Fix mask_where broadcasted input (#2381)

This commit is contained in:
Guillaume Lagrange 2024-10-17 11:49:21 -04:00 committed by GitHub
parent 296c526551
commit 604dbae57d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 77 additions and 12 deletions

View File

@ -134,3 +134,22 @@ pub fn expand<E: CandleElement>(tensor: CandleTensor<E>, shape: Shape) -> Candle
pub fn sign<E: CandleElement>(tensor: CandleTensor<E>) -> CandleTensor<E> { pub fn sign<E: CandleElement>(tensor: CandleTensor<E>) -> CandleTensor<E> {
CandleTensor::new(tensor.tensor.sign().unwrap()) CandleTensor::new(tensor.tensor.sign().unwrap())
} }
pub fn mask_where_broadcasted<E: CandleElement>(
tensor: CandleTensor<E>,
mask: CandleTensor<u8>,
value: CandleTensor<E>,
) -> CandleTensor<E> {
let shape = tensor
.tensor
.shape()
.broadcast_shape_binary_op(mask.tensor.shape(), "where_cond")
.unwrap();
let mut tensor = tensor.tensor;
if shape != *tensor.shape() {
tensor = tensor.broadcast_as(shape).unwrap();
}
CandleTensor::new(mask.tensor.where_cond(&value.tensor, &tensor).unwrap())
}

View File

@ -60,11 +60,7 @@ impl<F: FloatCandleElement, I: IntCandleElement> IntTensorOps<Self> for Candle<F
mask: BoolTensor<Self>, mask: BoolTensor<Self>,
source: IntTensor<Self>, source: IntTensor<Self>,
) -> IntTensor<Self> { ) -> IntTensor<Self> {
CandleTensor::new( super::base::mask_where_broadcasted(tensor, mask, source)
mask.tensor
.where_cond(&source.tensor, &tensor.tensor)
.unwrap(),
)
} }
fn int_mask_fill( fn int_mask_fill(

View File

@ -203,11 +203,7 @@ impl<F: FloatCandleElement, I: IntCandleElement> FloatTensorOps<Self> for Candle
mask: BoolTensor<Self>, mask: BoolTensor<Self>,
value: FloatTensor<Self>, value: FloatTensor<Self>,
) -> FloatTensor<Self> { ) -> FloatTensor<Self> {
CandleTensor::new( super::base::mask_where_broadcasted(tensor, mask, value)
mask.tensor
.where_cond(&value.tensor, &tensor.tensor)
.unwrap(),
)
} }
fn float_mask_fill( fn float_mask_fill(

View File

@ -941,7 +941,7 @@ impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
let stream_1 = tensor.stream; let stream_1 = tensor.stream;
let stream_2 = mask.stream; let stream_2 = mask.stream;
let stream_3 = value.stream; let stream_3 = value.stream;
let shape: Vec<usize> = tensor.shape.clone(); let shape = binary_ops_shape(&tensor.shape, &mask.shape);
let out = tensor let out = tensor
.client .client
.tensor_uninitialized(shape, B::FloatElem::dtype()); .tensor_uninitialized(shape, B::FloatElem::dtype());

View File

@ -217,7 +217,7 @@ impl<B: FusionBackend> IntTensorOps<Self> for Fusion<B> {
let stream_1 = tensor.stream; let stream_1 = tensor.stream;
let stream_2 = mask.stream; let stream_2 = mask.stream;
let stream_3 = value.stream; let stream_3 = value.stream;
let shape: Vec<usize> = tensor.shape.clone(); let shape = binary_ops_shape(&tensor.shape, &mask.shape);
let out = tensor let out = tensor
.client .client
.tensor_uninitialized(shape, B::IntElem::dtype()); .tensor_uninitialized(shape, B::IntElem::dtype());

View File

@ -22,6 +22,60 @@ mod tests {
output.into_data().assert_eq(&expected, false); output.into_data().assert_eq(&expected, false);
} }
#[test]
fn should_support_mask_where_broadcast_int() {
let device = Default::default();
// When broadcasted, the input [[2, 3], [4, 5]] is repeated 4 times
let tensor = Tensor::<TestBackend, 1, Int>::arange(2..6, &device).reshape([1, 2, 2]);
let mask = Tensor::<TestBackend, 3, Bool>::from_bool(
TensorData::from([
[[true, false], [false, true]],
[[false, true], [true, false]],
[[false, false], [false, false]],
[[true, true], [true, true]],
]),
&device,
);
let value = Tensor::<TestBackend, 3, Int>::ones([4, 2, 2], &device);
let output = tensor.mask_where(mask, value);
let expected = TensorData::from([
[[1, 3], [4, 1]],
[[2, 1], [1, 5]],
[[2, 3], [4, 5]],
[[1, 1], [1, 1]],
]);
output.into_data().assert_eq(&expected, false);
}
#[test]
fn should_support_mask_where_broadcast() {
let device = Default::default();
// When broadcasted, the input [[2, 3], [4, 5]] is repeated 4 times
let tensor = Tensor::<TestBackend, 1, Int>::arange(2..6, &device).reshape([1, 2, 2]);
let mask = Tensor::<TestBackend, 3, Bool>::from_bool(
TensorData::from([
[[true, false], [false, true]],
[[false, true], [true, false]],
[[false, false], [false, false]],
[[true, true], [true, true]],
]),
&device,
);
let value = Tensor::<TestBackend, 3>::ones([4, 2, 2], &device);
let output = tensor.float().mask_where(mask, value);
let expected = TensorData::from([
[[1., 3.], [4., 1.]],
[[2., 1.], [1., 5.]],
[[2., 3.], [4., 5.]],
[[1., 1.], [1., 1.]],
]);
output.into_data().assert_eq(&expected, false);
}
#[test] #[test]
fn should_handle_mask_where_nans() { fn should_handle_mask_where_nans() {
let device = Default::default(); let device = Default::default();