Add `topk` tensor operation (#1497)

* Add topk and topk_with_indices

* Change topk_with_indices test to guarantee order (previously equal elements)
This commit is contained in:
Guillaume Lagrange 2024-03-22 10:57:20 -04:00 committed by GitHub
parent dd699a90a2
commit dc45cf1700
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 218 additions and 13 deletions

View File

@ -237,6 +237,8 @@ Those operations are available for numeric tensor kinds: `Float` and `Int`.
| `tensor.sort_descending_with_indices(dim)` | `tensor.sort(dim, descending=True)` |
| `tensor.argsort(dim)` | `tensor.argsort(dim)` |
| `tensor.argsort_descending(dim)` | `tensor.argsort(dim, descending=True)` |
| `tensor.topk(k, dim)` | `tensor.topk(k, dim).values` |
| `tensor.topk_with_indices(k, dim)` | `tensor.topk(k, dim)` |
### Float Operations

View File

@ -273,6 +273,14 @@ where
Tensor::new(sort::<B, D, Float>(self.primitive, dim, /*descending*/ false).await)
}
/// Sort the elements by value in descending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn sort_descending(self, dim: usize) -> Tensor<B, D> {
Tensor::new(sort::<B, D, Float>(self.primitive, dim, /*descending*/ true).await)
}
/// Sort the elements by value in ascending order along a given dimension.
/// Also returns the indices.
///
@ -285,6 +293,21 @@ where
(Tensor::new(values), Tensor::new(indices))
}
/// Sort the elements by value in descending order along a given dimension.
/// Also returns the indices.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn sort_descending_with_indices(
self,
dim: usize,
) -> (Tensor<B, D>, Tensor<B, D, Int>) {
check!(TensorCheck::sort_dim::<D>("Sort_with_indices", dim));
let (values, indices) =
sort_with_indices::<B, D, Float>(self.primitive, dim, /*descending*/ true).await;
(Tensor::new(values), Tensor::new(indices))
}
/// Returns the indices that sort the elements by value in ascending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
@ -293,4 +316,36 @@ where
check!(TensorCheck::sort_dim::<D>("Argsort", dim));
Tensor::new(argsort::<B, D, Float>(self.primitive, dim, /*descending*/ false).await)
}
/// Returns the indices that sort the elements by value in descending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn argsort_descending(self, dim: usize) -> Tensor<B, D, Int> {
check!(TensorCheck::sort_dim::<D>("Argsort", dim));
Tensor::new(argsort::<B, D, Float>(self.primitive, dim, /*descending*/ true).await)
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn topk(self, k: usize, dim: usize) -> Tensor<B, D> {
let k_indices = Tensor::arange(0..k as i64, &self.device());
self.sort_descending(dim).await.select(dim, k_indices)
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
/// Also returns the indices.
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn topk_with_indices(
self,
k: usize,
dim: usize,
) -> (Tensor<B, D>, Tensor<B, D, Int>) {
let k_indices = Tensor::arange(0..k as i64, &self.device());
let (values, indices) = self.sort_descending_with_indices(dim).await;
(
values.select(dim, k_indices.clone()),
indices.select(dim, k_indices),
)
}
}

View File

@ -70,36 +70,87 @@ where
Tensor::new(B::int_into_float(self.primitive))
}
/// Sort the elements by value along a given dimension.
/// Sort the elements by value in ascending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn sort(self, dim: usize, descending: bool) -> Tensor<B, D, Int> {
Tensor::new(sort::<B, D, Int>(self.primitive, dim, descending).await)
pub async fn sort(self, dim: usize) -> Tensor<B, D, Int> {
Tensor::new(sort::<B, D, Int>(self.primitive, dim, /* descending */ false).await)
}
/// Sort the elements by value along a given dimension.
/// Sort the elements by value in descending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn sort_descending(self, dim: usize) -> Tensor<B, D, Int> {
Tensor::new(sort::<B, D, Int>(self.primitive, dim, /* descending */ true).await)
}
/// Sort the elements by value in ascending order along a given dimension.
/// Also returns the indices.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn sort_with_indices(
self,
dim: usize,
descending: bool,
) -> (Tensor<B, D, Int>, Tensor<B, D, Int>) {
pub async fn sort_with_indices(self, dim: usize) -> (Tensor<B, D, Int>, Tensor<B, D, Int>) {
check!(TensorCheck::sort_dim::<D>("Sort_with_indices", dim));
let (values, indices) =
sort_with_indices::<B, D, Int>(self.primitive, dim, descending).await;
sort_with_indices::<B, D, Int>(self.primitive, dim, /*descending*/ false).await;
(Tensor::new(values), Tensor::new(indices))
}
/// Returns the indices that sort the elements by value along a given dimension.
/// Sort the elements by value in descending order along a given dimension.
/// Also returns the indices.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn argsort(self, dim: usize, descending: bool) -> Tensor<B, D, Int> {
pub async fn sort_descending_with_indices(
self,
dim: usize,
) -> (Tensor<B, D, Int>, Tensor<B, D, Int>) {
check!(TensorCheck::sort_dim::<D>("Sort_with_indices", dim));
let (values, indices) =
sort_with_indices::<B, D, Int>(self.primitive, dim, /*descending*/ true).await;
(Tensor::new(values), Tensor::new(indices))
}
/// Returns the indices that sort the elements by value in ascending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn argsort(self, dim: usize) -> Tensor<B, D, Int> {
check!(TensorCheck::sort_dim::<D>("Argsort", dim));
Tensor::new(argsort::<B, D, Int>(self.primitive, dim, descending).await)
Tensor::new(argsort::<B, D, Int>(self.primitive, dim, /*descending*/ false).await)
}
/// Returns the indices that sort the elements by value in descending order along a given dimension.
///
/// This sort is unstable (i.e., may reorder equal elements).
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn argsort_descending(self, dim: usize) -> Tensor<B, D, Int> {
check!(TensorCheck::sort_dim::<D>("Argsort", dim));
Tensor::new(argsort::<B, D, Int>(self.primitive, dim, /*descending*/ true).await)
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn topk(self, k: usize, dim: usize) -> Tensor<B, D, Int> {
let k_indices = Tensor::arange(0..k as i64, &self.device());
self.sort_descending(dim).await.select(dim, k_indices)
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
/// Also returns the indices.
#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
pub async fn topk_with_indices(
self,
k: usize,
dim: usize,
) -> (Tensor<B, D, Int>, Tensor<B, D, Int>) {
let k_indices = Tensor::arange(0..k as i64, &self.device());
let (values, indices) = self.sort_descending_with_indices(dim).await;
(
values.select(dim, k_indices.clone()),
indices.select(dim, k_indices),
)
}
}

View File

@ -717,6 +717,25 @@ where
check!(TensorCheck::sort_dim::<D>("Argsort", dim));
Tensor::new(K::argsort(self.primitive, dim, /*descending*/ true))
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
#[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
pub fn topk(self, k: usize, dim: usize) -> Tensor<B, D, K> {
let k_indices = Tensor::arange(0..k as i64, &self.device());
self.sort_descending(dim).select(dim, k_indices)
}
/// Returns the `k` largest elements of the given input tensor along a given dimension.
/// Also returns the indices.
#[cfg(any(feature = "wasm-sync", not(target_family = "wasm")))]
pub fn topk_with_indices(self, k: usize, dim: usize) -> (Tensor<B, D, K>, Tensor<B, D, Int>) {
let k_indices = Tensor::arange(0..k as i64, &self.device());
let (values, indices) = self.sort_descending_with_indices(dim);
(
values.select(dim, k_indices.clone()),
indices.select(dim, k_indices),
)
}
}
impl<B, K> Tensor<B, 2, K>

View File

@ -92,6 +92,7 @@ macro_rules! testgen_all {
burn_tensor::testgen_sign!();
burn_tensor::testgen_tri_mask!();
burn_tensor::testgen_sort_argsort!();
burn_tensor::testgen_topk!();
// test stats
burn_tensor::testgen_var!();

View File

@ -51,6 +51,7 @@ mod squeeze;
mod stack;
mod sub;
mod tanh;
mod topk;
mod transpose;
mod tri;
mod tri_mask;

View File

@ -0,0 +1,76 @@
#[burn_tensor_testgen::testgen(topk)]
mod tests {
use super::*;
use burn_tensor::{Data, Shape, Tensor};
#[test]
fn test_topk_1d() {
// Int
let tensor = TestTensorInt::from([1, 2, 3, 4, 5]);
let values = tensor.topk(3, /*dim*/ 0);
let values_actual = values.into_data();
let values_expected = Data::from([5, 4, 3]);
assert_eq!(values_expected, values_actual);
// Float
let tensor = TestTensor::from([1., 2., 3., 4., 5.]);
let values = tensor.topk(3, /*dim*/ 0);
let values_actual = values.into_data();
let values_expected = Data::from([5., 4., 3.]);
values_expected.assert_approx_eq(&values_actual, 5);
}
#[test]
fn test_topk() {
// 2D Int
let tensor = TestTensorInt::from([[[1, 4, 7], [2, 5, 6]], [[3, 0, 9], [8, 2, 8]]]);
let values = tensor.topk(2, /*dim*/ 2);
let values_actual = values.into_data();
let values_expected = Data::from([[[7, 4], [6, 5]], [[9, 3], [8, 8]]]);
assert_eq!(values_expected, values_actual);
// 2D Float
let tensor = TestTensor::from([[[1., 4., 7.], [2., 5., 6.]], [[3., 0., 9.], [8., 2., 8.]]]);
let values = tensor.topk(2, /*dim*/ 2);
let values_actual = values.into_data();
let values_expected = Data::from([[[7., 4.], [6., 5.]], [[9., 3.], [8., 8.]]]);
values_expected.assert_approx_eq(&values_actual, 5);
}
#[test]
fn test_topk_with_indices() {
// 1D
let tensor = TestTensorInt::from([1, 2, 3, 4, 5]);
let (values, indices) = tensor.topk_with_indices(3, /*dim*/ 0);
let values_actual = values.into_data();
let indices_actual = indices.into_data();
let values_expected = Data::from([5, 4, 3]);
assert_eq!(values_expected, values_actual);
let indices_expected = Data::from([4, 3, 2]);
assert_eq!(indices_expected, indices_actual);
// 2D
let tensor = TestTensor::from([[[1., 4., 7.], [2., 5., 6.]], [[3., 0., 9.], [8., 2., 7.]]]);
let (values, indices) = tensor.topk_with_indices(2, /*dim*/ 2);
let values_actual = values.into_data();
let indices_actual = indices.into_data();
let values_expected = Data::from([[[7., 4.], [6., 5.]], [[9., 3.], [8., 7.]]]);
values_expected.assert_approx_eq(&values_actual, 5);
let indices_expected = Data::from([[[2, 1], [2, 1]], [[2, 0], [0, 2]]]);
assert_eq!(indices_expected, indices_actual);
}
}