mirror of https://github.com/tracel-ai/burn.git
Fix mask_where broadcasted input (#2381)
This commit is contained in:
parent
296c526551
commit
604dbae57d
|
@ -134,3 +134,22 @@ pub fn expand<E: CandleElement>(tensor: CandleTensor<E>, shape: Shape) -> Candle
|
|||
pub fn sign<E: CandleElement>(tensor: CandleTensor<E>) -> CandleTensor<E> {
|
||||
CandleTensor::new(tensor.tensor.sign().unwrap())
|
||||
}
|
||||
|
||||
pub fn mask_where_broadcasted<E: CandleElement>(
|
||||
tensor: CandleTensor<E>,
|
||||
mask: CandleTensor<u8>,
|
||||
value: CandleTensor<E>,
|
||||
) -> CandleTensor<E> {
|
||||
let shape = tensor
|
||||
.tensor
|
||||
.shape()
|
||||
.broadcast_shape_binary_op(mask.tensor.shape(), "where_cond")
|
||||
.unwrap();
|
||||
|
||||
let mut tensor = tensor.tensor;
|
||||
if shape != *tensor.shape() {
|
||||
tensor = tensor.broadcast_as(shape).unwrap();
|
||||
}
|
||||
|
||||
CandleTensor::new(mask.tensor.where_cond(&value.tensor, &tensor).unwrap())
|
||||
}
|
||||
|
|
|
@ -60,11 +60,7 @@ impl<F: FloatCandleElement, I: IntCandleElement> IntTensorOps<Self> for Candle<F
|
|||
mask: BoolTensor<Self>,
|
||||
source: IntTensor<Self>,
|
||||
) -> IntTensor<Self> {
|
||||
CandleTensor::new(
|
||||
mask.tensor
|
||||
.where_cond(&source.tensor, &tensor.tensor)
|
||||
.unwrap(),
|
||||
)
|
||||
super::base::mask_where_broadcasted(tensor, mask, source)
|
||||
}
|
||||
|
||||
fn int_mask_fill(
|
||||
|
|
|
@ -203,11 +203,7 @@ impl<F: FloatCandleElement, I: IntCandleElement> FloatTensorOps<Self> for Candle
|
|||
mask: BoolTensor<Self>,
|
||||
value: FloatTensor<Self>,
|
||||
) -> FloatTensor<Self> {
|
||||
CandleTensor::new(
|
||||
mask.tensor
|
||||
.where_cond(&value.tensor, &tensor.tensor)
|
||||
.unwrap(),
|
||||
)
|
||||
super::base::mask_where_broadcasted(tensor, mask, value)
|
||||
}
|
||||
|
||||
fn float_mask_fill(
|
||||
|
|
|
@ -941,7 +941,7 @@ impl<B: FusionBackend> FloatTensorOps<Self> for Fusion<B> {
|
|||
let stream_1 = tensor.stream;
|
||||
let stream_2 = mask.stream;
|
||||
let stream_3 = value.stream;
|
||||
let shape: Vec<usize> = tensor.shape.clone();
|
||||
let shape = binary_ops_shape(&tensor.shape, &mask.shape);
|
||||
let out = tensor
|
||||
.client
|
||||
.tensor_uninitialized(shape, B::FloatElem::dtype());
|
||||
|
|
|
@ -217,7 +217,7 @@ impl<B: FusionBackend> IntTensorOps<Self> for Fusion<B> {
|
|||
let stream_1 = tensor.stream;
|
||||
let stream_2 = mask.stream;
|
||||
let stream_3 = value.stream;
|
||||
let shape: Vec<usize> = tensor.shape.clone();
|
||||
let shape = binary_ops_shape(&tensor.shape, &mask.shape);
|
||||
let out = tensor
|
||||
.client
|
||||
.tensor_uninitialized(shape, B::IntElem::dtype());
|
||||
|
|
|
@ -22,6 +22,60 @@ mod tests {
|
|||
output.into_data().assert_eq(&expected, false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_support_mask_where_broadcast_int() {
|
||||
let device = Default::default();
|
||||
// When broadcasted, the input [[2, 3], [4, 5]] is repeated 4 times
|
||||
let tensor = Tensor::<TestBackend, 1, Int>::arange(2..6, &device).reshape([1, 2, 2]);
|
||||
let mask = Tensor::<TestBackend, 3, Bool>::from_bool(
|
||||
TensorData::from([
|
||||
[[true, false], [false, true]],
|
||||
[[false, true], [true, false]],
|
||||
[[false, false], [false, false]],
|
||||
[[true, true], [true, true]],
|
||||
]),
|
||||
&device,
|
||||
);
|
||||
let value = Tensor::<TestBackend, 3, Int>::ones([4, 2, 2], &device);
|
||||
|
||||
let output = tensor.mask_where(mask, value);
|
||||
let expected = TensorData::from([
|
||||
[[1, 3], [4, 1]],
|
||||
[[2, 1], [1, 5]],
|
||||
[[2, 3], [4, 5]],
|
||||
[[1, 1], [1, 1]],
|
||||
]);
|
||||
|
||||
output.into_data().assert_eq(&expected, false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_support_mask_where_broadcast() {
|
||||
let device = Default::default();
|
||||
// When broadcasted, the input [[2, 3], [4, 5]] is repeated 4 times
|
||||
let tensor = Tensor::<TestBackend, 1, Int>::arange(2..6, &device).reshape([1, 2, 2]);
|
||||
let mask = Tensor::<TestBackend, 3, Bool>::from_bool(
|
||||
TensorData::from([
|
||||
[[true, false], [false, true]],
|
||||
[[false, true], [true, false]],
|
||||
[[false, false], [false, false]],
|
||||
[[true, true], [true, true]],
|
||||
]),
|
||||
&device,
|
||||
);
|
||||
let value = Tensor::<TestBackend, 3>::ones([4, 2, 2], &device);
|
||||
|
||||
let output = tensor.float().mask_where(mask, value);
|
||||
let expected = TensorData::from([
|
||||
[[1., 3.], [4., 1.]],
|
||||
[[2., 1.], [1., 5.]],
|
||||
[[2., 3.], [4., 5.]],
|
||||
[[1., 1.], [1., 1.]],
|
||||
]);
|
||||
|
||||
output.into_data().assert_eq(&expected, false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn should_handle_mask_where_nans() {
|
||||
let device = Default::default();
|
||||
|
|
Loading…
Reference in New Issue