[package] authors = ["nathanielsimard "] categories = ["science", "no-std", "embedded", "wasm"] description = "Tensor library with user-friendly APIs and automatic differentiation support" edition.workspace = true keywords = ["deep-learning", "machine-learning", "tensor", "pytorch", "ndarray"] license.workspace = true name = "burn-tensor" readme.workspace = true repository = "https://github.com/tracel-ai/burn/tree/main/crates/burn-tensor" version.workspace = true [features] default = ["std", "repr"] doc = ["default"] experimental-named-tensor = [] export_tests = ["burn-tensor-testgen"] std = ["rand/std", "half/std", "num-traits/std", "burn-common/std", "burn-common/rayon"] repr = [] cubecl = ["dep:cubecl"] cubecl-wgpu = ["cubecl", "cubecl/wgpu"] cubecl-cuda = ["cubecl", "cubecl/cuda"] [dependencies] burn-common = { path = "../burn-common", version = "0.14.0", default-features = false} burn-tensor-testgen = { path = "../burn-tensor-testgen", version = "0.14.0", optional = true } cubecl = { workspace = true, optional = true } derive-new = { workspace = true } half = { workspace = true, features = ["bytemuck"] } num-traits = { workspace = true } rand = { workspace = true } rand_distr = { workspace = true } # use instead of statrs because it supports no_std bytemuck = { workspace = true } # The same implementation of HashMap in std but with no_std support (only needs alloc crate) hashbrown = { workspace = true } # no_std compatible # Serialization serde = { workspace = true } serde_bytes = { workspace = true } [dev-dependencies] rand = { workspace = true, features = ["std", "std_rng"] } # Default enables std [package.metadata.docs.rs] features = ["doc"]