burn/burn-tensor/Cargo.toml

39 lines
1.4 KiB
TOML
Raw Normal View History

2022-07-19 07:19:13 +08:00
[package]
2022-07-28 04:42:38 +08:00
authors = ["nathanielsimard <nathaniel.simard.42@gmail.com>"]
categories = ["science", "no-std", "embedded", "wasm"]
description = "Tensor library with user-friendly APIs and automatic differentiation support"
edition = "2021"
2022-07-28 04:42:38 +08:00
keywords = ["deep-learning", "machine-learning", "tensor", "pytorch", "ndarray"]
license = "MIT OR Apache-2.0"
name = "burn-tensor"
readme = "README.md"
repository = "https://github.com/burn-rs/burn/tree/main/burn-tensor"
version = "0.11.0"
2022-07-19 07:19:13 +08:00
[features]
default = ["std"]
experimental-named-tensor = []
export_tests = ["burn-tensor-testgen"]
2023-09-28 21:38:21 +08:00
std = ["rand/std", "half/std"]
wasm-sync = []
2022-07-19 07:19:13 +08:00
[dependencies]
burn-common = { path = "../burn-common", version = "0.11.0", default-features = false }
burn-tensor-testgen = { path = "../burn-tensor-testgen", version = "0.11.0", optional = true }
2023-09-28 21:38:21 +08:00
derive-new = { workspace = true }
half = { workspace = true }
libm = { workspace = true } # no_std is supported by default
num-traits = { workspace = true }
rand = { workspace = true }
rand_distr = { workspace = true } # use instead of statrs because it supports no_std
2022-07-19 07:19:13 +08:00
# The same implementation of HashMap in std but with no_std support (only needs alloc crate)
2023-09-28 21:38:21 +08:00
hashbrown = { workspace = true } # no_std compatible
2022-07-19 07:19:13 +08:00
2022-08-06 09:14:44 +08:00
# Serialization
2023-09-28 21:38:21 +08:00
serde = { workspace = true }
[dev-dependencies]
2023-09-28 21:38:21 +08:00
rand = { workspace = true, features = ["std", "std_rng"] } # Default enables std