Add reduce mean ONNX op support (#1637)

* Add reduce mean onnx op support

* Fix comment
This commit is contained in:
Guillaume Lagrange 2024-04-16 07:59:35 -04:00 committed by GitHub
parent 340a12463a
commit d5f20e2711
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 189 additions and 4 deletions

View File

@ -140,7 +140,7 @@ represent the corresponding Burn Op.
| [ReduceLogSum][133] | ❌ | ❌ |
| [ReduceLogSumExp][134] | ❌ | ❌ |
| [ReduceMax][135] | ❌ | ✅ |
| [ReduceMean][136] | | ✅ |
| [ReduceMean][136] | | ✅ |
| [ReduceMin][137] | ❌ | ✅ |
| [ReduceProd][138] | ❌ | ✅ |
| [ReduceSum][139] | ❌ | ✅ |

View File

@ -35,6 +35,7 @@ fn main() {
.input("tests/recip/recip.onnx")
.input("tests/relu/relu.onnx")
.input("tests/leaky_relu/leaky_relu.onnx")
.input("tests/reduce_mean/reduce_mean.onnx")
.input("tests/reshape/reshape.onnx")
.input("tests/sigmoid/sigmoid.onnx")
.input("tests/sin/sin.onnx")

View File

@ -41,6 +41,7 @@ include_models!(
mul,
neg,
recip,
reduce_mean,
relu,
reshape,
sigmoid,
@ -443,6 +444,22 @@ mod tests {
output3.to_data().assert_approx_eq(&expected3, 3);
}
#[test]
fn reduce_mean() {
let device = Default::default();
let model: reduce_mean::Model<Backend> = reduce_mean::Model::new(&device);
// Run the model
let input = Tensor::<Backend, 4>::from_floats([[[[1.0, 4.0, 9.0, 25.0]]]], &device);
let (output_scalar, output_tensor, output_value) = model.forward(input.clone());
let expected_scalar = Data::from([9.75]);
let expected = Data::from([[[[9.75]]]]);
assert_eq!(output_scalar.to_data(), expected_scalar);
assert_eq!(output_tensor.to_data(), input.to_data());
assert_eq!(output_value.to_data(), expected);
}
#[test]
fn reshape() {
// Initialize the model without weights (because the exported file does not contain them)

View File

@ -0,0 +1,46 @@
#!/usr/bin/env python3
# used to generate model: onnx-tests/tests/reduce_mean/reduce_mean.onnx
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
def forward(self, x):
return (
# ReduceMean, keepdims=0, axes=None
torch.mean(x),
# ReduceMean, keepdims=1, axes=[1]
torch.mean(x, dim=1, keepdim=True),
# ReduceMean, keepdims=1, axes=[-1]
torch.mean(x, dim=-1, keepdim=True),
)
def main():
# Set random seed for reproducibility
torch.manual_seed(0)
# Export to onnx
model = Model()
model.eval()
device = torch.device("cpu")
onnx_name = "reduce_mean.onnx"
test_input = torch.tensor([[[[1.0, 4.0, 9.0, 25.0]]]], device=device)
torch.onnx.export(model, test_input, onnx_name, verbose=False, opset_version=16)
print(f"Finished exporting model to {onnx_name}")
# Output some test data for use in the test
print(f"Test input data: {test_input}")
output = model.forward(*test_input)
print(f"Test output data: {output}")
if __name__ == "__main__":
main()

View File

@ -29,6 +29,7 @@ pub enum UnaryNodeKind {
Log,
LogSoftmax,
Neg,
ReduceMean,
Reciprocal,
LeakyRelu,
Relu,
@ -52,6 +53,7 @@ impl UnaryNodeKind {
Self::Log => "log",
Self::LogSoftmax => "log_softmax",
Self::Neg => "neg",
Self::ReduceMean => "reduce_mean",
Self::Reciprocal => "reciprocal",
Self::LeakyRelu => "leaky_relu",
Self::Relu => "relu",
@ -253,6 +255,32 @@ impl UnaryNode {
_ => panic!("output must be a tensor"),
}
}
pub(crate) fn reduce_mean(input: Type, output: Type, dim: Option<usize>) -> Self {
// ReduceMean is constrained to numeric tensors, so no need to check for bool.
if let Type::Tensor(_) = output {
if let Some(dim) = dim {
// ReduceMean, keepdims=1, axes=[dim]
let dim = dim.to_tokens();
Self::new(
input,
output,
UnaryNodeKind::ReduceMean,
Rc::new(move |input| quote! { #input.mean_dim(#dim) }),
)
} else {
// ReduceMean, keepdims=0, axes=None
Self::new(
input,
output,
UnaryNodeKind::ReduceMean,
Rc::new(move |input| quote! { #input.mean() }),
)
}
} else {
panic!("ReduceMean only supports tensor output");
}
}
}
#[cfg(test)]
@ -437,6 +465,43 @@ mod tests {
);
}
#[test]
fn test_unary_codegen_reduce_mean() {
one_node_graph(
UnaryNode::reduce_mean(
Type::Tensor(TensorType::new_float("tensor1", 4)),
Type::Tensor(TensorType::new_float("tensor2", 4)),
Some(1),
),
quote! {
pub fn forward(&self, tensor1: Tensor<B, 4>) -> Tensor<B, 4> {
let tensor2 = tensor1.mean_dim(1);
tensor2
}
},
vec!["tensor1".to_string()],
vec!["tensor2".to_string()],
);
one_node_graph(
UnaryNode::reduce_mean(
Type::Tensor(TensorType::new_float("tensor1", 4)),
Type::Tensor(TensorType::new_float("tensor2", 1)),
None,
),
quote! {
pub fn forward(&self, tensor1: Tensor<B, 4>) -> Tensor<B, 1> {
let tensor2 = tensor1.mean();
tensor2
}
},
vec!["tensor1".to_string()],
vec!["tensor2".to_string()],
);
}
#[test]
fn test_unary_codegen_reciprocal() {
one_node_graph(

View File

@ -39,7 +39,7 @@ pub fn dim_inference(node: &mut Node, graph_io: &mut OnnxGraphIO) {
NodeType::Mul => same_as_input(node),
NodeType::Neg => same_as_input(node),
NodeType::Reciprocal => same_as_input(node),
NodeType::ReduceMean => mean_update_outputs(node),
NodeType::ReduceMean => reduce_mean_update_outputs(node),
NodeType::Relu => same_as_input(node),
NodeType::Reshape => reshape_update_outputs(node),
NodeType::Shape => shape_update_outputs(node),
@ -206,12 +206,11 @@ fn reshape_update_outputs(node: &mut Node) {
});
}
fn mean_update_outputs(node: &mut Node) {
fn reduce_mean_update_outputs(node: &mut Node) {
if node.inputs.len() != 1 {
panic!("Mean: multiple inputs are not supported");
}
// Extract the configuration of the linear layer (inputs are known)
let node_input = &mut node.inputs[0];
let tensor = match node_input.clone().ty {
ArgType::Tensor(tensor) => tensor,
@ -230,6 +229,9 @@ fn mean_update_outputs(node: &mut Node) {
if dim_only {
node.outputs[0].ty = ArgType::Tensor(tensor);
} else {
// NOTE: ReduceMean w/o keepdims reduces to a scalar value, but Burn doesn't have
// 0-dim tensor so we can't track or perform other ops on that value
// node.outputs[0].ty = ArgType::Scalar(tensor.elem_type);
node.outputs[0].ty = ArgType::Tensor(TensorType { dim: 1, ..tensor });
}
}

View File

@ -660,3 +660,47 @@ fn padding_config_1d(pads: &[i64]) -> PaddingConfig1d {
panic!("Padding configuration ({:?}) not supported", pads);
}
}
pub fn reduce_mean_config(node: &Node) -> Option<usize> {
let mut axes = Vec::new();
let mut keepdims = 1;
let tensor = match node.inputs.first().unwrap().clone().ty {
ArgType::Tensor(tensor) => tensor,
_ => panic!("Only tensor input is valid"),
};
// Extract the attributes
for (key, value) in node.attrs.iter() {
match key.as_str() {
"axes" => axes = value.clone().into_i64s(),
"keepdims" => keepdims = value.clone().into_i64(),
_ => {}
}
}
if axes.len() > 1 {
panic!("ReduceMean: reducing on multiple dimensions is not supported")
}
if axes.is_empty() && keepdims == 1 {
panic!("ReduceMean: axes must be provided with keepdims")
}
if !axes.is_empty() && keepdims == 0 {
// Not supported in Burn
panic!("ReduceMean: the reduce operation must preserve the reduced dimension")
}
if axes.is_empty() {
None
} else {
let mut dim = axes[0];
if dim < 0 {
// Accepted range is [-r, r-1] where r = rank(data) but Burn only supports positive dim
dim += tensor.dim as i64;
}
Some(dim as usize)
}
}

View File

@ -252,6 +252,7 @@ impl OnnxGraph {
NodeType::Sqrt => graph.register(Self::sqrt_conversion(node)),
NodeType::Tanh => graph.register(Self::tanh_conversion(node)),
NodeType::Constant => graph.register(Self::constant_conversion::<PS>(node)),
NodeType::ReduceMean => graph.register(Self::reduce_mean_conversion(node)),
NodeType::Reshape => graph.register(Self::reshape_conversion(node)),
NodeType::Reciprocal => graph.register(Self::reciprocal_conversion(node)),
NodeType::Sigmoid => graph.register(Self::sigmoid_conversion(node)),
@ -463,6 +464,15 @@ impl OnnxGraph {
ReshapeNode::new(input, output, shape)
}
fn reduce_mean_conversion(node: Node) -> UnaryNode {
let input = node.inputs.first().unwrap().to_type();
let output = node.outputs.first().unwrap().to_type();
let dim = reduce_mean_config(&node);
UnaryNode::reduce_mean(input, output, dim)
}
fn unsqueeze_conversion(node: Node) -> UnsqueezeNode {
let input = node.inputs.first().unwrap().to_tensor_type();
let output = node.outputs.first().unwrap().to_tensor_type();