# MNIST The example is showing you how to: - Define your own custom module (MLP). - Create the data pipeline from a raw dataset to a batched multi-threaded fast DataLoader. - Configure a learner to display and log metrics as well as to keep training checkpoints. The example can be run like so: ```bash git clone https://github.com/tracel-ai/burn.git cd burn # Use the --release flag to really speed up training. echo "Using ndarray backend" cargo run --example mnist --release --features ndarray # CPU NdArray Backend - f32 - single thread cargo run --example mnist --release --features ndarray-blas-openblas # CPU NdArray Backend - f32 - blas with openblas cargo run --example mnist --release --features ndarray-blas-netlib # CPU NdArray Backend - f32 - blas with netlib echo "Using tch backend" export TORCH_CUDA_VERSION=cu121 # Set the cuda version cargo run --example mnist --release --features tch-gpu # GPU Tch Backend - f32 cargo run --example mnist --release --features tch-cpu # CPU Tch Backend - f32 echo "Using wgpu backend" cargo run --example mnist --release --features wgpu ```