7ad1f9b9ca | ||
---|---|---|
bash_scripts | ||
data | ||
eval | ||
misc | ||
train | ||
.gitignore | ||
LICENSE | ||
README.md | ||
README_EN.md | ||
Skywork Community License.pdf | ||
Skywork 模型社区许可协议.pdf | ||
Skywork_13b_tech_report.pdf | ||
cli_demo.py | ||
requirements.txt | ||
skywork_chat_demo.py | ||
skywork_quick_start.py |
README_EN.md
🤗 Hugging Face • 🤖 ModelScope • 👾 Wisemodel • 💬 WeChat• 📜Tech Report
Project Introduction
We are pleased to announce the open source release of the Skywork large-scale models. Skywork is a series of large models developed by the Kunlun Group · Skywork team. The models being open sourced this time include the Skywork-13B-Base model, Skywork-13B-Chat model, Skywork-13B-Math model, and Skywork-13B-MM model, as well as quantized versions of each model to support deployment and inference on consumer-grade GPUs.
Our open-source Skywork series models can be used for commercial purposes, but you need to follow our agreement and refrain from engaging in harmful activities. The characteristics of the Skywork open-source project are::
-
Skywork-13B-Base: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests.
-
Skywork-13B-Chat: The model has powerful conversational abilities, and we have further enhanced it in the field of creative writing. We have constructed a high-quality dataset of over ten thousand instructions and fine-tuned the model on ten specific creative writing tasks, enabling it to achieve results similar to ChatGPT in these tasks. Additionally, we open-source a benchmark consisting of approximately 500 samples for these 10 creative writing tasks.
-
Skywork-13B-Math: This model has undergone specialized training to enhance its mathematical abilities. In the 13B-scale model, the Skywork-13B-Math model ranked 1st in the GSM8K benchmark, and it also performed exceptionally well on the MATH and CMATH benchmarks, placing it among the top-level 13B models.
-
Skywork-13B-MM: This is a multimodal model that allows users to utilize image information for tasks like Q&A and dialogue.
-
Skywork/Skypile-150B: This dataset is a collection of high-quality data extracted from Chinese web pages through our carefully curated data processing pipeline. The size of this open-source dataset is approximately 600GB, with a total token count of around 150 billion. It is one of the largest publicly available Chinese datasets.
-
In addition, we have also disclosed the evaluation methods, data distribution studies, and training infrastructure optimization plans used in training the Skywork-13B model. We hope that these open-source materials can further inspire the community's understanding of large-scale model pre-training and drive the realization of Artificial General Intelligence (AGI).
If you are interested in more training and evaluation details, please refer to our technical report, Skymath paper and SkyworkMM paper.
News and Updates
-
2023.11.2 We have uploaded the evaluation data we built, MOCK_GSM8K_TEST, and the Chinese domain evaluation data ChineseDomainModelingEval to huggingface. If you need to evaluate LLMs, please download our evaluation dataset.
-
2023.10.31 Our technical report Skywork: A More Open Bilingual Foundation Model is available on arXiv, which includes more detailed evaluation methods, result comparisons, and technical details.
-
2023.10.30 We release the Skywork-13B-Base and Skywork-13B-Math models, as well as quantized versions of each model to support deployment and inference on consumer-grade GPUs. We open-source the Skywork/Skypile-150B dataset. This dataset contains over 150 billion high-quality tokens cleaned from Chinese web pages, making it the largest open-source Chinese dataset currently known.
Table of contents
- ☁️Download URL
- 👨💻Model Introduction
- 🏆Model Evaluation
- 📕Quickstart
- 📣Chat Model Output Examples
- 🚀Quantization
- 🛫Fine-tuning
- 🍀Community and Ecosystem
- ⚠️Declaration and License Agreement
- 🤝Contact Us and Citation
Download URL
Download URL of Skywork Models
HuggingFace Base Model | HuggingFace Quantized Model | ModelScope Base Model | ModelScope Quantized Model | Wisemodel Base Model | Wisemodel Quantized Model | |
---|---|---|---|---|---|---|
Skywork-13B-Base | 🤗 Skywork-13B-Base | 🤗 Skywork-13B-Base-8bits | 🤖Skywork-13B-Base | 🤖 Skywork-13B-Base-8bits | 👾Skywork-13B-Base | 👾 Skywork-13B-Base-8bits |
Skywork-13B-Chat | 🤗coming soon | 🤗coming soon | 🤖coming soon | 🤖coming soon | 👾coming soon | 👾coming soon |
Skywork-13B-Math | 🤗 Skywork-13B-Math | 🤗 Skywork-13B-Math-8bits | 🤖 Skywork-13B-Math | 🤖 Skywork-13B-Math-8bits | 👾Skywork-13B-Math | 👾 Skywork-13B-Math-8bits |
Skywork-13B-MM | 🤗coming soon | - | 🤖coming soon | - | 👾coming soon | - |
Download URL of Skypile
Data | Download URL |
---|---|
Skywork/Skypile-150B | Hugging Face URL |
Download of Intermediate Model Checkpoints
We have also open-sourced the Skywork-13B-Base model and provided the model checkpoints trained on 500B, 2TB, and 3.1TB tokens for community research into the evolution process of large language model capabilities.
Model | Download URL |
---|---|
Skywork-13B-Base-500B | 🤗Skywork-13B-Base-500B |
Skywork-13B-Base-2TB | 🤗Skywork-13B-Base-2TB |
Skywork-13B-Base-3.1TB | 🤗Skywork-13B-Base-3.1TB |
Skywork-13B Introduction
Training Data
We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code.
Category | Percentage | |
---|---|---|
English | Webpages | 39.8% |
Books | 3.6% | |
Academic Papers | 3.0% | |
Encyclopedia | 0.5% | |
Miscellany | 2.9% | |
Chinese | Webpages | 30.4% |
Social Media | 5.5% | |
Encyclopedia | 0.8% | |
Miscellany | 3.1% | |
Other Lang. | Encyclopedia | 2.4% |
Code | Github | 8.0% |
Model Structure
Compared to the Llama-2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-2-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows:
Model Structure | Llama-2-13B | Skywork-13B |
---|---|---|
Vocab. Size | 32,000 | 65,536 |
Hidden Dim. | 5,120 | 4,608 |
FFN Dim. | 13,696 | 12,288 |
Head Dim. | 128 | 128 |
Num. Heads | 40 | 36 |
Num. Layers | 40 | 52 |
Seq. Len. | 4,096 | 4,096 |
Positional Embedding | RoPE | RoPE |
Tokenizer
We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words.
Category | Size |
---|---|
Latin based words & subwords | 32000 |
Chinese characters & Unicode symbols | 8000 |
Chinese words | 25519 |
Reserved symbols | 17 |
Total | 65536 |
Training Methods
In order to make more precise use of data, we adopt a two-stage training method. In the first stage, we use general corpora to train the model's general abilities. In the second stage, we incorporate STEM (Science, Technology, Engineering, Mathematics) related data to further enhance the model's reasoning, mathematical, and problem-solving abilities.
First-stage Pretraining
During the training process, we monitor the changes in model training loss and various abilities. The following figure shows the change curves of important indicators selected during the first stage of pre-training. The first stage of pre-training consists of two consecutive training processes, which are represented by different colors. The model completed in the first stage of pre-training is referred to as Skywork-13B-3.1TB-Base.
Second-stage Pretraining
In the second stage of pre-training, STEM-related data is added to the general language corpus for further training. The second stage training involves approximately 130 billion tokens, resulting in a total training of 3.2 TB across both stages, and yielding our final Skywork-13B-Base model.
Skypile-150B
Introduction
Skypile-150B is a large dataset specifically designed for pre-training Chinese language models. It is constructed using publicly available web page data from the Chinese internet. The dataset has undergone extensive filtering to remove duplicate and harmful text. Additionally, advanced models like FastText and Bert have been employed to further refine the dataset and eliminate low-quality data.
Language and Data Format
Skypile-150B dataset is a collection of Chinese data. The pages contain processed and cleaned text, in JSONL format. Each line represents a document, parsed using JSON. The text is stored in the "text" field.
Sensitive information and bias
Although it has undergone strict cleaning and filtering, since it is built on a publicly accessible webpage established by Skypile-150B, it may still contain some sensitive information such as email addresses, phone numbers, or IP addresses. Therefore, users need to be careful and perform necessary additional filtering and cleaning before using the data.
License Agreement
The use of data must comply with our License and must not be used for any purpose that poses a threat to national and social security or violates the law.
Model Evaluation
Documentation Perplexity Evaluation
The main goal of training a language model is to improve the accuracy of predicting the next word. With this in mind, we believe that evaluating the ability of a language model to generate articles in different domains is a crucial way to assess the performance of large-scale models. During model training, the likelihood of predicting the next word is typically measured using the Cross Entropy loss function. The overall loss function is calculated as the average of the losses when predicting the correct word at each position, which can be represented as:
loss = -\sum^{n}_{i=1} log(p_i) / n = -log( \prod_{i=1}^n p_i) / n
Where `n`
is the length of the document, i.e., the number of tokens, and `p_i`
is the probability of the label word at position i
. We know that the product of the probabilities of the label words at each position in the document is equal to the probability of generating that document. In this way, we connect the loss with the probability of generating the document. Since different models use different tokenizers and have different numbers of tokens, we multiply the loss function by the number of tokens `n`
. This way, we only consider the part related to the probability of generating the article, and different models can be compared. We normalize the loss and convert it to perplexity by taking the exponential, making the differences between models more pronounced. For readability, the terms "loss" and "ppl" mentioned later refer to the normalized loss and perplexity of the model.
Based on the analysis above, we have chosen several hundred to thousands of high-quality articles that were published after september 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage.
The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results.
Tech | Movie | Gov. | Game | Finance | General | Average | |
---|---|---|---|---|---|---|---|
MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 |
InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 |
Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 |
Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 |
LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 |
Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 |
Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 |
Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 |
Qwen-14B | 11.90 | 22.43 | 4.89 | 16.94 | 5.24 | 7.03 | 9.67 |
InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 |
Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 |
Skywork-13B-Base | 11.58 | 21.84 | 4.76 | 17.28 | 4.92 | 6.82 | 9.42 |
Loss evaluation data and evaluation script
We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command.
bash bash_scripts/skywork_eval_loss.sh
If you need to calculate the normalized loss for Model A and Skywork model, you can follow these steps:
- Run the above script for Model A and Skywork model separately. The results will be stored in the result.txt file in their respective directories.
- In the result.txt file, you will find two values for each model: the first value represents the loss, and the second value represents the number of document tokens.
- Let's denote the loss and token numbers for Model A as loss_a and token_a, and for Skywork model as loss_s and token_s.
- To calculate the normalized loss for Model A (loss_a_norm), loss_a_norm = loss_a * token_a / token_s
- By comparing the normalized loss (loss_a_norm) of Model A with the loss (loss_s) of the Skywork model, we can evaluate the effectiveness of both models.
- The same approach can be extended to multiple models.
FAQ in Evaluation
Q1: Why should all models have the same document length instead of having the same number of tokens after tokenization?
A1: Essentially, domain perplexity measures the probability of different models generating high-quality documents, with higher probability indicating better model performance. Therefore, we need to ensure that all models see the same document. Additionally, since different models use different tokenizers, there can be a significant difference in the number of tokens after tokenization. For example, Llama will split Chinese characters into three Unicode encodings. If we compare the number of tokens after tokenization, the document length seen by Llama will be shorter compared to other models. However, we know that the token loss is lower in the beginning of the document and higher towards the end. Therefore, comparing based on the number of tokens after tokenization would be unfair to models like Llama, which have finer tokenization.
Q2: Why do we truncate the text to a length of max_position_embedding divided by 3?
A2: As mentioned in the answer to question 1, Llama model generally splits Chinese characters into three characters. To ensure that the maximum length of a document input to the model does not exceed the limit of 4096, we set the maximum document length to 4096/3 = 1228. In our comparison models, Llama has the finest tokenization for Chinese. Therefore, as long as the document length does not exceed the tokenization length of Llama, it will fit in other models as well.
Q3: Is it unfair to use a uniform length of 4096 for different models?
A3: As explained above, the calculated document length is 1228 Chinese characters. Taking Qwen as an example, the training length is 2K, which can be expanded to 8K during inference. Additionally, the compression ratio of bilingual models is generally 2-3 times. Therefore, 1228 Chinese characters usually only amount to 500-1000 tokens, far from the maximum length limit of 2K or even 4K.
Q4: Why is the Average Ppl inconsistent with the average Ppl of each domain?
A4: We calculate Average Ppl by averaging the losses of all documents and then converting it to Ppl using an exponential function. This is done to avoid having some domains with excessively high Ppl, which would negatively impact the overall results. The idea behind Average Ppl is to consider all documents as a cohesive collection, representing the overall Ppl of the document.
Benchmark Results
We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale.
Model | C-Eval | CMMLU | MMLU | GSM8K |
---|---|---|---|---|
LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 |
Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 |
LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 |
InternLM-20B | 58.8 | - | 62.0 | 52.6 |
Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 |
Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 |
XVERSE-13B-Base | 54.7 | - | 55.1 | - |
Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 |
Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 |
Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 |
Detailed Benchmark Results
We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU.
Benchmark | STEM | Humanities | Social Science | Other | China Specific | Hard | Average |
---|---|---|---|---|---|---|---|
C-EVAL | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 |
CMMLU | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 |
MMLU | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 |
Reproduction
For your reproduction of the model performance on benchmark datasets, we provide scripts for you to reproduce the results. Check eval/EVALUATION.md for more information. Note that the reproduction may lead to slight differences from our reported results.
Evaluation of Skywork-13B-Math
Skywork-13B-Math has further enhanced mathematical capabilities compared to the Base model. We conducted evaluations on mainstream mathematical related benchmarks, GSM8K, MATH, and CMATH. The results show that in the 13B scale model, our model ranked 1st in the GSM8K and CMATH benchmarks, and is also at the forefront in the MATH benchmark.
Model | GSM8K | MATH | CMATH |
---|---|---|---|
LLaMA-1-13B-Base | 17.80 | 3.90 | - |
LLaMA-2-13B-Base | 28.70 | 3.90 | - |
Baichuan-13B-Base | 26.76 | 4.84 | 51.33 |
Baichuan-2-13B-Base | 52.77 | 10.08 | - |
WizardMath-13B | 63.90 | 14.00 | 50.83 |
GAIRMATH-Abel-13B | 66.41 | 17.34 | - |
MetaMath-13B | 72.30 | 22.40 | - |
Skywork-13B-Math (ours) | 72.33 | 16.98 | 77.27 |
Quickstart
We have open-sourced the model parameters, configuration files, tokenizer, and more on Hugging Face and ModelScope.
Requirements
- Python 3.8 and above
- Pytorch 2.0 and above
- CUDA 11.4 and above are recommended.
Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation:
pip install -r requirements.txt
Demonstration of Hugging Face Model Inference
Base Model Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval()
inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
response = model.generate(inputs.input_ids, max_length=128)
print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
"""
陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔
"""
inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
response = model.generate(inputs.input_ids, max_length=128)
print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
"""
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。
"""
Chat Model Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers import AutoConfig
import torch
def load(tokenizer_path, checkpoint_path):
print('Loading tokenizer ...')
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, use_fast=False, trust_remote_code=True, padding_side='left')
tokenizer.add_tokens("[USER]")
tokenizer.add_tokens("[BOT]")
tokenizer.add_tokens("[SEP]")
config = AutoConfig.from_pretrained(checkpoint_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
checkpoint_path, config=config, device_map="balanced_low_0", torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
return model, tokenizer
def special_encode(prompt, tokenizer):
raw_str = "[USER]%s[SEP][BOT]" % prompt.strip().replace("\r", "")
bos_id = tokenizer.bos_token_id
eos_id = tokenizer.eos_token_id
sep_id = tokenizer.encode("[SEP]")[-1]
res_id = [eos_id, bos_id]
arr = raw_str.split("[SEP]")
for elem_idx in range(len(arr)):
elem = arr[elem_idx]
elem_id = tokenizer.encode(elem)[1:]
res_id += elem_id
if elem_idx < len(arr) - 1:
res_id.append(sep_id)
return res_id
def extract_res(response):
if "[BOT]" in response:
response = response.split("[BOT]")[1]
if "<s>" in response:
response = response.split("<s>")[-1]
if "</s>" in response:
response = response.split("</s>")[0]
if "[SEP]" in response:
response = response.split("[SEP]")[0]
return response
if __name__ == '__main__':
tokenizer_path='skywork/skywork-13b-chat'
checkpoint_path = 'skywork/skywork-13b-chat'
model, tokenizer = load(tokenizer_path, checkpoint_path)
doc = "写一首七言绝句"
input_tokens = special_encode(doc, tokenizer)
input_tokens = torch.tensor(input_tokens).to(model.device).reshape(1, -1)
response = model.generate(input_tokens,
max_new_tokens=1000,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
top_p=0.8,
top_k=5,
temperature=0.95,
num_return_sequences=1,
repetition_penalty=1.1,
bos_token_id=1,
eos_token_id=2)
response = tokenizer.decode(response.cpu()[0], skip_special_tokens=True)
response = extract_res(response)
print(response)
"""生成结果:
千里莺啼绿水滨,
万家歌笑白云间。
男女老少皆朋友,
和谐社会见温馨。
"""
doc = "我是一名运动员,最近比赛取得很好的成绩受到大家的关注和认可。帮我写一份微博文案,帮我感谢大家支持我,要有日常感,并语言随意一些"
input_tokens = special_encode(doc, tokenizer)
input_tokens = torch.tensor(input_tokens).to(model.device).reshape(1, -1)
response = model.generate(input_tokens,
max_new_tokens=1000,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
top_p=0.8,
top_k=5,
temperature=0.95,
num_return_sequences=1,
repetition_penalty=1.1,
bos_token_id=1,
eos_token_id=2)
response = tokenizer.decode(response.cpu()[0], skip_special_tokens=True)
response = extract_res(response)
print(response)
"""生成结果:
谢谢每一个在我运动生涯中陪伴我的人,你们的支持、鼓励和信任,是我前进的动力。这段时间的比赛,让我感受到了前所未有的成就和喜悦,它们不仅属于我,更属于那些一路陪伴我成长的人们。
从心底里感谢所有支持我的人,是你们的支持,让我有了勇气和力量去追求更高的目标。每一次的鼓励,都是我前进道路上的光芒,每一次的点赞,都是对我努力的肯定。
生活中的点滴,让我们相互理解,相互支持,一起走过了无数个黎明和黄昏。感谢你们的陪伴,让我不再孤单,让我更加坚定地走向未来。
未来的路还很长,但我愿意陪你一起走下去。因为我知道,你们的支持,会一直伴随着我前行。
再次感谢所有支持我的人,你们是我心中最亮的星。
#运动员# #体育精神#
"""
Math Model Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer_path = ""
checkpoint_path = ""
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, use_fast=False, trust_remote_code=True, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(
checkpoint_path, device_map="auto", trust_remote_code=True).eval()
tokenizer.add_tokens(["[USER]", "[BOT]", "[SEP]"])
def special_encode(input, tokenizer):
raw_str = "[USER]%s[SEP][BOT]" % input.strip().replace("\r", "")
eos_id = tokenizer.eos_token_id
bos_id = tokenizer.bos_token_id
sep_id = tokenizer.encode("[SEP]")[-1]
res_id = [eos_id, bos_id]
arr = raw_str.split("[SEP]")
for elem_idx in range(len(arr)):
elem = arr[elem_idx]
elem_id = tokenizer.encode(elem)[1:]
res_id += elem_id
if elem_idx < len(arr) - 1:
res_id.append(sep_id)
return res_id
def extract_res(response):
if "[BOT]" in response:
response = response.split("[BOT]")[1]
if "<s>" in response:
response = response.split("<s>")[-1]
if "</s>" in response:
response = response.split("</s>")[0]
if "[SEP]" in response:
response = response.split("[SEP]")[0]
return response
if __name__ == '__main__':
text="Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?"
text_token_ids = torch.tensor(special_encode(
text, tokenizer)).to(model.device).reshape(1, -1)
response = model.generate(text_token_ids, do_sample=False, max_length=512)
response_text = tokenizer.decode(response.cpu()[0], skip_special_tokens=True)
response_text = extract_res(response_text)
print(response_text)
"""Skywork-13B-Math Response:
First, we need to find out how many eggs Janet has left after eating for breakfast and baking for her friends. \n\nShe has 16 eggs per day, eats 3 for breakfast and uses 4 for baking. So, 16 - 3 - 4 = 9 eggs are left for selling at the farmers' market.\n\nSince she sells each egg for $2, she makes 9 * 2 = $<<9*2=18>>18 every day at the farmers' market.\n\nSo, the answer is $18.
"""
CLI Demo
python cli_demo.py \
-m skywork-13b-chat-model-path
Examples
Chat Model Output Examples
We have developed an advanced Skywork scene capability system and curated a dataset of more than 10,000 high-quality examples for 10 different creative writing scenes. Additionally, we have devised a data mixing strategy that takes into account the training difficulty of each specific scene. As a result, our model achieved an accuracy rate exceeding 90% across all 10 scenes in ChatGPT. Below, we list sample demonstrations of our Chat model in these 10 cultural and creative tasks.
Poetry Creation
用户:
通过对“红楼梦中的人,都散在眼前”的理解,尝试创作一首描绘梦境与现实的五言律诗。
Skywork-13B-Chat:
梦魂如烟长,夜深觉未央。
幻境入目奇,见所未见状。
灯火映寒窗,字句藏心窍。
醒来忆梦中,泪湿月光凉。
用户:
学校马上举办辩论赛了,希望写一首五言律诗预祝辩论赛圆满顺利,各位选手发挥优越
Skywork-13B-Chat:
赛场展雄风,辩才争锋芒。
临危不惧勇,破釜沉舟忙。
舌灿莲花吐,珠玑溅齿旁。
腹有千秋虑,挥洒文字香。
Advertising Proposal
用户:
帮我给华为智能家居设计一条广告语,重点体现智能家居改变生活、让生活更便利
Skywork-13B-Chat:
华为智能家居,科技融入生活,让您的家充满可能。
用户:
以做一个《十天狂减30斤》的海报,海报要求包含健身前后的对比,最终通过健身减肥走向人生巅峰
Skywork-13B-Chat:
海报设计:
标题:《十天狂减30斤,你也可以!》
背景:黑色背景,象征着健身的艰辛和挑战。
左上角:一个明显的标志性logo,可以是一个肌肉线条图或者一个燃脂的图标,代表健身的过程。
右上角:一个成功减去30斤体重的人物形象,穿着帅气的衣服,站在山顶,面带微笑,手持哑铃,舞动手臂,展示出他/她已经完成了这个目标。人物形象应该占据海报的大部分空间,突出重点。
中部:一个倒计时的日历图像,显示还剩下的时间,强调“十天”这个词,以及一些关于健身的提示,比如“均衡饮食+适量运动”。
下部:一些鼓励的话,比如“相信自己,你一定可以的!”或者“汗水铸就辉煌,减肥就是改变生活!”
颜色:主要使用橙色和白色,橙色代表热情和活力,白色代表纯洁和期待。
整体设计:简洁明快,充满动力,易于记忆,引人注目。
文案:清晰明了,字体大且显眼,内容简短有力,节奏紧凑,引人入胜。
附加元素:可以添加一些与健身相关的小插图或者漫画,如举哑铃、跑步、瑜伽等,使海报看起来更有趣味性。
整体风格:简约、直接、自信、激励。
用户:
我主要是做母婴产品的电商直播,最近正值6.18,全体商品打8折最低折扣6.8折。写一份微博动态,能够吸引关注我的人及时进入直播间抢福利
Skywork-13B-Chat:
亲爱的朋友们,好消息!随着6.18购物狂欢节的到来,我们的母婴产品直播间准备了一系列惊喜优惠给大家!全场商品8折起,最低折扣6.8折,品质好货,轻松入手!
️新品推荐:
欢迎来到我们的直播间,首先为大家推荐一款全新上市的母婴产品——【XX品牌婴儿推车】,它采用优质材料,轻便易折叠,设计精美,让你的宝宝在出行时享受到最舒适的体验。还有【YY品牌智能儿童手表】,定位准确,通话清晰,是孩子成长的必备安全装备。
福利预告:
不仅如此,我们还准备了一系列限时福利活动,包括满额免邮、抽奖送豪礼、新品试用等,只要你足够活跃,这些福利就是你的!记得锁定我们的直播间哦!
时间安排:
请大家准时参加我们的直播,分享更多的购物心得和优惠信息。我们将在每天下午3点开始直播,晚上9点结束。期待您的参与,一起度过这个愉快的6.18!
#6.18购物节# #母婴产品# #直播间#
用户:
我是一名运动员,最近比赛取得很好的成绩受到大家的关注和认可。帮我写一份微博文案,帮我感谢大家支持我,要有日常感,并语言随意一些
Skywork-13B-Chat:
当然!以下是一份简单的微博文案:
大家好!非常感谢大家对我最近比赛的关注和支持!真的非常感激!每一个人的鼓励和支持都是我前进的动力。无论是家人、朋友、教练还是队友,你们一直以来的陪伴和支持都是我走向成功的重要推动力。特别要感谢我的父母,他们始终给予我无尽的爱和关怀,是你们让我有了勇气和决心去追求梦想。同时,也要感谢我的教练和队友们,你们的指导和帮助让我不断进步,每一次失败都让我更加坚强,每一次成功都让我更加谦虚。
在这个充满竞争的旅程中,我深深感受到了努力和坚持的重要性。没有什么是轻而易举就可以实现的,每一个成功背后都隐藏着无数的汗水和付出。我希望通过我的努力和坚持,能够激励更多人参与这项运动,追逐自己的梦想。
这个成就只是我人生中的一小部分,我会继续努力学习和成长,为更高的目标奋斗。未来的路还很长,但我相信,只要有你们的支持和鼓励,我一定能走得更远。请大家继续关注我的动态,见证我的成长和努力!
再次感谢大家的支持!爱你们!
#运动员# #拼搏精神#
Composition Generation
用户:
以“做一个有责任心的人”写一篇议论文。要求:⑴题目自拟,文体不限;⑵字数不少于600;⑶文中不得出现真实的姓名、校名、地名。
Skywork-13B-Chat
标题:做一个有责任心的人
在这个竞争激烈的社会中,每个人都扮演着不同的角色,承担着相应的责任。一个有责任心的人,不仅要对自己负责,还要对他人、集体和社会负责。那么,什么是责任心呢?简单来说,就是对自己、对他人、对社会的承诺和义务的自觉履行。一个有责任心的人,会主动承担起自己的责任,尽心尽力地完成每一项任务,不抱怨不推诿,勇于面对困难和挑战。本文将从以下几个方面论述如何成为一个有责任心的人。
首先,作为一个有责任心的人,我们应该对自己负责。对自己负责,意味着要关爱自己的身心健康,努力提高自身素质。我们要树立正确的人生观和价值观,认识到人生的意义在于奉献和成就。我们要不断学习,充实自己,为个人和社会的发展做出贡献。同时,我们也要关爱自己的情感世界,保持良好的人际关系,培养积极的心态,勇往直前,追求进步。
其次,作为一个有责任心的人,我们应该对他人负责。对他人负责,意味着关心他人,帮助他们解决问题,给予关爱和支持。我们要学会站在别人的角度思考问题,理解和尊重他人,乐于助人,尽可能地帮助那些需要我们帮助的人。我们要学会包容和接纳他人的不足,鼓励他们,给予他们信心和勇气。当我们看到身边的人遇到困境时,我们要敢于伸出援手,帮助他们度过难关。这样,我们才能赢得别人的尊重和信任,也能更好地融入社会。
再次,作为一个有责任心的人,我们还应该对社会负责。对社会负责,意味着要遵守法律法规,维护社会公德,关心社会公益,为社会的和谐稳定做出贡献。我们要做到诚信守法,言行一致,积极参与社会公益活动,关心社会上的弱势群体,尽自己所能去回报社会。我们要用自己的实际行动践行社会主义核心价值观,传播正能量,带动周围的人共同为构建和谐社会贡献力量。
总之,做一个有责任心的人,既是对自己的负责,也是对他人和社会的负责。我们要时刻牢记自己的责任,把责任心化为行动的动力,不断提升自己的道德品质,努力成长为一个有责任心的人。只有这样,我们才能在这个纷繁复杂的社会中立足,实现自己的价值和梦想。
用户:
请以夏夜雨后漫步为主题写一篇散文,通过描写雨后清凉的夜晚氛围,反思现实社会的不安和焦虑,并展现一种积极的生活态度。
Skywork-13B-Chat:
标题:《夏夜雨后的宁静》
夏夜,炎热与喧嚣相伴,像是现实社会中每一个人的繁忙和焦虑。但那天晚上,一场突如其来的雨洗净了夜空的炽热,也沉淀了城市的喧闹。雨后的空气如同凉茶,带着微微的甜,清爽入心。我踏出家门,漫步在这个由雨水涤洗过的世界,试图寻找一些清凉,以及那份久违的宁静。
刚经历了一场纷扰的城市,仿佛换了副面孔。那些被炎炎烈日烤得炙热无比的柏油马路,那些反射着霓虹灯光的玻璃幕墙,都在雨中显得如此清新。树叶轻轻摇曳,低语着大自然的韵律。空气中弥漫着淡淡的青草香,那是雨后的味道,混合着泥土的气息,让人心旷神怡。
脚下的积水倒映着天空的云彩,涟漪一圈圈荡漾开去。远处的灯火逐渐亮起,星星点点的光点缀着这片夜色。车流渐少,街道变得空旷而静谧。偶尔几辆汽车经过,也只是留下一阵阵短暂的水花涟漪。人们早早躲进了屋子里,享受室内的凉爽。而我却选择在这夜色里,任凭雨滴打湿发丝,尽情地呼吸着雨后的新鲜空气。
突然,一阵风吹落了树梢的叶子,伴随着“沙沙”声,宛如大自然的低语。这些叶子在空中飘舞,最后静静地躺在了我的手心。这一刻,我仿佛感受到了生命的律动,那是一种坚韧的力量,一种令人感动的美丽。这风,这雨,这夜色,都让我想起了人生中的某些时刻。
那晚,我思考着自己的人生。每个人都在忙碌、奔波,为了生活而焦躁不安。可是,当我们停下脚步,回望过去,是不是能找到那颗初心?是不是能找回那份曾经的梦想?是不是能拥有那份对生活的热爱和期待?
雨后的世界,是那么纯净;雨后的天地,是那么和谐。我想,生活就像这场雨后的清凉,给我们带来的不仅仅是舒爽,更是希望。我们应该珍惜眼前的一切,珍惜每一个瞬间,因为时光荏苒,岁月如梭,我们都会老去。
有时候,我们需要放慢脚步,去感受生活的美好。不要让自己成为时间的奴隶,而是要学会欣赏它的流逝,享受它带给我们的种种奇妙。我们可以在繁华的城市中找一处安静的角落,聆听大自然的声音,让心灵得以平静。我们可以在忙碌的工作中抽出时间,去体验生活的真谛,让自己成为一个有温度的人。
生活本不缺少美,只是缺少发现美的眼睛。同样,生活本不缺少快乐,只是缺少追求快乐的心境。面对现实的不安和焦虑,我们更需要一颗平和的心,去体会生活的酸甜苦辣,去品尝那些细碎的幸福。
夏夜雨后,我沉浸在这样的夜晚,反思着人生的种种。我感谢这个世界,感谢这场雨,更感谢生活给予我的一切。因为它让我明白了,无论怎样的挫折、困难,都是生活的馈赠,是我们成长的痕迹。只要我们用心去感受,用眼去欣赏,用勇气去面对,我们的生活定会如这雨后的世界一般,清新、明朗、充满希望。
Speech Generation
用户:
写一个关于环保的演讲稿,5~10分钟的,内容不要太深奥,举一些相关的例子
Skywork-13B-Chat:
尊敬的听众们:
大家好!今天我非常荣幸能够在这里与大家分享有关环保的话题。环保,是我们每个人都应该关注和重视的议题,因为它关系到我们每一个人的生活质量和地球的未来。
让我们先来想象一下,我们的地球是如何被我们所破坏的。空气污染、水污染、垃圾围城,这些问题已经深深地影响着我们的日常生活。我们每天都在使用能源,但是却没有意识到能源的有限性和对环境的影响。森林被砍伐,动物的栖息地被破坏,物种灭绝的速度加快。我们的地球正在发出痛苦的呼声,而我们却常常忽视了这些问题,继续过着浪费和贪婪的生活。
现在,越来越多的科学家和研究人员告诉我们,如果我们不采取行动,那么未来的世界将不再适合人类居住。我们需要改变我们的行为,减少对环境的破坏,并保护我们的地球。
幸运的是,我们有许多可以采取的措施来改善环境状况。首先,我们可以从家庭开始,通过节约用水、减少用塑料袋、垃圾分类等简单的行动来减少碳足迹。我们还可以选择购买环保产品,支持那些致力于环保的企业,促进可持续生产和发展。此外,我们还可以积极参与社区活动,如植树、清理垃圾、宣传环保知识等,让更多的人参与到环保行动中来。
政府也在积极推动环保政策,制定法规和政策来限制污染和资源浪费。例如,建设绿色建筑、推广新能源技术、加强废物回收利用等,这些举措不仅能降低环境污染,还能创造新的就业机会和经济效益。
然而,真正的改变需要我们每个人的共同努力。我们必须认识到,环保不仅是一种责任,更是一种智慧。当我们保护环境时,我们也在保护我们自己。我们的地球是我们共同的家园,只有我们共同努力,才能让它变得更加美好。
最后,我想呼吁大家,让我们一起行动起来,为环保贡献自己的力量。从小事做起,从身边做起,以实际行动来保护我们的地球。让我们携手并肩,为下一代创造一个更美好的世界!
谢谢大家!
用户:
写一份动漫社的专场主持词?最好热血,中二一点。
Skywork-13B-Chat:
尊敬的各位老师,亲爱的同学们,大家好!
欢迎来到这场激动人心的动漫社专场活动!我是您的主持人(主持人姓名),今天将会为大家带来一场充满热情和欢乐的动漫盛宴!我们的主题是——“动漫,不止于二次元”。
动漫,这是一个广受欢迎、备受喜爱的文化形式,它不仅仅存在于二维世界,更在我们每一个人的心中燃烧着三次元的热血与激情。今天,让我们一起走进这个精彩纷呈、无限可能的动漫世界,一同分享那些令人着迷的故事、角色和创作背后的魅力。
首先,让我们重温那些年,那些被誉为经典的动漫作品。从《火影忍者》中的坚韧与奋斗,到《进击的巨人》中的勇气与冒险,再到《海贼王》中的梦想与希望,这些都是动漫所带给我们的,不仅仅是视觉上的冲击,更是心灵深处的触动。这些故事,就像一盏盏明灯,照亮我们内心的世界,给我们提供了无数次的感动和启示。
接下来,我们将带您进入更加精彩的环节。我们邀请了一些对动漫有着独特见解和热爱的嘉宾们,他们将与大家分享他们的心得,讲述他们的故事,让我们一起深入探讨动漫的魅力和影响力。
在这个环节中,我们将有幸听到来自不同领域的动漫爱好者们分享他们的观点,无论是从动漫的制作过程,还是从动漫的艺术设计,亦或是从动漫的社会影响,他们都有自己独到的看法。听他们娓娓道来,相信会给您带来新的视角和启发。
最后,我们还准备了一系列的互动环节,让大家可以尽情展示自己的才华,释放自己的热情。不论是cosplay、短片拍摄,还是动漫绘画,这里都有你施展的舞台。请大家积极参与,让我们一起享受这场属于我们的动漫盛宴!
各位同学,我们都是生活的漫画家,我们用心灵手巧的双手创造出属于我们的动漫世界。让我们用热情点燃热情,用激情传递激情,让动漫的力量在我们每个人身上得以展现,让我们的社团生活更加精彩。
让我们一起,用热血的心,燃烧二次元的热情,共同创造出更多的精彩!感谢大家的参与,我们的动漫社,期待与你们一起,继续在二次元的世界里,寻找那份永不消逝的热血和激情!
谢谢大家!
Experience and Reflections
用户:
写一遍经历过电工实训的心得,内容包含焊接、双联开关接线和画电路板
Skywork-13B-Chat:
在过去的一段时间里,我有幸参加了一次电工实训课程,这段时间的学习和实践让我对电力工程有了更深入的理解和掌握。我想通过这篇文章分享一下我在实训过程中的心得体会,包括焊接、双联开关接线和画电路板等方面的学习经验。
首先,我觉得焊接是一个非常重要的技能。在我们的课程中,我学会了如何使用电烙铁和焊锡丝,以及各种电线电缆的连接方法。虽然一开始我对这个过程感到有些困难,但是通过不断的尝试和练习,我逐渐掌握了技巧。我了解到焊接不仅需要耐心和细心,还需要有一定的力量控制,以确保电路的安全性和稳定性。同时,我也认识到,焊接不仅仅是一种技术,更是一种艺术,它需要你懂得如何根据实际情况调整焊接的力度和角度,以实现最佳的结果。
其次,我对双联开关接线有了新的理解。在课堂上,我们学习了两个以上的开关如何并联,这对于我来说是一个很好的机会,可以锻炼我的逻辑思维能力。我发现,双联开关的接线需要考虑到电流的流向,以及各个元器件之间的相互关系。这要求我在操作时必须谨慎,确保每个开关都能正常工作,否则整个电路就无法正常运行。我在实践中体验到,理论知识和实际操作的结合是非常重要的,只有这样才能真正掌握这种技能。
最后,我深感画电路板的复杂性。在开始学习画电路板之前,我以为这只是一项简单的任务,但实际上它涉及到了很多的原理和细节。我在导师的指导下,逐步学习了如何使用绘图工具,以及如何根据设计绘制出精确的电路图。我了解到,每一个元件的位置,每一根电线的走向,都需要仔细考虑,才能最终完成一个完整且功能正常的电路板。这对我来说是一个挑战,但也是一个非常有意义的学习过程。
通过这次实训,我更加深入地理解了电力工程的实质和魅力。我看到了理论知识在实践中的应用,也学到了很多在校园里无法学到的知识和技能。我相信,这些经验将会对我未来的学习和工作带来很大的帮助。总的来说,我觉得这次实训是一次非常宝贵的学习机会,使我对电力工程有了更深的理解和提高。我期待将来能有更多的机会参加这样的活动,以提升自己的技能和知识。
Technology Manuscript
用户:
最近在写“绿色材料的研究与开发”为题的论文,你能帮我写一个大纲吗?
Skywork-13B-Chat:
标题:绿色材料的研究与开发
I. 引言
A. 背景介绍
B. 目的和重要性
C. 研究问题的提出
D. 文章结构
II. 文献综述
A. 绿色材料的定义和分类
B. 绿色材料的发展历程
C. 绿色材料的研究现状及趋势
III. 绿色材料的研究方法
A. 实验设计和步骤
B. 数据收集和分析
C. 模型构建和评估
D. 案例研究
IV. 绿色材料的开发
A. 新型绿色材料的创新
1. 新材料的合成和制备
2. 新材料的性能和应用
B. 改进现有绿色材料的方法
1. 提高材料效率
2. 降低环境影响
C. 政策和市场因素对绿色材料开发的影响
V. 成功案例
A. 具体案例描述
B. 案例分析
C. 案例的启示和教训
VI. 挑战与未来展望
A. 当前绿色材料研究的挑战
B. 未来研究方向
C. 预期成果
VII. 结论
A. 本文的主要发现和观点
B. 对未来研究的建议
参考文献
这是一个基本的大纲,你需要根据自己的研究进行修改和扩展。每个部分应该包含你的研究的具体内容、方法、结果和讨论。
用户:
帮我写一个会发光的裙子的专利说明书,裙子外形由3d打印,外侧喷上有光泽感的涂层,裙底风追了迷你电池组件,将电锤控制器打开后,裙子就会亮起来了。
Skywork-13B-Chat:
发明名称:会发光的裙子
技术领域:
本发明涉及一种发光装置,尤其是一种通过3D打印制造、具有发光效果的裙子。该裙子可应用于各种场合,如舞台表演、娱乐活动等,增加氛围和视觉效果。
背景技术:
目前,市场上存在许多发光服饰产品,但它们往往使用LED灯珠或其他外部光源来实现发光效果,这使得这些产品笨重且不方便携带。此外,这些产品的制作过程复杂,成本较高。因此,需要一种更为轻便、易于使用的发光服饰产品。
发明内容:
本发明提供了一种会发光的裙子,其包括以下组件:
1. 3D打印成型的外壳:利用3D打印技术,可以精确地塑造出裙子的外形和结构,使之成为一个整体。
2. 光泽感涂层:在裙子表面喷涂一层具有光泽感的涂层,例如金属漆或类似材料,以增加其外观效果。
3. 微型电池组件:安装在裙子底部的小型电池组件,用于提供电力给内部电路。
4. 控制器:位于裙子内部的控制器,用于接收电能并控制灯光的开关。
5. 灯光系统:包括电源管理电路、LED灯珠等,用于发出可见光。
实施方式:
1. 首先,根据需求设计裙子的外形和尺寸,然后通过3D打印技术将其制成模型。
2. 接下来,将光泽感涂层涂抹在裙子表面,使其具有所需的外观效果。
3. 将微型电池组件安装在裙子底部,与控制器连接。
4. 在裙子的关键部位安装LED灯珠和其他必需的电子元件。
5. 最后,通过控制器打开电源,使裙子发出光芒。
优点:
1. 本发明的发光裙子具有轻巧、便携的特点,适合各种场合的使用。
2. 通过3D打印技术制造,可以根据具体需求制作出不同形状和尺寸的裙子,满足个性化需求。
3. 光泽感涂层使得裙子在光照下具有独特的外观效果,提升了观赏价值。
4. 内置的微型电池组件使得裙子无需外部电源即可独立工作,方便使用者携带和操作。
附图说明:
由于本发明尚处于专利申请阶段,暂无实物照片或设计图。
具体实施方式:
本发明的具体实施方式可以根据实际需求进行调整和变化,但必须在不偏离发明思想的前提下进行。
权利要求:
1. 一种会发光的裙子,其特征在于,包括3D打印成型的外壳、光泽感涂层、微型电池组件、控制器和灯光系统。
2. 根据权利要求1所述的会发光的裙子,其中,控制器位于裙子内部,用于接收电能并控制灯光的开关。
3. 根据权利要求1或2所述的会发光的裙子,其中,灯光系统包括电源管理电路和LED灯珠等。
4. 根据任何一项前述权利要求所述的会发光的裙子,其中,光泽感涂层用于增强裙子的外观效果。
说明书结束。
用户:
就山竹的功效与作用,写一篇科普文章,突出山竹的营养价值
Skywork-13B-Chat:
标题:山竹的功效与作用——探索美味水果的营养世界
在热带地区,山竹是一种非常受欢迎的水果。它的肉质鲜甜多汁,营养丰富,不仅含有丰富的维生素和矿物质,还有独特的保健功效。那么,山竹的功效与作用有哪些呢?又如何突显其营养价值呢?
首先,我们来了解一下山竹的基本信息。山竹,又称为莽吉柿、凤果,是藤黄科藤黄属的常绿乔木,原产于东南亚。山竹的果实呈圆形或卵圆形,外表皮红褐色,有点像苹果。果肉黄色,质地细腻,味道清甜。每100克山竹果肉中,大约含有150卡路里的能量,富含钾、磷、硫、镁等矿物质,还含有丰富的膳食纤维和抗氧化物质。
接下来,我们来看看山竹的主要功效与作用。
1. 降温解热:山竹性寒,味甘,具有良好的清热解毒作用。夏天食用可以有效预防中暑,降低体内的热量。
2. 缓解便秘:山竹中含有丰富的膳食纤维,能促进肠道蠕动,改善便秘症状。
3. 保护皮肤:山竹含有丰富的维生素C和E,具有很好的抗氧化作用,有助于保护皮肤健康。
4. 增强免疫力:山竹含有多种维生素和矿物质,尤其是维生素C,具有很好的抗病毒作用,能提高人体免疫力。
5. 减肥美容:由于山竹的低糖、低脂,因此成为了减肥人士的理想选择。同时,山竹的抗氧化作用也有助于延缓衰老,使肌肤保持年轻。
那么,如何突显山竹的营养价值呢?
1. 与其他水果相比,山竹的含糖量较低,热量适中,营养密度高。这意味着吃少量的山竹就能获取大量的营养,有助于控制热量摄入。
2. 山竹含有丰富的膳食纤维,能帮助消化,降低胆固醇,预防心血管疾病。
3. 山竹含有丰富的维生素C和E,具有很好的抗氧化作用,能抵抗自由基对身体的损害。
4. 山竹中的矿物质,如钾、磷、硫等,对于维持身体正常的生理功能有很大的帮助。
总的来说,山竹不仅仅是一种美食,更是大自然赋予人类的一份瑰宝。它既满足了我们的口腹之欲,又提供了丰富的营养。让我们在享受美味的同时,也能摄取到丰富的营养。
最后,我们要提醒大家,虽然山竹营养丰富,但也是水果,所以在食用时应适量。对于容易腹泻的人群,建议控制食用量或者避免生食。希望大家在享受美食的同时,也能关注到健康。
Record Text
用户:
写一篇关于房地产的工作日志
Skywork-13B-Chat:
日期: xxxx年xx月xx日
天气:晴
今天是一个繁忙的日子,因为我代表公司与几位潜在的购房者进行了深入的谈判。早上,我与买家A在公司会议室就他们感兴趣的一套公寓进行了详细的讨论。我们从地理位置、周边设施、户型设计和装修风格等方面进行了全面的交流,并根据他们的需求调整了房屋销售方案。最终,我们达成了初步的协议,这让我感到非常兴奋。
上午10点,我会见了另一位潜在客户B,他对我们的一栋豪华别墅产生了浓厚的兴趣。我们讨论了不同的房型和价格选项,并就土地所有权和物业管理等问题进行了探讨。客户B提出了一些有深度的问题,我通过耐心解答和解决方案,成功地解决了他的疑虑。
下午2点,我参加了一场关于地产市场趋势的电话会议,主要是为了了解最新的市场动态和竞争对手的情况。这对我今后的工作非常有帮助,因为它使我能够更好地定位我们的房产项目,并为客户提供更优质的服务。
下午3点,我处理了一些文件,包括房屋贷款申请和产权转移手续。虽然这些工作很繁琐,但我意识到它们对于交易的完成至关重要。我确保所有的文件都准确无误,以避免任何延误或错误。
傍晚6点,我回到办公室,整理了一下明天要处理的邮件和更新了房源信息。我还预约了一个客户C,他将过来参观我们的样板房。我预计他会对我们的新开发项目产生浓厚的兴趣,所以我已经做好了充分的准备。
晚上8点,我结束了今天的工作,回顾了一下今天的工作成果。虽然忙碌,但我觉得非常充实。期待明天能带来更多的机会和挑战。
今日总结:今天的工作主要集中在与客户的沟通、市场研究和文件处理上。尽管任务繁重,但我很享受这种忙碌的感觉,因为它让我明白我正在为实现公司的目标而努力。明天我将继续致力于寻找更多的潜在客户,并尽力满足他们的需求。
用户:
请为我创作一篇关于城市交通规划的实践报告,内容要涉及到交通流量、公共交通优势和市民出行习惯,不少于800字
Skywork-13B-Chat:
标题:城市交通规划实践报告:聚焦交通流量、公共交通优势与市民出行习惯
1. 引言
随着城市化进程的飞速发展,城市人口和交通需求日益增长,公共交通作为城市交通的重要组成部分,对于解决城市交通拥堵问题,提高城市运输效率和可持续发展具有重要意义。本报告将以某城市为例,对其交通流量、公共交通优势及市民出行习惯进行分析,并提出相应的优化建议。
2. 交通流量分析
该城市目前的交通流量呈现逐年上升的趋势。在工作日早高峰时期,道路交通流量较大,主要集中在主干道和繁华地段;在晚高峰时期,交通流量有所缓解,但仍存在一定程度的拥堵现象。地铁、公交等轨道交通在缓解交通压力上发挥了积极作用,但仍面临着客运量不足、线路覆盖不全等问题。
3. 公共交通优势
尽管该城市的公共交通系统不断完善,但与私家车、出租车等个体交通工具相比,公共交通的优势仍然不明显。首先,公共交通的运行时间较为固定,无法满足部分市民的个性化需求;其次,公共交通的班次和站点分布有待改进,尤其是夜间和清晨的服务尚需加强;最后,公共交通票价偏高,导致部分市民选择其他交通方式。
4. 市民出行习惯
通过对市民出行习惯的调查发现,大部分市民认为公共交通的优势在于环保、快捷和经济。然而,公共交通的吸引力还存在一些问题,如路线不够便捷、换乘不便、服务质量不高和设施老旧等。此外,步行和骑行等非机动出行方式在该城市中占比较大,但受到环境和安全因素的影响。
5. 结论与建议
针对上述问题,本报告提出以下几点建议:
5.1 优化公共交通线路布局,提高覆盖面积,加强夜间和清晨的服务质量,提高市民对公共交通的依赖性。
5.2 政府加大对公共交通的投入,提升公共交通的服务水平,如增加班次、提高车辆舒适度、增设新站等。
5.3 鼓励市民改变出行方式,如骑自行车、乘坐网约车等,减少私家车和摩托车的使用,从而减轻交通压力。
5.4 加强交通管理,提高交通执法力度,规范交通行为,确保道路畅通。
5.5 引入智能化技术,如智能交通系统、无人驾驶等,提高交通运输效率和安全性。
6. 结语
城市交通规划需要综合考虑交通流量、公共交通优势和市民出行习惯等多方面因素,以人为本,注重细节,才能实现城市交通的高效、环保和可持续发展。我们期待看到更多实际措施和政策,推动城市交通向更好的方向发展。
用户:
本人外贸公司从事样品管理工作,求一份年度总结报告
Skywork-13B-Chat:
年度总结报告
尊敬的领导,同事们:
在过去的一年里,在公司领导和各位同事的大力支持下,我有幸参与并负责样品管理工作,为公司的对外贸易活动提供了有效的样品保障。通过一年来的努力和实践,我对样品管理工作有了更深入的认识和理解,同时也取得了一定的成绩。现将2019年度的工作总结如下:
一、熟悉业务流程,明确工作职责
在日常工作中,我认真学习和研究公司的各项业务流程,掌握了样品的接收、入库、出库、盘点等操作规程,明确了自己的工作职责和工作目标。同时,我还学会了利用电脑软件进行样品信息的录入和管理,提高了工作效率。
二、严格样品管理,确保质量控制
我深知样品质量是企业的生命线,因此在工作中,我始终坚持严格样品管理,把好质量关。首先,在接收样品时,我认真核对供应商提供的样品信息,确保与实际相符;其次,在入库过程中,我对样品进行分类存放,保证样品的质量不受损失;最后,在出库时,我根据客户订单和业务员需求,准确及时地提供样品,确保满足客户需求。
三、优化库存结构,降低库存成本
为了降低库存成本,提高资金周转率,我积极参与制定库存优化方案,建议和实施了一些措施,如定期清理滞销样品、与供应商协商减少库存积压等。这不仅减少了库存压力,还为公司节省了大量的仓储费用。
四、加强与各部门沟通协作,提高服务水平
在工作中,我加强与采购部、生产部、财务部等部门的沟通与协作,确保样品信息的实时共享和流通。遇到问题时,我能积极主动协调解决,提高了工作效率,降低了出错率。
五、总结
回顾一年来的工作,我深感责任重大,任务繁重。在看到成绩的同时,也发现了自身的不足。在新的一年里,我将进一步加强自身学习,不断提高工作能力,改进工作方法,以更高的标准要求自己,为公司的发展贡献自己的力量。
谢谢大家!
[您的名字]
[日期]
Comments
用户:
为史铁生的《我与地坛》写一篇300字左右的书评
Skywork-13B-Chat:
《我与地坛》是史铁生的代表作,也是他十五年来摇着轮椅在地坛思索的结晶。这篇文章以深情的笔触描绘了作者与地坛的深厚关系,以及他在这个大千世界中所领悟到的人生哲理。地坛既是他痛苦的根源,也是他灵感的源泉;既是他发泄情感的地方,也是他获得力量的源泉。在这里,他体验了人生的酸甜苦辣,也找到了自我解脱的方式。这篇文章不仅展现了他对母亲的深深怀念,还体现了他对生命的独特理解和感悟,让我们深刻地理解到了人生的意义在于经历与感悟。史铁生以其独特的视角和深沉的感情,将地坛的荒芜与衰败转化为对生命的感悟和对未来的希望,充分展示了他的人文关怀和坚韧不拔的精神。这篇文章充满了哲思,读后让人深受触动和启发。
用户:
我有一个老师,上课幽默风趣,我们都很喜欢他,给他一个评语
Skywork-13B-Chat:
您是一位非常出色的老师,学生们对您的幽默感和课堂互动感到非常欣赏。您总是能够将课程内容以有趣且易于理解的方式呈现出来,使学生们更加专注和积极地参与学习。您的教学风格激励了我们的兴趣,并激发了我们对该领域的热情。您不仅是一位杰出的教育者,还是一位真正关心学生的导师,您的幽默感和关怀让我们在学习过程中感到轻松和愉快。感谢您的付出和努力,您的课是我们大学生活中的美好回忆。
用户:
从思想、工作能力、团队合作三个方面评价员工,300字以内
Skywork-13B-Chat:
员工A在思想上有着坚定的信念和高尚的道德品质,对公司的目标持有高度的责任感,始终保持着积极上进的工作态度。他/她具有良好的职业道德和行为规范,始终坚持诚实守信,踏实敬业,勇于承认自己的错误并愿意改进。他/她深刻理解并遵守公司的价值观,以客户为中心,始终保持对工作的热情和耐心,为客户提供优质的服务。
在工作能力方面,员工A展现出了出色的技能和创新能力。他/她拥有扎实的专业知识和丰富的实践经验,能够熟练运用各种工具和技术,解决问题和挑战。他/她持续学习新的知识和技能,不断提升自己的专业水平,使自己成为部门中不可或缺的一员。他/她在面对困难和压力时,能够独立思考和解决问题,同时也能有效地与团队成员协作,共同完成任务。
在团队合作方面,员工A是一个值得信赖和尊重的队友。他/她善于倾听他人的意见,能够有效地表达自己的观点,并且乐于助人。他/她在团队中起到了很好的桥梁作用,促进了团队成员之间的沟通和交流,提高了团队的凝聚力和效率。他/她总是能够积极参与团队活动,提供支持和帮助给需要的同事,推动团队向前发展。
总的来说,员工A在思想、工作能力和团队合作三个方面都表现得非常优秀,是我们公司的宝贵财富。我相信他/她将会在未来的工作中继续发挥重要作用,为公司的发展做出更大的贡献。
Question Generation
用户:
我是一名初中语文老师,下节课要教学生《桃花源记》,帮我准备5个课堂提问的问题。
Skywork-13B-Chat:
1. 这篇文章的作者是谁?他的写作风格如何?
2. 文中的桃花源是什么样的地方?它给你什么感受?
3. 文中的人物形象有哪些?他们的行为和性格特点如何?
4. 你认为桃花源中最重要的元素是什么?为什么?
5. 这篇文章想要表达什么主题?对我们现代人有什么启示?
用户:
作为一名餐饮行业的店铺经理,你想了解该季度用户的菜品偏好、环境评价等相关信息,指导店铺的下个季度战略规划。你会问用户哪些问题?
Skywork-13B-Chat:
以下是一些可能有用的问题:
1. 您最喜欢的菜品是什么?为什么?
2. 您觉得我们的菜品中哪些味道或风味最受欢迎?
3. 您是否尝试过我们的新菜品?如果是,请分享一下您的体验和感受。
4. 您最喜欢的就餐时间是什么时候?您更倾向于选择午餐还是晚餐?
5. 您更喜欢在室内用餐还是室外用餐?如果在室内,您更喜欢哪种环境?(例如:安静、舒适、家庭友好、社交等)
6. 您愿意支付多少钱享用我们的菜品?您认为价格合理吗?
7. 您最喜欢的菜品照片是什么?您经常点哪个?
8. 您对我们的服务有何评价?您认为我们需要改进的地方在哪里?
9. 您认为我们的餐厅位置方便吗?是否容易找到?
10. 您会向朋友、家人推荐我们的餐厅吗?为什么?
这些问题可以帮助您了解用户对餐饮店的喜好和反馈,以便制定下一个季度的战略计划。
用户:
我是一个节目策划,本期主题是邀请明星根据环保问题进行辩论,请设计三个辩题。要求辩题简单好理解,正反方的观点都符合主流价值观。辩题需要有噱头,给节目制造看点。
Skywork-13B-Chat:
1. 垃圾分类,谁说了算?
正方:支持严格垃圾分类政策,认为其能够有效提高资源回收率和降低环境污染。
反方:反对过度强调垃圾分类,主张简化分类标准,减少民众参与成本。
2. 绿色出行,真的更环保吗?
正方:步行、骑行代替开车可以大幅降低碳排放,保护环境,缓解交通拥堵。
反方:城市公共交通系统不完善,骑电动车或开汽车短途出行更方便,减少通勤时间。
3. 电子产品,更新还是复用?
正方:环保应考虑使用二手电子产品,减少废弃物产生,节约地球资源。
反方:新电子产品不断推出,应该鼓励消费者更新换代,追求科技进步。
Naming
用户:
汽车制造公司计划推出一款电动SUV,需要一个富有未来感的车型名称,您有何建议?
Skywork-13B-Chat:
以下是几个建议:
1. 未来之星 (Star of the Future)
2. 新能源领袖 (New Energy Leaders)
3. 智能先驱 (Intelligent Pioneer)
4. 绿色巨兽 (Green Beast)
5. 未来运动 (Future Sport)
6. 电动探险家 (Electric Adventurer)
7. 远航者 (Navigators)
8. 电力精灵 (Electric Elf)
9. 未来旅行者 (Future Traveler)
10. 智能环保车 (Intelligent Eco-Drive)
希望这些建议能帮到您!
用户:
我准备开设一家书店,需要一个与文学相关的店铺名称,能够吸引书籍爱好者,帮我取10个吧
Skywork-13B-Chat:
好的,以下是为您提供的10个与文学相关的店铺名称:
1. 文墨书香
2. 悦读之旅
3. 书香门第
4. 文学空间
5. 经典坊
6. 笔墨书阁
7. 百草堂
8. 翰墨轩
9. 古韵书屋
10. 文艺书房
希望这些名称能给您带来启发,祝您的书店生意兴隆!
用户:
我们是一个6人的团队,要组队参加一个志愿者活动,求一个队名,最好解释一个意义,要有创意的,6个字左右
Skywork-13B-Chat:
如果你想要一个有意义的队名,可以考虑以下几种:
1. "爱心使者",这个队名表示你们是一个充满爱心和热情的团队,致力于帮助他人。
2. "快乐志愿团",这个队名表示你们是一群热爱生活、乐于助人的志愿者。
3. "共筑梦想",这个队名表示你们一起合作,共同努力实现别人的梦想。
4. "爱的守护者",这个队名表示你们将关爱和保护他人作为自己的责任。
5. "志愿者之星",这个队名表示你们是闪耀的明星,代表着爱心和奉献。
希望以上的队名能给您带来灵感!
Quantization
8bit Quntization
Skywork utilizes the widely-used 8-bit quantization method called BitsAndBytes. This method allows for quantizing performance with minimal loss and has been seamlessly integrated into the transformers library. Building upon BitsAndBytes, we offer two approaches for utilizing online quantization and offline 8-bit models.
To illustrate the usage of the int8 quantization model, we provide an example. Before you begin, please ensure that you have installed the BitsAndBytes library and the necessary dependencies. For detailed installation instructions, please refer to the BitsAndBytes repository.
Online Quntization
model = AutoModelForCausalLM.from_pretrained("skywork-13B-Base", torch_dtype=torch.bfloat16,load_in_8bit=True, trust_remote_code=True).eval()
Offline Quntization
model = AutoModelForCausalLM.from_pretrained("skywork-13B-Base-8bits", device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True).eval()
Resutls
We have tested the quantitative model on benchmark evaluation datasets, and the results are as follows:
Precision | C-Eval | MMLU | CMMLU |
---|---|---|---|
bf16 | 60.6 | 61.8 | 62.1 |
8bits | 58.5 | 61.8 | 61.0 |
GPU Mem in GB
Precision | Skywork-13B |
---|---|
bf16 | 25.91 |
8bits | 13.57 |
Fine-tuning
Full-Parameter Fine-Tuning
Continuing pre-training with the Skywork-13B-Base model.
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
## launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt.sh
Conducting supervised fine-tuning with Skywork-13B-Base model.
## preprocess data and launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft.sh
LoRA Fine-Tuning
Continuing LoRA pre-training with the Skywork-13B-Base model with LoRA.
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=/data/shared/public/liang.zhao/skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt_lora.sh
Conducting supervised fine-tuning with Skywork-13B-Base model with LoRA.
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=/data/user/liang.zhao/Skywork/data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft_lora.sh
Community and Ecosystem
Huawei Ascend
MindSpore Framework
MindFormersis a full-process development suite based on the MindSpore framework that supports large model training, fine-tuning, evaluation, inference, and deployment. The Skywork-13B model is integrated into this suite, supporting users to fine-tune and deploy models based on Ascend AI hardware capabilities. The specific usage can be seen in ourREADME on the MindSpore platform.
Large Model Experience Platform
The MindSpore Large Model Platform is based on the MindSpore AI framework, MindFormers large model development suite, and Ascend hardware capabilities, opening the Skywork-13B large model capabilities to the public. Everyone is welcome to use it.
Declaration and License Agreement
Declaration
We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
License Agreement
The community usage of Skywork model requires Skywork Community License. The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within Skywork Community License.
Contact Us and Citation
If you find our work helpful, please feel free to cite our paper~
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{skyworkmath,
title={SkyMath: Technical Report},
author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu},
journal={arXiv preprint arXiv: 2310.16713},
url={https://arxiv.org/abs/2310.16713},
year={2023}
}
@article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023,
author = {Skywork Multi-Modal Group},
month = sep,
title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}},
year = {2023}
}