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Abstract

In this technical report, we present
Skywork-13B, a family of large language
models (LLMs) trained on a corpus of over
3.2 trillion tokens drawn from both English
and Chinese texts. This bilingual founda-
tion model is the most extensively trained
and openly published LLMs of comparable
size to date. We introduce a two-stage train-
ing methodology using a segmented corpus,
targeting general purpose training and then
domain-specific enhancement training, re-
spectively. We show that our model not
only excels on popular benchmarks, but
also achieves state of the art performance
in Chinese language modeling on diverse
domains. Furthermore, we propose a novel
leakage detection method, demonstrating
that data contamination is a pressing is-
sue warranting further investigation by the
LLM community. To spur future research,
we release Skywork-13B along with check-
points obtained during intermediate stages
of the training process. We are also releas-
ing part of our SkyPile corpus, a collection
of over 150 billion tokens of web text, which
is the largest high quality open Chinese pre-
training corpus to date. We hope Skywork-
13B and our open corpus will serve as a
valuable open-source resource to democra-
tize access to high-quality LLMs.

1 Introduction

Natural Language Processing (NLP), a vital
branch of artificial intelligence, has experienced
a transformative surge in recent years. Pivotal
to this revolution has been the advent and ad-
vancement of large language models (LLMs)
(Ouyang et al., 2022; OpenAI, 2023; Bubeck
et al., 2023; Chowdhery et al., 2022; Anil et al.,
2023; Touvron et al., 2023a,b). These complex
computational structures, composed of billions
of parameters, are capable of understanding,
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generating, and translating human language
with an unprecedented degree of accuracy and
sophistication. However, the proliferation of
these models has also been accompanied by a
growing trend towards commercialization and
a lack of transparency, a phenomenon that is
increasingly influencing the dynamics of the
open-source community.

Historically, the open-source community has
thrived on the principles of collaboration, trans-
parency, and unrestricted sharing of ideas.
However, as the commercial potential of LLMs
has been recognized, this openness has begun
to diminish. The reality is that many organi-
zations only make model checkpoints publicly
accessible, while withholding vital information
on model reproduction. This practice signifi-
cantly hampers the progress of the field.

In an effort to revive the spirit of the open-
source community and contribute to the on-
going dialogue about transparency in AI, we
present Skywork-13B: a family of bilingual large
language models with 13 billion parameters,
trained on a colossal corpus of more than 3.2
trillion tokens drawn from both English and
Chinese texts. To our knowledge, our Skywork-
13B is the most thoroughly trained family of
open LLMs of comparable size to date.

In this technical report, we offer a compre-
hensive disclosure of the Skywork-13B devel-
opmental journey. We detail the composition
of our training data, provide insights into the
evolutionary trajectory of the model’s abilities
during training, and share methodologies that
could be employed to enhance model ability in
specific domains. We believe that such an open
approach not only aids in the reproducibility
of our work but also provides a valuable re-
source for other researchers seeking to explore
and expand the capabilities of large language
models. This technical report is also a call to
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action for renewed transparency in the field of
NLP. Through it, we hope to inspire a return to
a more collaborative, open-source community,
where progress is not hampered by commer-
cial considerations but propelled by collective
intelligence and shared wisdom.

Our contributions are the following:

• We release Skywork-13B1, a family of LLMs
that is the most extensively trained and
openly published LLMs of comparable size
to date. Our Skywork-13B family includes
1) Skywork-13B-Base, a strong foundation
model with state of the art Chinese language
modeling capability, and 2) Skywork-13B-
Chat, a fined-tuned version optimized for
conversation2.

• We disclose detailed information on the
training process and data composition. We
also release intermediate checkpoints, which
provide a valuable resource for understand-
ing how the model’s capabilities develop over
the course of training. It enables other re-
searchers to leverage these checkpoints for
their specific use-cases.

• We release a portion of our high quality
training corpus, totaling more than 150 bil-
lion tokens. To our knowledge, this is the
largest open Chinese corpus for language
model pre-training to date.

• We develop a novel method that detects the
level of in-domain data usage during the
training stage. To facilitate reproduction of
the experiments presented in this report, we
have released the relevant data.

2 Methodology

2.1 Two Pre-training Stages

In order to train Skywork-13B, we constructed
SkyPile (see Section 3.1), a massive training
corpus primarily constituted by publicly acces-
sible web pages. We identified a small subset
of SkyPile, encompassing exercises and solu-
tions that span a broad spectrum of subjects
from primary to graduate school. This includes

1Github repository: https://github.com/
SkyworkAI/Skywork.

2In this technical report we focus on the development
of the base model. Details on Skywork-13B-Chat can
be found in our Github repository.

coding problems, national exam questions, text-
book exercises, and others. Given the majority
of these exercises are STEM-related, we hence-
forth refer to this subset and its complement as
SkyPile-STEM and SkyPile-Main, respectively.

Rather than training the Skywork-13B foun-
dation model directly on SkyPile as a whole,
we adopted a two-stage training approach. The
first stage, which constitutes the primary pre-
training phase, involves training the model
from scratch on SkyPile-Main. In the sec-
ond stage, our Skywork-13B is enriched with
STEM-related domain knowledge and problem-
solving skills through continual pre-training on
SkyPile-STEM. To circumvent the potential
issue of catastrophic forgetting, this continual
pre-training is performed on a mix of SkyPile-
STEM and SkyPile-Main, rather than exclu-
sively on SkyPile-STEM.

The decision to segregate Stage-1 and Stage-
2 pre-training serves a dual purpose. Firstly,
we acknowledge that a significant proportion of
the samples from SkyPile-STEM are, by their
nature, supervised data. Those data are closely
related to popular benchmarks such as CEVAL
(Huang et al., 2023), MMLU (Hendrycks et al.,
2021) and GSM8K (Cobbe et al., 2021), and can
be utilized in a supervised fine-tuning (SFT)
process to directly enhance model performance
on related downstream tasks. In this context,
the separation between Stage-1 and Stage-2
training enables us to more effectively assess
the impacts of general-purpose pre-training (on
web texts) and targeted pre-training (on in-
domain/supervised data). Such insights could
inform future data collection and compilation
strategies for foundational model training.

Secondly, by restricting first stage pre-
training to general-purpose data, we are able
to produce a version of foundation model as an
alternative to the one with targeted enhance-
ment. While the latter demonstrates superior
performance on certain downstream tasks, it
is less capable in language modeling of natural
texts. We posit that this alternative is a valu-
able contribution to the community, given its
potential to excel in applications that do not
require STEM-related competencies.

2.2 Training Progress Monitoring

It is of vital importance to monitor and assess
progress made during pre-training in real-time.
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Existing methods such as monitoring training
loss and benchmark results on intermediate
checkpoints, however, have their limitations.

The main issue of monitoring training loss
lies in that its effectiveness comes into question
when considering the potential of overfitting.
The training loss is equivalent to validation
loss only if the training data is utilized exactly
once (i.e., in one epoch). Yet, in practical
scenarios of training LLMs, high-quality data
often go through the training process multi-
ple times (Taylor et al., 2022; Touvron et al.,
2023a; Rozière et al., 2023; Gunasekar et al.,
2023; Li et al., 2023b). Besides, even after ex-
plicit de-duplication, there may still exist signif-
icant amount of duplicated data in the training
set (Soboleva et al., 2023; Abbas et al., 2023).
In either cases, solely relying on training loss
can lead to overlooking the issue of overfitting,
thereby producing overly optimistic estimates
of model performance. The top left subplot
in Figure 3 illustrates the trajectory of the
pre-training loss for our Skywork-13B model.
Consistent with findings reported in (Touvron
et al., 2023a,b; Baichuan Inc., 2023), the loss
demonstrates a steady decline throughout the
training process. However, an observation not
disclosed in these cited works is the behavior of
the validation loss on held-out sets. From the
figure it can be clearly seen that the validation
losses seem to level off as training approaches
its final stages.

Benchmarking based on intermediate check-
points is another common monitoring approach
(Touvron et al., 2023a; Baichuan Inc., 2023).
Nevertheless, it presents several challenges.
Firstly, there is a high variance in benchmark
results, which can lead to unstable and unreli-
able assessments of training progress. Secondly,
benchmark results are not sensitive to minor
progress in training. This insensitivity makes
it difficult to accurately track gradual improve-
ments during the training process. Besides,
weaker models do not follow instructions well.
Hence benchmark results may not accurately
reflect their true learning progress or poten-
tial. Finally, an inconvenience posed by most
benchmarks is the necessity for model genera-
tion. This process is notably resource-intensive,
demanding substantial computational power.

During the pre-training of Skywork-13B, we
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Figure 1: Validation loss on English web texts
vs. average task metric during the pre-training
of Skywork-13B. The tasks include BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2019), Winogrande
(Sakaguchi et al., 2021), TriviaQA (Joshi et al.,
2017) and RACE (Lai et al., 2017).

embrace the method of monitoring the language
modeling loss across numerous reserved valida-
tion sets, each reflecting a distinct data dis-
tribution. More specifically, we have created
separate validation sets for code, academic pub-
lications, social media posts, web texts in Chi-
nese and English, among others. Conventional
monitoring metrics are also utilized, but they
serve merely as supplementary tools. In Figure
1 we plot the curve of language model vali-
dation loss on English web texts against the
average metric of several English downstream
tasks. It is apparent that there is a very high
correlation between the two quantities, showing
that validation loss can serve as a valid proxy
metric for downstream task performance. In
the context of LLM pre-training, this approach
also yields several other benefits:

• Ease of construction: Crafting multiple val-
idation sets is a relatively effortless task.
This enables the evaluation of a model’s lan-
guage modeling performance across varied
domains.

• Simplicity in computation: Calculation of
validation loss is straightforward, signifi-
cantly reducing the computational and lo-
gistical overhead associated with tracking
model training.

• High sensitivity to training progress: Valida-
tion loss is finely attuned to the progression
of training, thereby offering a more detailed
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perspective on how models evolve and im-
prove over time.

• Model-agnosticism: Validation loss is indif-
ferent to the composition of the training
corpus or the model architecture. It allows
for comparison not only between different
checkpoints produced within a single train-
ing session, but also across varied models
from the community. This ensures a consis-
tent and equitable basis for model compari-
son.

Note that monitoring the validation loss on
a held-out set sharing the same distribution
as the training set is a ubiquitous practice in
machine learning. However, the observation
of validation loss across multiple held-out sets,
each with deliberate, unique distributions, is
not common. We also note that the perspective
asserting the primacy of language modeling
loss as the paramount performance metric for
models is not a recent revelation. This principle
has been either explicitly or implicitly adopted
in a number of research studies, as exemplified
in (Kaplan et al., 2020; Hoffmann et al., 2022;
Anil et al., 2023; Xia et al., 2023; Delétang
et al., 2023).

3 Pre-training

3.1 SkyPile Corpus

In order to train Skywork-13B, we build SkyP-
ile, a vast, high quality corpus comprising more
than 6 trillion tokens. A segment of the corpus,
comprising over 150 billion tokens of web text,
has been open sourced to facilitate research and
training on Chinese LLMs3.

Our SkyPile is an amalgamation of several
sources, the overwhelming majority of which
is gleaned from publicly accessible channels.
Numerous prior research works, exemplified
by initiatives such as LLaMA (Touvron et al.,
2023a) and RefinedWeb (Penedo et al., 2023),
have substantiated the notion that publicly ac-
cessible web data can yield exceptionally high-
quality LLMs. In alignment with this empirical
evidence, we subscribe to the premise of leverag-
ing publicly accessible webpages as our primary
source for training data.

3huggingface.co/datasets/Skywork/
SkyPile-150B

The construction of SkyPile is characterized
by a dedicated emphasis on two primary dimen-
sions: text quality and information distribution.
Our data processing pipeline, inspired by (Wen-
zek et al., 2020; Touvron et al., 2023a; Penedo
et al., 2023), incorporates the following stages:

• Structural Extraction: Due to the pre-
dominant source of our dataset being pub-
licly accessible web pages, the objective of
the first stage is the extraction of pertinent
content while concurrently expunging extra-
neous textual elements that are deemed non-
contributory to the training of our language
model, e.g. these superfluous components in-
clude navigational bars, site-specific contact
information, disjunctive title texts devoid
of substantive content, etc. Subsequent to
this culling process, the retained informa-
tion predominantly consists of contiguous,
medium to long-form textual passages.

• Distribution Filtering: In the pursuit
of cultivating a profoundly adept LLM, the
model’s exposure must encompass a diverse
array of content spanning an extensive spec-
trum of domains. Prior endeavors within the
field have entailed the task of assigning cat-
egorical labels to each individual document
or webpage, thereby manually dictating the
composition of the training corpus. How-
ever, we posit that the corpus employed for
LLM training has burgeoned to such an ex-
tent that the knowledge it encapsulates can
not be compartmentalized discretely. Conse-
quently, eschewing a label-centric approach,
our methodology centers on benchmarking
the semantic affinities existing between tex-
tual segments, thereby identifying and omit-
ting those text blocks characterized by an
exceedingly high recurrence rate.

• Deduplication: Deduplication has
demonstrated its remarkable efficacy in en-
hancing the overall quality of a training cor-
pus, and it has found extensive application
in virtually all prominent datasets (Hernan-
dez et al., 2022; Kandpal et al., 2022; Abbas
et al., 2023; Lee et al., 2022). Within the
framework of SkyPile, we regard deduplica-
tion as an integral component of the Distri-
bution Filtering process. When considering
the broader perspective, it becomes evident
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that duplication constitutes a paramount
factor influencing the semantic distribution
of a corpus. Consequently, the techniques
and strategies we employed during the dis-
tribution filtering phase autonomously elim-
inated a substantial portion of duplicated
content.

• Quality Filtering: In this phase, we
deploy the CCNet (Wenzek et al., 2020)
pipeline to perform two critical filtration
tasks: the elimination of content of inferior
quality and the exclusion of pages that are
neither in English nor Chinese. We trained a
binary classifier that predicts the likelihood
that a given webpage is suitable for inclu-
sion as a reference within the Wikipedia cor-
pus. The outcome of this stage is organized
into distinct quality-based categories, and
we retain exclusively the high quality groups,
opting to discard the remaining groups in
its entirety.

Above we described our pre-processing pipeline
for natural text. As for Github content, we em-
ploy an approach that is similar to (Together
Computer, 2023). We have devised a collection
of straightforward yet efficacious heuristics, en-
compassing criteria such as line length filtration
and alphanumeric thresholds, designed to dis-
cern and exclude content of low quality. Our cri-
teria are specifically oriented toward enhancing
content quality, as opposed to merely curbing
its volume. Notably, in contrast to prevailing
practices that involve the wholesale removal of
a significant portion of json, xml, yaml, and
html content, we have made a deliberate choice
to retain a judiciously proportionate represen-
tation of these data formats.

Note that in pursuit of harmonizing the
model’s proficiency in both English and Chi-
nese, we include in SkyPile a curated high-
quality parallel corpora. This data is meticu-
lously structured to pair a complete English
paragraph with its corresponding Chinese coun-
terpart, ensuring a seamless alignment of lin-
guistic capabilities between the two languages.

3.2 Training Data Composition

Our Skywork-13B is pre-trained for 3.2 trillion
tokens, sampled from SkyPile. Texts from cer-
tain sources are deemed as of high quality, e.g.

Category Percentage

English

Webpages 39.8%
Books 3.6%
Academic Papers 3.0%
Encyclopedia 0.5%
Miscellany 2.9%

Chinese

Webpages 30.4%
Social Media 5.5%
Encyclopedia 0.8%
Miscellany 3.1%

Other Lang. Encyclopedia 2.4%

Code Github 8.0%

Table 1: Breakdown of training data in Stage-1
pre-training of Skywork-13B.

Wikipedia, hence have undergone upsampling.
However, we generally stick to the rule that the
number of repetition does not exceed five, as is
recommended by recent studies (Taylor et al.,
2022; Muennighoff et al., 2023).

We report in Table 1 a breakdown of the
constituent components of the training tokens
during Stage-1 pre-training. The training to-
kens are primarily composed of English and
Chinese texts, constituting 49.8% and 39.6% of
the data, respectively. Code contributes 8.0%
to the total, with texts in other languages ac-
counting for the remaining 2.4%. The category
labeled as “miscellany” encompasses a diverse
range of texts, including but not limited to, le-
gal articles, court documents, company annual
reports, and classical literature.

3.3 Tokenizer

We tokenize the data using byte-pair encoding
(BPE) as implemented in SentencePiece (Kudo
and Richardson, 2018), following the approach
of LLaMA (Touvron et al., 2023a). Since our
model is intended to be English-Chinese bilin-
gual, we extend the original vocabulary of
LLaMA, which primarily consists of latin-based
words and subwords, with frequently used Chi-
nese characters and words. Specifically, we
add 8000 single-character tokens from BERT’s
vocabulary (Devlin et al., 2019) to LLaMA’s
vocabulary. We further expand the vocabu-
lary with 25k frequent Chinese multi-character
words. This results in a total vocabulary size
of 65,536 tokens, of which 17 are reserved as
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special symbols.
As in LLaMA, we split all numbers into indi-

vidual digits, and fall back to bytes to decom-
pose unknown UTF-8 characters.

Category Size

Latin based words & subwords 32000
Chinese characters & Unicode symbols 8000

Chinese words 25519
Reserved symbols 17

Total 65536

Table 2: Breakdown of the vocabulary used in
Skywork-13B.

3.4 Architecture

Our Skywork-13B is based on the transformer
architecture (Vaswani et al., 2017), consisting
of stacks of transformer-decoder layers. In con-
trast to the original transformer model, we have
incorporated several modifications, inspired by
LLaMA (Touvron et al., 2023a,b). Our pre-
liminary experiments, as illustrated in Figure
2, validate these changes, demonstrating the
improved performance they confer. Details on
this experiment can be found in Appendix A.

While our network architecture takes after
the LLaMA model to a great extent, there ex-
ists a notable difference in our preference for a
deeper, yet narrower, network. A comparative
exploration of the Skywork-13B and LLaMA2-
13B network configurations is presented in Ta-
ble 3.

The specific modifications made are de-
scribed in detail below.

• Positional Embedding: We use Rotary
Positional Embedding (RoPE) (Su et al.,
2022), that was motivated by its extensive
adoption in various prominent large lan-
guage models, such as LLaMA and PaLM,
as well as its demonstrated effectiveness in
extending the length of context windows,
as evidenced by recent studies (Chen et al.,
2023; Rozière et al., 2023; Xiong et al., 2023).

• Layer Normalization: We replaced the
conventional layer normalization with RM-
SNorm (Zhang and Sennrich, 2019). Addi-
tionally, we adopted pre-normalization in
each layer instead of post-normalization,
which has been shown to enhance the train-
ing stability of transformer models.
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Figure 2: Preliminary Experiments: Comparison
of conventional GPT architecture and more recent
LLaMA architecture. For each of the two trans-
former variants, a model with 7 billion parameters
is trained from Scratch on 200 Billion Tokens. The
plot clearly shows that the LLaMA architecture
achieves a lower training loss than GPT, demon-
strating the former’s superiority.

• Activation: We employed the SwiGLU acti-
vation function (Shazeer, 2020). In line with
established conventions in prior studies, we
reduced the dimension of the feed-forward
network (FFN) from four times the hidden
size to eight-thirds of the hidden size. This
adjustment was made to maintain parity be-
tween the total parameters in a layer and
those in the vanilla transformer layer.

LLaMA2-13B Skywork-13B

Vocab. Size 32,000 65,536
Hidden Dim. 5,120 4,608

FFN Dim. 13,696 12,288
Head Dim. 128 128

Num. Heads 40 36
Num. Layers 40 52

Seq. Len. 4,096 4,096
#Tokens per Batch 4M 16M

Peak LR 3e-4 6e-4
Minimum LR 3e-5 6e-5

Table 3: Comparisons in architecture and important
hyper-parameters of Skywork-13B and LLaMA2-
13B.

3.5 Infrastructure

Our Skywork-13B is trained on a cluster of 64
NVIDIA-HGX-A800 nodes, a total of 512 A800-
80G SXM GPUs. Each node in the cluster is
outfitted with high-speed 400GB/s NVLinks
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for intra-node communication and an 800Gb/s
RoCE network for inter-node connectivity. Our
training framework is based on Megatron-LM
(Shoeybi et al., 2020) library, designed to sup-
port the stable, prolonged training of large-scale
models, accommodating thousands of GPUs
and model sizes in the order of hundreds of
billions parameters.

Considering the relatively moderate size of
our Skywork-13B model, we have avoided
the use of GPU memory optimization tech-
niques and parallel schemes that could impede
speed. These include Tensor Model Paral-
lelism (Shoeybi et al., 2020), Sequence Paral-
lelism (Korthikanti et al., 2022), ZeRO-Stage2
(Rajbhandari et al., 2020), and Checkpointing
(Chen et al., 2016). Instead, we have lever-
aged Data Parallelism (DP) with ZeRO-1 (Ra-
jbhandari et al., 2020) and Pipeline Parallelism
(PP) (Narayanan et al., 2021) as the primary
parallelization strategies for training Skywork-
13B. ZeRO-1 substantially diminishes the GPU
memory footprint of the Adam optimizer state
without increasing the burden on intercommu-
nication. Pipeline Parallelism offers memory
optimization at a minimal communication over-
head, which decreases as the gradient accumu-
lation step increases, thereby mitigating the
slowdown of all-reduce as DP Size increases.
Regarding operator optimization, we adopted
Flash Attention V2 (Dao et al., 2022; Dao,
2023), a strategy that both optimizes GPU
memory and expedites the training process.

Upon extensive preliminary experiments, we
have decided to adopt the combination of
DP256, PP2, and ZeRO-1 as our distributed
training strategy for Skywork-13B. With this
configuration, we achieved a token throughput
of 1873 per GPU per second and a model flops
utilization (MFU) of 56.5%. An overview of
these experiments is provided in Appendix B.
The training process of Skywork-13B spanned
a total of 39 days.

3.6 Training Details

As outlined in Section 2.1, the pre-training of
Skywork-13B is executed in two stages:

• Stage-1: General purpose pre-training on
SkyPile-Main.

• Stage-2: STEM-oriented continual pre-
training on SkyPile-STEM.

In both stages, the model is trained using the
standard auto-regressive language modeling ob-
jective, with context lengths fixed at 4096 to-
kens. The AdamW optimizer (Loshchilov and
Hutter, 2019), applied for the training process,
uses β1 and β2 values of 0.9 and 0.95, respec-
tively. Throughout the pre-traning, we applied
a weight decay of 0.1 and gradient clipping
of 1.0. Our model was trained with bfloat16
mixed precision.

3.6.1 Stage-1 Pre-training
In the first stage, our Skywork-13B model is
trained from scratch on SkyPile-Main for over
three trillion tokens. This stage consists of two
sequential training sessions, covering the first
0 ∼ 2T tokens and the subsequent 2 ∼ 3T
tokens, respectively.

Our initial plan was to train Skywork-13B
for two trillion tokens. We launched a train-
ing session accordingly, with a cosine learn-
ing rate schedule that gradually decays from
a peak learning rate of 6e−4 to a final learn-
ing rate of 6e−5. In Figure. 3, we report
in red curves the evolution of language mod-
eling losses and several benchmark results of
our Skywork-13B during this session. It is evi-
dent that by the end of this session, the model
had not reached saturation. We hypothesized
that the model could further benefit from ad-
ditional pre-training, prompting us to launch
a secondary training session targeting an addi-
tional one trillion tokens.

The second training session utilized a slightly
different composition of training data compared
to the initial 0 ∼ 2T session, as data from
certain sources had been depleted and fresh
sources were introduced. Owing to the shift
in the training distribution, we meticulously
tuned the learning rate parameter, eventually
deciding on a constant learning rate of 6e-5
for the 2 ∼ 3T session. In Figure. 4, we illus-
trate the model losses under varying learning
rate conditions. Results indicate that a higher
learning rate leads to escalations in training loss
which we deem too costly to reverse. The im-
pact of the second training session is depicted
in blue curves of Fig. 3. The enhancement
in the model’s performance continues, albeit
at a decelerating pace. Interestingly, although
our Skywork-13B trails in the realm of English
language modeling, it significantly surpasses all
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Figure 3: Trajectory of important monitoring metrics during Stage-1 pre-training. Top Left: Training
loss. Top Middle and Right: Validation loss on English and Chinese held-out sets of web texts. The
horizontal dashed lines in the middle and right plots correspond to the evaluated language modeling
loss for several similar-sized open LLMs. Bottom: Benchmark results on CEVAL, MMLU and GSM8K
respectively. Stage-1 pre-training consists of two sequential training sessions, represented by different
colors in the loss curves (red for session 0 ∼ 2T and blue for session 2 ∼ 3T).

other comparable open LLMs in Chinese lan-
guage modeling. In Section 4.3, we will confirm
that the superiority of our Skywork-13B in Chi-
nese language modeling is not only true on our
validation set, it also holds true on a number
of test sets sourced from diverse domains.

More results can be found in Appendix (see
Figure 6).

3.6.2 Stage-2 Pre-training
The primary aim of Stage-2 pre-training is to
augment the model with capabilities pertinent
to STEM disciplines. The data utilized in
this stage comprises an approximate 20% from
SkyPile-STEM and 80% from SkyPile-Main,
amassing a total of roughly 130 billion tokens.
A constant learning rate of 6e−5 is adopted,
maintaining parity with the terminal learning
rate used in Stage-1 pre-training

Consequent to the data distribution shift
from Stage-1 to Stage-2, it becomes crucial

to meticulously calibrate the sampling ratio
between the different data sources. Initial ex-
periments revealed that a gradual increment in
the SkyPile-STEM ratio yielded the most effec-
tive results. Therefore, for the actual Stage-2
pre-training phase, we implemented a sampling
plan that commenced with 10% of SkyPile-
STEM initially, gradually escalating to a peak
of 40% towards the conclusion of the training.

This training strategy proved successful in
maintaining the stability of the model’s lan-
guage modeling validation loss while enabling
an optimum transfer of STEM knowledge. The
extended training period ensures a comprehen-
sive assimilation of STEM-related knowledge
into the model without causing significant dis-
turbance to the pre-existing learned informa-
tion.

The impact of Stage-2 pre-training is illus-
trated in Figure 5, which presents the progres-
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Figure 4: Test runs for tuning the learning rate of
the 2 ∼ 3T training session. It can be seen that 6e-
5, which is the terminal learning rate from 0 ∼ 2T
training session, yields the best result.

sion of the CEVAL benchmark score. The evo-
lution of scores on other STEM-related bench-
marks, such as GSM8K, mirrors a similar trend.
Improvements in individual subjects of the CE-
VAL can be found in Table 12 (see appendix).
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Figure 5: Evolution of CEVAL score during Stage-2
pre-training.

4 Evaluation

4.1 Baselines

We compare the performance of our Skywork-
13B with open models that are simi-
lar in size, including LLaMA-13B (Tou-
vron et al., 2023a), LLaMA2-13B (Touvron
et al., 2023b), Baichuan-13B, Baichuan2-13B
(Baichuan Inc., 2023), Xverse-13B (Xverse-AI,
2023), IntermLM-20B (InternLM Team, 2023).
A summary of these models can be found in
Table 4.

Model #Tokens Language

OpenLLaMA-13B 1.0T English
LLaMA-13B 1.0T English
LLaMA2-13B 2.0T English
Baichuan-13B 1.4T English & Chinese
Baichuan2-13B 2.6T English & Chinese
Xverse-13B 1.4T English & Chinese
InternLM-20B 2.3T English & Chinese

Skywork-13B 3.2T English & Chinese

Table 4: Details of various models. The column la-
beled "#Tokens" indicates the quantity of training
tokens used by each model, whereas the "Language"
column specifies the primary languages supported
by each model.

4.2 Benchmark Evaluation

We focus on the following popular benchmarks:

• MMLU (Hendrycks et al., 2021): MMLU is a
benchmark designed to measure knowledge
acquired during pre-training. The bench-
mark covers 57 subjects across STEM, the
humanities, the social sciences, and more,
ranging in difficulty from an elementary level
to an advanced professional level. It tests
both world knowledge and problem solving
ability.

• CEVAL (Huang et al., 2023) and CMMLU
(Li et al., 2023a): Those are Chinese bench-
marks that mimick MMLU. CEVAL consists
of 13948 multi-choice questions spanning 52
diverse disciplines and four difficulty lev-
els. CMMLU covers 67 disciplines that span
from elementary to advanced professional
levels.

• GSM8K (Cobbe et al., 2021): This dataset
consists of 8500 high-quality grade school
math word problems created by human writ-
ers. These multi-step problems require be-
tween 2 and 8 steps to solve. GSM8K is
usually used in benchmarking multi-step
mathematical reasoning ability of LLMs.

In Table 5 we present a comparison of perfor-
mance results from different models on these
benchmarks. The metrics for CEVAL, CMMLU
and MMLU are 5-shot accuracy, while for
GSM8K it is 8-shot accuracy. Higher num-
bers indicate better performance. It can be
seen that our Skywork-13B achieves the high-
est score on both the CEVAL and MMLU and
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GSM8K benchmarks, with scores of 60.6 and
62.1 and 55.8 respectively. On the CMMLU
benchmark, Baichuan2-13B achieves the high-
est performance with a score of 62.0.

In summary, our Skywork model has demon-
strated exceptional performance across a di-
verse range of comprehensive benchmark tests.

Results of individual subjects of the CEVAL
can be found in Table 12. Results of other
benchmarks can be found in Appendix C.

4.3 Language Modeling Results

4.3.1 LM as a solution to benchmark
overfitting

Conventional benchmarks for evaluating LLMs
often rely on static datasets of human-
annotated examples. A core issue with this
approach is that updating the test samples reg-
ularly is difficult and costly. Over time, the
static test sets tend to be overfitted, producing
misleading benchmark results.

We propose language modeling evaluations
as a compelling alternative. Perplexity in lan-
guage modeling acts as a proxy metric strongly
linked to performance on diverse downstream
tasks (see Figure 1). Since language modeling
solely requires unlabeled natural text, it elimi-
nates the need for expensive human annotation.
Constructing and revising language modeling
test sets is low-cost, as new data can be readily
sampled from newly published content. Ad-
ditionally, if a test set becomes compromised,
fresh test data can quickly be sampled as a
replacement.

4.3.2 Construction of diverse LM
testsets

We compare the language modeling capabilities
of various language models with our Skywork-
13B, focusing on Chinese language.

To conduct a robust evaluation of language
modeling capability, we have separately col-
lected a diverse corpus of texts from a myriad
of websites, each labeled according to its respec-
tive domain. The domains we cover span a wide
spectrum, encompassing areas such as technol-
ogy, movies, finance, to name a few. These
domain-specific evaluation datasets have also
been open-sourced for public access4.

4Github: https://github.com/SkyworkAI/
Skywork/tree/main/data/eval_loss

We ensure that every test sample consists
of documents or user posts published after
September 1, 2023. This cut-off date guar-
antees that no test sample was inadvertently
included during the pre-training of any eval-
uated language model. Specifically, SkyPile’s
cut-off date is June 30, 2023, and the majority
of models under evaluation were released prior
to August 31.

Note that while the held-out validation set
used to monitor the training progress (as shown
in Figure 3) of our model can also serve this pur-
pose, it has the same distribution (web texts)
as the bulk of the training corpus, thus may
lead to overly optimistic estimate of the ac-
tual language modeling capability of the model.
More details on the sources of the test samples
and the underlying data collection pipeline can
be found in Appendix D.

4.3.3 Results
The results of our language modeling eval-
uation are presented in Table 6, where re-
sults from ChatGLM3-6B (THUDM, 2023),
MOSS-7B (Sun and Qiu, 2023), Baichuan2-7B
(Baichuan Inc., 2023), Qwen-7B (Qwen Team,
2023), InternLM-7B (InternLM Team, 2023)
and Aquilla2-34B are also included.

It can be seen that our Skywork-13B model
shows the best performance overall, obtaining
the lowest average perplexity score of 9.42. It
also exhibits the best performance across indi-
vidual domains, achieving the lowest perplexity
scores in tech (11.58), movie (21.84), govern-
ment (4.76), and finance (4.92) domains. It
excels not only in surpassing the performance
of models of a similar size, but also in out-
performing significantly larger models such as
InternLM-20B and Aquila2-34B.

We attribute the excellent language modeling
performance of our Skywork-13B to the quality
of our training corpus. Details on rigorous data
filtering pipeline are described in Section 3.1.

5 Discussion

In this section, we delve into the benefits and as-
sociated risks of pre-training on the in-domain
data5 of benchmark tasks.

5The term “in-domain data” is a vague one that
refers to any data with distribution closely resembling
to that of the task data. For instance, the training
data of a task is trivially in-domain data for that task.
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Model CEVAL CMMLU MMLU GSM8K

OpenLLaMA-13B 27.1 26.7 42.7 12.4
LLaMA-13B 35.5 31.2 46.9 17.8
LLaMA-2-13B 36.5 36.6 54.8 28.7
Baichuan-13B 52.4 55.3 51.6 26.6
Baichuan2-13B 58.1 62.0 59.2 52.8
XVERSE-13B 54.7 - 55.1 -
InternLM-20B 58.8 - 62.0 52.6

Skywork-13B 60.6 61.8 62.1 55.8

Table 5: Comparison of results on popular benchmarks. Best result in each column is underlined. It can
be seen that our Skywork-13B consistently perform well across the different benchmarks, indicating its
overall robustness.

Tech Movie Gov. Game Finance General Average

ChatGLM3-6B 12.48 23.48 5.07 18.45 5.67 7.47 10.25
MOSS-7B 20.83 39.66 11.08 31.24 10.59 13.25 18.50
InternLM-7B 13.43 24.9 5.88 19.78 6.17 8.10 11.17
Qwen-7B 13.39 25.16 5.55 19.26 5.76 7.78 10.83
Baichuan2-7B 12.89 23.26 5.34 18.36 5.68 7.62 10.41

LLaMA2-13B 23.26 50.66 18.09 32.52 14.85 16.55 23.54
Xverse-13B 12.55 23.49 5.20 17.69 5.54 7.46 10.19
Baichuan-13B 12.38 22.46 5.21 17.59 5.42 7.37 10.03
Baichuan2-13B 12.14 21.85 5.05 17.15 5.35 7.24 9.81
Qwen-14B 11.90 22.43 4.89 16.94 5.24 7.03 9.67
InternLM-20B 12.34 22.06 5.75 17.45 5.73 7.78 10.34
Aquila2-34B 14.62 29.09 5.72 21.78 5.83 8.45 11.73

Skywork-13B 11.58 21.84 4.76 17.28 4.92 6.82 9.42

Table 6: Comparative analysis of language modeling capabilities across diverse domains. Performance is
measured using perplexity (lower values is better). Underlined figures correspond to the best result in
each column.

5.1 Effect of pre-training on in-domain
data

Pre-trained language models, or foundation
models, are intended to be used in transfer
learning as a general purpose backbone. As
a foundation model in itself has little usage
other than sentence completion, the quality of
a foundation model is typically evaluated in
terms of its performance in those tasks. Appar-
ently, when it comes to improve a foundation
model’s quality as measured by its task perfor-
mance, it is always far more efficient to train
the model on in-domain data of that task (Her-
nandez et al., 2021; Chung et al., 2022) , as

GPT-4 generated data with few-shot task examples can
also be considered as in-domain data for that task.

compared to general-purpose data (web texts).

We have shown that Stage-2 pre-training sig-
nificantly amplifies our Skywork-13B’s STEM
related capabilities, leading to a substantial
improvement in performance on STEM-related
tasks. Now we show that it is even possible
to enhance a much weaker base model, i.e., an
intermediate checkpoint, using only a fraction
of the data and compute used in Stage-2 pre-
training.

Table 7 presents the CEVAL and GSM8K
scores before and after pre-training on in-
domain data, utilizing a relatively weak model
checkpoint that has only undergone 0.5T pre-
training. The results indicate that after pre-
training with merely 1B tokens of in-domain
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CEVAL GSM8K En Loss Zh Loss

Before 28.3 6.9 1.86 2.08
After 50.8 40.7 2.09 2.21

∆ +22.5 +33.8 +0.23 +0.13

Table 7: The impact of pre-training on a 0.5T
checkpoint of Skywork-13B using only 1B tokens.
The training data is sourced from a subset of our
SkyPile-STEM corpus. The columns “En Loss” and
“Zh Loss” show the model’s validation loss on held-
out sets of English and Chinese web texts, respec-
tively.

data, a weak model, initially performing only
slightly better than random at CEVAL and
GSM8K, can surpass the performance of our
strongest Skywork-13B (3T) backbone without
in-domain pre-training. However, this comes
at the cost of significant degradation in lan-
guage modeling performance, as evidenced by
the higher loss on both tasks, shown in the two
rightmost columns of the table.

5.2 Pre-training on in-domain data: a
common practice?

It is of interest to explore whether popular
foundational models are pre-trained on in-
domain data. In pursuit of this, we delve into
the GSM8K datasets, equipped with official
train/test splits and comprehensive solutions.
We evaluate an LLM’s language modeling loss
on three datasets drawn from the same distri-
bution: 1) The official GSM8K training set, 2)
The official GSM8K test set, 3) A set composed
of GSM8K-like samples generated by GPT-4.
The corresponding losses are denoted as Ltrain,
Ltest, and Lref , respectively. Theoretically, if
a language model has not been exposed to any
of the three datasets during pre-training, the
three losses Ltrain, Ltest, and Lref should be ap-
proximately equivalent. However, if the model
has been pre-trained on the training set or if
the test data has been inadvertently exposed
during the pre-training process, we would an-
ticipate a notable discrepancy between Ltrain,
Ltest, and Lref .

Our results are outlined in Table 8, which
also reports the differences in losses ∆1 =
Ltest − Lref and ∆2 = Ltest − Ltrain. No-
tably, the ∆2 column reveals that for most
models, the language modeling loss on the
GSM8K training and test splits are almost iden-

tical. However, models such as ChatGLM3-6B,
Baichuan2-13B, Qwen-7B/14B, and Aquila2-
34B display markedly lower loss on the training
split than on the test split. Consequently, we
postulate that these models may have been con-
siderably pre-trained on GSM8K training split
or similar data.

Moreover, we notice one particular anomaly
in the ∆1 column, indicating the significantly
lower Ltest loss compared to Lref , which is
interesting to further study for better under-
standing.

5.3 Pre-Training or Supervised
Fine-Tuning?

In the era preceding the advent of LLMs such
as GPT-4 (Bubeck et al., 2023; OpenAI, 2023)
and Claude (Bai et al., 2022), supervised data
for NLP tasks was generally scarce. This was
because the process of data collection and an-
notation was both time-consuming and costly.
Due to the scarcity of supervised data, NLP
researchers rely on unsupervised pre-training
techniques (Mikolov et al., 2013; Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019)
to improve downstream task performance via
transfer learning, where supervised data is to
be used only in the fine-tuning stage. In this
context, pre-training on in-domain (supervised)
data was pointless, as it would defeat the pur-
pose of pre-training itself (transfer learning).

This reality has significantly shifted, however,
with the emergence of powerful LLMs. This is
because procuring large amounts of high quality
supervised/in-domain data is now as simple as
making a few API requests to these LLMs, and
it is comparatively low-cost (Wang et al., 2023;
Taori et al., 2023). This new reality blurs the
boundary between pre-training and supervised
fine-tuning, making it feasible to incorporate
substantial amounts of supervised data into
the pre-training phase (Gunasekar et al., 2023;
Li et al., 2023b). After all, curated in-domain
data, whether written by human annotators
or generated by LLM, are all form of human
knowledge, and there is good reason for this
knowledge to be absorbed into a foundation
model.

That said, we believe that there is valid risk
on the practice of targeted pre-training, in that
it compromise fairness in benchmarking. While
through pre-training on in-domain data a model
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Ltest Ltrain Lref ∆1 ∆2

ChatGLM3-6B 0.99 0.78 0.99 0.0 0.21
MOSS-7B 1.51 1.52 1.49 0.02 −0.01
InternLM-7B 1.21 1.12 1.27 -0.06 0.09
Qwen-7B 1.07 0.64 1.10 -0.03 0.43
Baichuan2-7B 1.41 1.42 1.36 0.05 −0.01

LLaMA-13B 1.41 1.42 1.36 0.05 −0.01
LLaMA2-13B 1.36 1.38 1.33 0.03 −0.01
Xverse-13B 1.42 1.43 1.39 0.03 −0.01
Baichuan-13B 1.41 1.42 1.37 0.04 −0.01

Baichuan2-13B 1.09 0.72 1.12 -0.03 0.37
Qwen-14B 1.03 0.42 1.14 -0.11 0.61
InternLM-20B 1.20 1.09 1.19 0.01 0.11
Aquila2-34B 0.78 0.39 1.29 −0.51 0.39

Skywork-13B 1.01 0.97 1.00 0.01 0.04

Table 8: We evaluate the language modeling (LM) loss on samples (a sample is a concatenation of question
and answer) from GSM8K dataset for several foundation models. For each LLM, we compare LM loss on
the training split (Ltrain), the test split (Ltest), and a specially curated reference set (Lref ), generated
by GPT-4, designed to mimic the GSM8K dataset. We also reports two key metrics: ∆1 = Ltest − Lref ,
serving as an indicator of potential test data leakage during the training of the LLM, i.e., a lower value
suggests possible leakage; and ∆2 = Ltest−Ltrain, which measures the degree of overfitting on the training
split of the dataset. A higher value of ∆2 implies excessive overfitting. Outliers for both ∆1 and ∆2 are
highlighted in gray.

may excel at specific tasks, it remains uncertain
how well it would perform on unseen tasks. Its
capabilities may be overestimated based on
the benchmark alone, which can lead to unfair
comparisons between models and mislead users
or stakeholders about the true capabilities of
the model.

6 Limitation

Our pre-training approach for Skywork-13B in-
volved a two-stage process: general purpose pre-
training followed by domain-specific enhance-
ment pre-training. However, it remains unclear
whether this methodology can produce a model
on par with, or superior to, a model trained in
one stage on a mixed corpus. Further investi-
gation is needed to determine the comparative
effectiveness of these pre-training approaches.

Additionally, we have proposed using lan-
guage modeling loss or perplexity as proxy met-
rics for monitoring and evaluating large lan-
guage models. A limitation is that language
modeling evaluation relies on the specific distri-
bution used to sample test data, of which there
are infinite possibilities. While language mod-

eling perplexity over a given data distribution
may predict performance on some tasks, it may
not translate to other tasks. The correlation
between language modeling and downstream
performance could vary across different distri-
butions and tasks.

7 Conclusion

Our work on Skywork-13B represents a sig-
nificant leap forward in the development of
open large language models. We believe that
our comprehensive and transparent approach
to the model’s development will be a valuable
resource for researchers in the field, fostering
collaboration and open-source principles. Our
two-stage training methodology, leveraging a
segmented corpus, offers a novel approach for
enhancing model capability in specific domain,
while our method of monitoring the training
progress provides a practical solution to the
challenges of tracking the improvement of these
models over time.

However, our work is more than just the cre-
ation of a new LLM. It is a call to action for the
broader NLP community, urging a return to
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the principles of fairness, transparency, and the
sharing of ideas that have historically fueled
progress in the field. We hope that Skywork-
13B will not only serve as a powerful tool for
a wide range of applications but also inspire a
renewed commitment to openness and coopera-
tion in the development of future models.
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A Details on GPT-7B vs.
LLaMA-7B Experiment

In a preliminary experiment, we compared the
language modeling performance between GPT
and LLaMA architecture in a controlled envi-
ronment. We trained a 7B model with GPT
architecture and a comparable 7B model with
LLaMA architecture for 200B tokens sampled
from the same corpus and with the same train-
ing parameters. Details are given in Table 9.

B Preliminary Experiments on
Distributed Training

In Table 10 we report preliminary results ob-
tained with various distributed training con-
figurations on LLaMA-13B and Skywork-13B
model architecture. In both cases, the best
throughput is achieved with DP256 and PP2
with ZERO-1 setting.

C More Benchmark Results

We also provide results of the following bench-
marks in Table 11:

• TriviaQA (Joshi et al., 2017): TriviaQA
is a realistic text-based question answer-
ing dataset which includes 950K question-
answer pairs from 662K documents collected
from Wikipedia and the web.

• HellaSwag (Zellers et al., 2019): HellaSWAG
is a dataset that focuses on grounded com-
monsense inference.

• Winogrande (Sakaguchi et al., 2021): Wino-
Grande is a dataset that focuses on com-
monsense reasoning.

• BoolQ (Clark et al., 2019) BoolQ is a ques-
tion answering dataset for yes/no questions.

• PIQA (Bisk et al., 2019): PIQA is a dataset
for commonsense reasoning, and was cre-
ated to investigate the physical knowledge
of existing models in NLP.

• ARC (Clark et al., 2018): ARC is
a dataset consisting of multiple-choice
question-answering tasks that focus on com-
monsense reasoning.

• RACE (Lai et al., 2017) RACE is a dataset
that focuses on reading comprehension.

D Details on LM Test Sets

We established a daily crawl of published arti-
cles and user posts from a selection of widely
used Chinese websites. This data collection
process is distinct from the pipeline utilized
to construct SkyPile. The purpose of gather-
ing this data is to create independent language
modeling test sets, categorized by their domain,
for the evaluation of current open Language
Learning Models (LLMs).

Below we describe the sources of these do-
main testsets:

• Technology: AI related articles from (36kr.
com). This website provides timely and
comprehensive news articles about startups,
technology, and business trends, primarily
in the Chinese market.

• Movie: User written movie reviews from
Douban (douban.com). Douban is a popular
social networking service in China that offers
a platform for users to share their opinions
and create content related to movies, books,
and music. It is one of the most influential
web 2.0 websites in China and has a strong
focus on user-generated content.

• Government: News from website of Peo-
ple’s Daily (www.people.com.cn), which is the
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GPT-7B LLaMA-7B

Positional Embedding Absolute Rotary
Max Position Embeddings 4096 4096
Normalization LayerNorm RMSNorm
Activation Gelu SwiGlu
Attention MHA MHA
Num. Layers 32 32
Hidden Size 4096 4096
Num. Heads 32 32
FFN Size 16384 11008
Context Size 4096 4096

Global Batch Size 1024 1024
Adam β1 0.95 0.95
Adam β2 0.9 0.9
Adam ϵ 1.00e-8 1.00-8
Precision bf16 bf16
Peak Learning Rate 3e-4 3e-4
Min Learning Rate 3e-5 3e-5
Learning Rate Decay Steps 43945 43945
Learning Rate Decay Style Cosine Cosine
Warm-up Steps 2000 steps 2000 steps
Weight Decay 0.1 0.1
Dropout Probability 0.1 0
Gradient Clip 1 1
Total Steps 51200 51200

Table 9: Comparison of GPT-7B and LLaMA-7B. All variables are controlled in our experiment except
for the differences in architecture.

Model Strategy Throughput MFU TFlops Memory

LLaMA2 DP512 - - - OOM
LLaMA2 DP256+PP2 2045 58.5 182.6 70.7
LLaMA2 DP256+TP2 1928 55.2 172.2 65.5
LLaMA2 DP128+TP2+PP2 1936 55.4 172.9 39.4
LLaMA2 DP128+PP4 1964 56.2 175.4 53.4
LLaMA2 DP128+TP4 1744 44.4 138.5 35.4

Skywork DP512 - - - OOM
Skywork DP256+PP2 1873 56.5 176.2 77.1
Skywork DP256+TP2 1775 53.5 167.0 67.9
Skywork DP128+TP2+PP2 1776 53.5 167.0 42.5
Skywork DP128+PP4 1828 55.1 171.9 58.7
Skywork DP128+TP4 1417 43.1 134.6 36.6

Table 10: Compute effeciency achieved with different distributed training configurations. We tested both
LLaMA2-13B and Skywork-13B. Throughout the experiments, we use a global batch size of 4096 and
a micro batch size of 1. When Tensor Parallelism is enabled, Sequence Parallelism is enabled as well.
Throughput is measured in tokens processed per GPU per second, while Model Flops Utilization (MFU)
is expressed as a percentage (%). Memory usage is reported in Gigabytes (GB).
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Models BoolQ PIQA Winogrande TriviaQA RACE Hellaswag ARC-E ARC-C

OpenLLaMA-13B 77.6 79.5 72.0 60.2 42.4 76.0 78.9 48.6
LLaMA-13B 80.7 81.0 76.2 65.0 43.4 80.1 82.1 54.7
LLaMA2-13B 83.3 81.7 75.8 68.2 43.9 81.5 83.7 57.0
Baichuan-13B 78.8 77.2 70.4 51.6 35.8 74.2 77.2 48.4
Baichuan2-13B 80.3 79.3 72.1 58.0 25.2 76.4 81.1 53.2
Xverse-13B 79.8 80.0 71.1 53.3 43.2 77.2 78.5 49.1

Skywork-13B 82.9 79.9 72.2 54.0 45.2 77.4 78.5 50.2

Table 11: More English benchmarks results. As all of these models are more or less sensitive to the prompt
template or number of shots, the reported results, which are reproduced by us, may be different to those
from other sources.

most influential and authoritative newspa-
pers in China. The language used in the
news is typically formal Standard Mandarin
and carries an authoritative tone.

• Game: Articles from Gcores (www.gcores.
com). This is a Chinese digital media plat-
form dedicated to video games, tech trends,
and geek culture. The platform features
a wide range of original content, including
news articles, podcast episodes, videos, and
independent games.

• Finance: News from finance section of Sina
(finance.sina.com.cn). It is one of China’s
leading online media companies, offers a
comprehensive suite of financial information
and services. It covers a broad range of
topics including stock markets, forex, com-
modities, real estate, and personal finance.

• General: News from Jiemian News (www.
jiemian.com). Jiemian is a prominent Chi-
nese digital media platform known for its
in-depth and high-quality journalism. It cov-
ers a wide range of topics, including politics,
economy, culture, technology, finance, and
lifestyle.
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Subject Stage-1 Stage-2 Boost

Accountant 40.8 49.0 8.2
Advanced Mathematics 26.3 42.1 15.8
Art Studies 60.6 72.7 12.1
Basic Medicine 42.1 57.9 15.8
Business Administration 42.4 48.5 6.1
Chinese Language and Literature 47.8 56.5 8.7
Civil Servant 40.4 66.0 25.5
Clinical Medicine 36.4 40.9 4.5
College Chemistry 37.5 50.0 12.5
College Economics 52.7 47.3 -5.5
College Physics 15.8 36.8 21.1
College Programming 51.4 51.4 0.0
Computer Architecture 33.3 52.4 19.0
Computer Network 21.1 26.3 5.3
Discrete Mathematics 50.0 18.8 -31.3
Education Science 44.8 75.9 31.0
Electrical Engineer 35.1 35.1 0.0
Environmental Impact Assessment Engineer 45.2 51.6 6.5
Fire Engineer 45.2 51.6 6.5
High School Biology 42.1 78.9 36.8
High School Chemistry 36.8 63.2 26.3
High School Chinese 26.3 42.1 15.8
High School Geography 36.8 78.9 42.1
High School History 80.0 80.0 0.0
High School Mathematics 27.8 16.7 -11.1
High School Physics 42.1 57.9 15.8
High School Politics 47.4 84.2 36.8
Ideological and Moral Cultivation 84.2 100.0 15.8
Law 33.3 45.8 12.5
Legal Professional 39.1 52.2 13.0
Logic 50.0 45.5 -4.5
Mao Zedong Thought 70.8 83.3 12.5
Marxism 57.9 63.2 5.3
Metrology Engineer 37.5 58.3 20.8
Middle School Biology 76.2 95.2 19.0
Middle School Chemistry 30.0 95.0 65.0
Middle School Geography 41.7 83.3 41.7
Middle School History 59.1 81.8 22.7
Middle School Mathematics 15.8 36.8 21.1
Middle School Physics 42.1 73.7 31.6
Middle School Politics 52.4 90.5 38.1
Modern Chinese History 47.8 73.9 26.1
Operating System 52.6 47.4 -5.3
Physician 46.9 57.1 10.2
Plant Protection 63.6 63.6 0.0
Probability and Statistics 27.8 33.3 5.6
Professional Tour Guide 69.0 65.5 -3.4
Sports Science 42.1 52.6 10.5
Tax Accountant 30.6 49.0 18.4
Teacher Qualification 61.4 84.1 22.7
Urban and Rural Planner 50 67.4 17.4
Veterinary Medicine 26.1 60.9 34.8

Table 12: Details on CEVAL benchmark results.
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Figure 6: Performance of the Skywork-13B on various benchmarks during Stage-1 pre-training. Benchmarks
include BoolQ, PIQA, Winogrande, TriviaQA, RACE, and CMRC.

21


