burn/examples/text-classification/README.md

95 lines
3.5 KiB
Markdown
Raw Normal View History

2022-12-03 06:42:49 +08:00
# Text Classification
This project provides an example implementation for training and inferencing text classification
models on AG News and DbPedia datasets using the Rust-based Burn Deep Learning Library.
2024-01-26 05:16:39 +08:00
> **Note**
> This example makes use of the HuggingFace [`datasets`](https://huggingface.co/docs/datasets/index)
> library to download the datasets. Make sure you have [Python](https://www.python.org/downloads/)
> installed on your computer.
## Dataset Details
- AG News: The AG News dataset is a collection of news articles from more than 2000 news sources.
This library helps you load and process this dataset, categorizing articles into four classes:
"World", "Sports", "Business", and "Technology".
- DbPedia: The DbPedia dataset is a large multi-class text classification dataset extracted from
Wikipedia. This library helps you load and process this dataset, categorizing articles into 14
classes including "Company", "Educational Institution", "Artist", among others.
# Usage
2022-12-03 06:42:49 +08:00
## Torch GPU backend
2023-04-12 00:47:30 +08:00
2022-12-03 06:42:49 +08:00
```bash
2023-12-02 03:33:28 +08:00
git clone https://github.com/tracel-ai/burn.git
2022-12-03 06:42:49 +08:00
cd burn
2022-12-03 06:42:49 +08:00
# Use the --release flag to really speed up training.
2023-12-02 03:33:28 +08:00
# Use the f16 feature if your CUDA device supports FP16 (half precision) operations. May not work well on every device.
export TORCH_CUDA_VERSION=cu117 # Set the cuda version (CUDA users)
# AG News
cargo run --example ag-news-train --release --features tch-gpu # Train on the ag news dataset
cargo run --example ag-news-infer --release --features tch-gpu # Run inference on the ag news dataset
# DbPedia
cargo run --example db-pedia-train --release --features tch-gpu # Train on the db pedia dataset
cargo run --example db-pedia-infer --release --features tch-gpu # Run inference db pedia dataset
2022-12-03 06:42:49 +08:00
```
2023-04-12 00:47:30 +08:00
## Torch CPU backend
```bash
2023-12-02 03:33:28 +08:00
git clone https://github.com/tracel-ai/burn.git
cd burn
# Use the --release flag to really speed up training.
# AG News
cargo run --example ag-news-train --release --features tch-cpu # Train on the ag news dataset
cargo run --example ag-news-infer --release --features tch-cpu # Run inference on the ag news dataset
# DbPedia
cargo run --example db-pedia-train --release --features tch-cpu # Train on the db pedia dataset
cargo run --example db-pedia-infer --release --features tch-cpu # Run inference db pedia dataset
```
2023-04-12 00:47:30 +08:00
## ndarray backend
2023-04-12 00:47:30 +08:00
```bash
2023-12-02 03:33:28 +08:00
git clone https://github.com/tracel-ai/burn.git
2023-04-12 00:47:30 +08:00
cd burn
2023-04-12 00:47:30 +08:00
# Use the --release flag to really speed up training.
# Replace ndarray by ndarray-blas-netlib, ndarray-blas-openblas or ndarray-blas-accelerate for different matmul techniques
# AG News
cargo run --example ag-news-train --release --features ndarray # Train on the ag news dataset
cargo run --example ag-news-infer --release --features ndarray # Run inference on the ag news dataset
# DbPedia
cargo run --example db-pedia-train --release --features ndarray # Train on the db pedia dataset
cargo run --example db-pedia-infer --release --features ndarray # Run inference db pedia dataset
2023-04-12 00:47:30 +08:00
```
## WGPU backend
```bash
2023-12-02 03:33:28 +08:00
git clone https://github.com/tracel-ai/burn.git
cd burn
# Use the --release flag to really speed up training.
# AG News
cargo run --example ag-news-train --release --features wgpu # Train on the ag news dataset
cargo run --example ag-news-infer --release --features wgpu # Run inference on the ag news dataset
# DbPedia
cargo run --example db-pedia-train --release --features wgpu # Train on the db pedia dataset
cargo run --example db-pedia-infer --release --features wgpu # Run inference db pedia dataset
2023-12-02 03:33:28 +08:00
```