When learning steps are missing, start from the SM-2 state
Closes https://github.com/open-spaced-repetition/fsrs-rs/issues/87
This commit is contained in:
parent
257d7bbbbc
commit
72b0c81761
|
@ -361,7 +361,7 @@ impl Collection {
|
|||
// and will need its initial memory state to be calculated based on review
|
||||
// history.
|
||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||
let item = single_card_revlog_to_item(revlog, timing.next_day_at);
|
||||
let item = single_card_revlog_to_item(&fsrs, revlog, timing.next_day_at);
|
||||
card.set_memory_state(&fsrs, item);
|
||||
}
|
||||
let days_elapsed = self
|
||||
|
|
|
@ -5,12 +5,14 @@ use std::collections::HashMap;
|
|||
|
||||
use anki_proto::scheduler::ComputeMemoryStateResponse;
|
||||
use fsrs::FSRSItem;
|
||||
use fsrs::MemoryState;
|
||||
use fsrs::FSRS;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::card::CardType;
|
||||
use crate::prelude::*;
|
||||
use crate::revlog::RevlogEntry;
|
||||
use crate::revlog::RevlogReviewKind;
|
||||
use crate::scheduler::fsrs::weights::single_card_revlog_to_items;
|
||||
use crate::scheduler::fsrs::weights::Weights;
|
||||
use crate::scheduler::states::fuzz::with_review_fuzz;
|
||||
|
@ -55,9 +57,9 @@ impl Collection {
|
|||
} else {
|
||||
None
|
||||
};
|
||||
let items = fsrs_items_for_memory_state(revlog, timing.next_day_at);
|
||||
let desired_retention = req.as_ref().map(|w| w.desired_retention);
|
||||
let fsrs = FSRS::new(req.as_ref().map(|w| &w.weights[..]))?;
|
||||
let items = fsrs_items_for_memory_state(&fsrs, revlog, timing.next_day_at);
|
||||
let desired_retention = req.as_ref().map(|w| w.desired_retention);
|
||||
let mut progress = self.new_progress_handler::<ComputeMemoryProgress>();
|
||||
progress.update(false, |s| s.total_cards = items.len() as u32)?;
|
||||
for (idx, (card_id, item)) in items.into_iter().enumerate() {
|
||||
|
@ -65,7 +67,7 @@ impl Collection {
|
|||
let mut card = self.storage.get_card(card_id)?.or_not_found(card_id)?;
|
||||
let original = card.clone();
|
||||
if let Some(req) = &req {
|
||||
card.set_memory_state(&fsrs, item.clone());
|
||||
card.set_memory_state(&fsrs, item);
|
||||
card.desired_retention = desired_retention;
|
||||
// if rescheduling
|
||||
if let Some(reviews) = &last_reviews {
|
||||
|
@ -128,7 +130,7 @@ impl Collection {
|
|||
let desired_retention = config.inner.desired_retention;
|
||||
let fsrs = FSRS::new(Some(&config.inner.fsrs_weights))?;
|
||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||
let item = single_card_revlog_to_item(revlog, self.timing_today()?.next_day_at);
|
||||
let item = single_card_revlog_to_item(&fsrs, revlog, self.timing_today()?.next_day_at);
|
||||
card.set_memory_state(&fsrs, item);
|
||||
Ok(ComputeMemoryStateResponse {
|
||||
state: card.memory_state.map(Into::into),
|
||||
|
@ -138,13 +140,18 @@ impl Collection {
|
|||
}
|
||||
|
||||
impl Card {
|
||||
pub(crate) fn set_memory_state(&mut self, fsrs: &FSRS, item: Option<FSRSItem>) {
|
||||
pub(crate) fn set_memory_state(
|
||||
&mut self,
|
||||
fsrs: &FSRS,
|
||||
item: Option<FsrsItemWithStartingState>,
|
||||
) {
|
||||
self.memory_state = item
|
||||
.map(|i| fsrs.memory_state(i, None))
|
||||
.map(|i| fsrs.memory_state(i.item, i.starting_state))
|
||||
.or_else(|| {
|
||||
if self.ctype == CardType::New {
|
||||
None
|
||||
} else {
|
||||
// no valid revlog entries; infer state from current card state
|
||||
Some(fsrs.memory_state_from_sm2(self.ease_factor(), self.interval as f32))
|
||||
}
|
||||
})
|
||||
|
@ -152,12 +159,21 @@ impl Card {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct FsrsItemWithStartingState {
|
||||
pub item: FSRSItem,
|
||||
/// When revlogs have been truncated, this stores the initial state at first
|
||||
/// review
|
||||
pub starting_state: Option<MemoryState>,
|
||||
}
|
||||
|
||||
/// When updating memory state, FSRS only requires the last FSRSItem that
|
||||
/// contains the full history.
|
||||
pub(crate) fn fsrs_items_for_memory_state(
|
||||
fsrs: &FSRS,
|
||||
revlogs: Vec<RevlogEntry>,
|
||||
next_day_at: TimestampSecs,
|
||||
) -> Vec<(CardId, Option<FSRSItem>)> {
|
||||
) -> Vec<(CardId, Option<FsrsItemWithStartingState>)> {
|
||||
revlogs
|
||||
.into_iter()
|
||||
.group_by(|r| r.cid)
|
||||
|
@ -165,7 +181,7 @@ pub(crate) fn fsrs_items_for_memory_state(
|
|||
.map(|(card_id, group)| {
|
||||
(
|
||||
card_id,
|
||||
single_card_revlog_to_item(group.collect(), next_day_at),
|
||||
single_card_revlog_to_item(fsrs, group.collect(), next_day_at),
|
||||
)
|
||||
})
|
||||
.collect()
|
||||
|
@ -190,42 +206,118 @@ fn get_last_reviews(revlogs: &[RevlogEntry]) -> HashMap<CardId, TimestampSecs> {
|
|||
out
|
||||
}
|
||||
|
||||
/// When calculating memory state, only the last FSRSItem is required.
|
||||
/// When calculating memory state, only the last FSRSItem is required. If the
|
||||
/// revlog is non-empty and no learning steps have been detected (indicative of
|
||||
/// a truncated revlog), we return the starting state inferred from the first
|
||||
/// revlog entry, so that the first review is not treated as if started from
|
||||
/// scratch.
|
||||
pub(crate) fn single_card_revlog_to_item(
|
||||
fsrs: &FSRS,
|
||||
entries: Vec<RevlogEntry>,
|
||||
next_day_at: TimestampSecs,
|
||||
) -> Option<FSRSItem> {
|
||||
) -> Option<FsrsItemWithStartingState> {
|
||||
let have_learning = entries
|
||||
.iter()
|
||||
.any(|e| e.review_kind == RevlogReviewKind::Learning);
|
||||
if have_learning {
|
||||
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
||||
items.and_then(|mut i| i.pop())
|
||||
Some(FsrsItemWithStartingState {
|
||||
item: items.unwrap().pop().unwrap(),
|
||||
starting_state: None,
|
||||
})
|
||||
} else if let Some(first_review) = entries.iter().find(|e| e.button_chosen > 0) {
|
||||
let ease_factor = if first_review.ease_factor == 0 {
|
||||
2500
|
||||
} else {
|
||||
first_review.ease_factor
|
||||
};
|
||||
let interval = first_review.interval.max(1);
|
||||
let starting_state =
|
||||
fsrs.memory_state_from_sm2(ease_factor as f32 / 1000.0, interval as f32);
|
||||
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
||||
items.and_then(|mut items| {
|
||||
let mut item = items.pop().unwrap();
|
||||
item.reviews.remove(0);
|
||||
if item.reviews.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(FsrsItemWithStartingState {
|
||||
item,
|
||||
starting_state: Some(starting_state),
|
||||
})
|
||||
}
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use fsrs::MemoryState;
|
||||
|
||||
use super::super::weights::tests::fsrs_items;
|
||||
use super::*;
|
||||
use crate::card::FsrsMemoryState;
|
||||
use crate::revlog::RevlogReviewKind;
|
||||
use crate::scheduler::fsrs::weights::tests::convert;
|
||||
use crate::scheduler::fsrs::weights::tests::review;
|
||||
use crate::scheduler::fsrs::weights::tests::revlog;
|
||||
|
||||
#[test]
|
||||
fn bypassed_learning_is_handled() {
|
||||
// cards without any learning steps due to truncated history still have memory
|
||||
// state calculated
|
||||
assert_eq!(
|
||||
convert(
|
||||
&[
|
||||
let fsrs = FSRS::new(Some(&[])).unwrap();
|
||||
let item = single_card_revlog_to_item(
|
||||
&fsrs,
|
||||
vec![
|
||||
RevlogEntry {
|
||||
ease_factor: 2500,
|
||||
..revlog(RevlogReviewKind::Manual, 7)
|
||||
interval: 100,
|
||||
..revlog(RevlogReviewKind::Review, 100)
|
||||
},
|
||||
revlog(RevlogReviewKind::Review, 6),
|
||||
revlog(RevlogReviewKind::Review, 1),
|
||||
],
|
||||
false,
|
||||
),
|
||||
fsrs_items!([review(0)])
|
||||
TimestampSecs::now(),
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(
|
||||
item.starting_state,
|
||||
Some(MemoryState {
|
||||
stability: 100.,
|
||||
difficulty: 4.4642878
|
||||
})
|
||||
);
|
||||
let mut card = Card::default();
|
||||
card.set_memory_state(&fsrs, Some(item));
|
||||
assert_eq!(
|
||||
card.memory_state,
|
||||
Some(FsrsMemoryState {
|
||||
stability: 248.47879,
|
||||
difficulty: 4.468945
|
||||
})
|
||||
);
|
||||
// but if there's only a single revlog entry, we'll fall back on current card
|
||||
// state
|
||||
let item = single_card_revlog_to_item(
|
||||
&fsrs,
|
||||
vec![RevlogEntry {
|
||||
ease_factor: 2500,
|
||||
interval: 100,
|
||||
..revlog(RevlogReviewKind::Review, 100)
|
||||
}],
|
||||
TimestampSecs::now(),
|
||||
);
|
||||
assert!(item.is_none());
|
||||
card.interval = 123;
|
||||
card.ease_factor = 2000;
|
||||
card.ctype = CardType::Review;
|
||||
card.set_memory_state(&fsrs, item);
|
||||
assert_eq!(
|
||||
card.memory_state,
|
||||
Some(FsrsMemoryState {
|
||||
stability: 123.0,
|
||||
difficulty: 6.5147324,
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue