2024-07-05 21:41:04 +08:00
|
|
|
use backend_comparison::persistence::save;
|
|
|
|
use burn::tensor::{
|
|
|
|
backend::Backend, module::conv3d, ops::ConvOptions, Distribution, Shape, Tensor,
|
|
|
|
};
|
|
|
|
use burn_common::{
|
|
|
|
benchmark::{run_benchmark, Benchmark},
|
|
|
|
sync_type::SyncType,
|
|
|
|
};
|
|
|
|
|
|
|
|
pub struct Conv3dBenchmark<B: Backend> {
|
2024-09-24 20:35:52 +08:00
|
|
|
input_shape: Shape,
|
|
|
|
weight_shape: Shape,
|
|
|
|
bias_shape: Shape,
|
2024-07-05 21:41:04 +08:00
|
|
|
options: ConvOptions<3>,
|
|
|
|
device: B::Device,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<B: Backend> Benchmark for Conv3dBenchmark<B> {
|
|
|
|
type Args = (Tensor<B, 5>, Tensor<B, 5>, Tensor<B, 1>);
|
|
|
|
|
|
|
|
fn name(&self) -> String {
|
|
|
|
"conv3d".into()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn shapes(&self) -> Vec<Vec<usize>> {
|
|
|
|
vec![
|
2024-09-24 20:35:52 +08:00
|
|
|
self.input_shape.dims.clone(),
|
|
|
|
self.weight_shape.dims.clone(),
|
|
|
|
self.bias_shape.dims.clone(),
|
2024-07-05 21:41:04 +08:00
|
|
|
]
|
|
|
|
}
|
|
|
|
|
|
|
|
fn execute(&self, (x, w, b): Self::Args) {
|
|
|
|
conv3d(x, w, Some(b), self.options.clone());
|
|
|
|
}
|
|
|
|
|
|
|
|
fn prepare(&self) -> Self::Args {
|
|
|
|
(
|
|
|
|
Tensor::random(
|
|
|
|
self.input_shape.clone(),
|
|
|
|
Distribution::Default,
|
|
|
|
&self.device,
|
|
|
|
),
|
|
|
|
Tensor::random(
|
|
|
|
self.weight_shape.clone(),
|
|
|
|
Distribution::Default,
|
|
|
|
&self.device,
|
|
|
|
),
|
|
|
|
Tensor::random(self.bias_shape.clone(), Distribution::Default, &self.device),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn sync(&self) {
|
|
|
|
B::sync(&self.device, SyncType::Wait)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
fn bench<B: Backend>(
|
|
|
|
device: &B::Device,
|
|
|
|
feature_name: &str,
|
|
|
|
url: Option<&str>,
|
|
|
|
token: Option<&str>,
|
|
|
|
) {
|
|
|
|
// Shapes
|
|
|
|
let batch_size = 16;
|
|
|
|
let channels_in = 16;
|
|
|
|
let channels_out = 16;
|
|
|
|
let depth_in = 16;
|
|
|
|
let height_in = 128;
|
|
|
|
let width_in = 128;
|
|
|
|
let kernel_size_0 = 3;
|
|
|
|
let kernel_size_1 = 3;
|
|
|
|
let kernel_size_2 = 3;
|
|
|
|
|
|
|
|
// Options
|
|
|
|
let strides = [1, 1, 1];
|
|
|
|
let padding = [0, 0, 0];
|
|
|
|
let dilations = [1, 1, 1];
|
|
|
|
let groups = 1;
|
|
|
|
let options = ConvOptions::new(strides, padding, dilations, groups);
|
|
|
|
let benchmark = Conv3dBenchmark::<B> {
|
|
|
|
input_shape: [batch_size, channels_in, depth_in, height_in, width_in].into(),
|
|
|
|
weight_shape: [
|
|
|
|
channels_in,
|
|
|
|
channels_out / groups,
|
|
|
|
kernel_size_0,
|
|
|
|
kernel_size_1,
|
|
|
|
kernel_size_2,
|
|
|
|
]
|
|
|
|
.into(),
|
|
|
|
bias_shape: [channels_out].into(),
|
|
|
|
options,
|
|
|
|
device: device.clone(),
|
|
|
|
};
|
|
|
|
|
|
|
|
save::<B>(
|
|
|
|
vec![run_benchmark(benchmark)],
|
|
|
|
device,
|
|
|
|
feature_name,
|
|
|
|
url,
|
|
|
|
token,
|
|
|
|
)
|
|
|
|
.unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
backend_comparison::bench_on_backend!();
|
|
|
|
}
|