147]: https://onnx.ai/onnx/operators/onnx__Round.html "ONNX Round" [148]: https://onnx.ai/onnx/operators/onnx__Scan.html "ONNX Scan" [149]: https://onnx.ai/onnx/operators/onnx__Scatter.html "ONNX Scatter" [150]: https://onnx.ai/onnx/operators/onnx__ScatterElements.html "ONNX ScatterElements" [151]: https://onnx.ai/onnx/operators/onnx__ScatterND.html "ONNX ScatterND" [152]: https://onnx.ai/onnx/operators/onnx__Selu.html "ONNX Selu" [153]: https://onnx.ai/onnx/operators/onnx__SequenceAt.html "ONNX SequenceAt" [154]: https://onnx.ai/onnx/operators/onnx__SequenceConstruct.html "ONNX SequenceConstruct" [155]: https://onnx.ai/onnx/operators/onnx__SequenceEmpty.html "ONNX SequenceEmpty" [156]: https://onnx.ai/onnx/operators/onnx__SequenceErase.html "ONNX SequenceErase" [157]: https://onnx.ai/onnx/operators/onnx__SequenceInsert.html "ONNX SequenceInsert" [158]: https://onnx.ai/onnx/operators/onnx__SequenceLength.html "ONNX SequenceLength" [159]: https://onnx.ai/onnx/operators/onnx__SequenceMap.html "ONNX SequenceMap" [160]: https://onnx.ai/onnx/operators/onnx__Shape.html "ONNX Shape" [161]: https://onnx.ai/onnx/operators/onnx__Shrink.html "ONNX Shrink" [162]: https://onnx.ai/onnx/operators/onnx__Sigmoid.html "ONNX Sigmoid" [163]: https://onnx.ai/onnx/operators/onnx__Sign.html "ONNX Sign" [164]: https://onnx.ai/onnx/operators/onnx__Sin.html "ONNX Sin" [165]: https://onnx.ai/onnx/operators/onnx__Sinh.html "ONNX Sinh" [166]: https://onnx.ai/onnx/operators/onnx__Size.html "ONNX Size" [167]: https://onnx.ai/onnx/operators/onnx__Slice.html "ONNX Slice" [168]: https://onnx.ai/onnx/operators/onnx__Softmax.html "ONNX Softmax" [169]: https://onnx.ai/onnx/operators/onnx__SoftmaxCrossEntropyLoss.html "ONNX SoftmaxCrossEntropyLoss" [170]: https://onnx.ai/onnx/operators/onnx__Softplus.html "ONNX Softplus" [171]: https://onnx.ai/onnx/operators/onnx__Softsign.html "ONNX Softsign" [172]: https://onnx.ai/onnx/operators/onnx__SpaceToDepth.html "ONNX SpaceToDepth" [173]: https://onnx.ai/onnx/operators/onnx__Split.html "ONNX Split" [174]: https://onnx.ai/onnx/operators/onnx__SplitToSequence.html "ONNX SplitToSequence" [175]: https://onnx.ai/onnx/operators/onnx__Sqrt.html "ONNX Sqrt" [176]: https://onnx.ai/onnx/operators/onnx__Squeeze.html "ONNX Squeeze" [177]: https://onnx.ai/onnx/operators/onnx__STFT.html "ONNX STFT" [178]: https://onnx.ai/onnx/operators/onnx__StringNormalizer.html "ONNX StringNormalizer" [179]: https://onnx.ai/onnx/operators/onnx__Sub.html "ONNX Sub" [180]: https://onnx.ai/onnx/operators/onnx__Sum.html "ONNX Sum" [181]: https://onnx.ai/onnx/operators/onnx__Tan.html "ONNX Tan" [182]: https://onnx.ai/onnx/operators/onnx__Tanh.html "ONNX Tanh" [183]: https://onnx.ai/onnx/operators/onnx__TfIdfVectorizer.html "ONNX TfIdfVectorizer" [184]: https://onnx.ai/onnx/operators/onnx__ThresholdedRelu.html "ONNX ThresholdedRelu" [185]: https://onnx.ai/onnx/operators/onnx__Tile.html "ONNX Tile" [186]: https://onnx.ai/onnx/operators/onnx__TopK.html "ONNX TopK" [187]: https://onnx.ai/onnx/operators/onnx__Transpose.html "ONNX Transpose" [188]: https://onnx.ai/onnx/operators/onnx__Trilu.html "ONNX Trilu" [189]: https://onnx.ai/onnx/operators/onnx__Unique.html "ONNX Unique" [190]: https://onnx.ai/onnx/operators/onnx__Upsample.html "ONNX Upsample" [191]: https://onnx.ai/onnx/operators/onnx__Where.html "ONNX Where" [192]: https://onnx.ai/onnx/operators/onnx__Xor.html "ONNX Xor" [193]: https://onnx.ai/onnx/operators/onnx__Unsqueeze.html "ONNX Unsqueeze"