2023-04-27 21:42:17 +08:00
|
|
|
|
# LaWGPT:基于中文法律知识的大语言模型
|
|
|
|
|
|
2023-04-27 21:45:10 +08:00
|
|
|
|
<p align="center">
|
2023-05-13 23:55:49 +08:00
|
|
|
|
<a href="assets/logo/lawgpt.jpeg">
|
2023-05-13 22:27:31 +08:00
|
|
|
|
<img src="./assets/logo/lawgpt.jpeg" width="80%" >
|
2023-04-27 21:45:10 +08:00
|
|
|
|
</a>
|
|
|
|
|
</p>
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
<p align="center">
|
2023-05-15 12:21:35 +08:00
|
|
|
|
<a href="https://github.com/pengxiao-song/LaWGPT/wiki"><img src="https://img.shields.io/badge/docs-Wiki-brightgreen"></a>
|
2023-05-14 19:57:20 +08:00
|
|
|
|
<a href=""><img src="https://img.shields.io/badge/version-beta1.0-blue"></a>
|
2023-04-27 21:42:17 +08:00
|
|
|
|
<a href=""><img src="https://img.shields.io/github/last-commit/pengxiao-song/lawgpt"></a>
|
2023-05-15 12:21:35 +08:00
|
|
|
|
<!-- <a href="https://www.lamda.nju.edu.cn/"><img src="https://img.shields.io/badge/support-NJU--LAMDA-9cf.svg"></a> -->
|
2023-04-27 21:42:17 +08:00
|
|
|
|
</p>
|
|
|
|
|
|
2023-05-13 17:26:44 +08:00
|
|
|
|
LaWGPT 是一系列基于中文法律知识的开源大语言模型。
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-13 17:26:44 +08:00
|
|
|
|
该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、**大规模中文法律语料预训练**,增强了大模型在法律领域的基础语义理解能力。在此基础上,**构造法律领域对话问答数据集、中国司法考试数据集进行指令精调**,提升了模型对法律内容的理解和执行能力。
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
详细内容请参考[技术报告]()。
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
本项目持续开展,法律领域数据集及系列模型后续相继开源,敬请关注。
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
## 更新
|
|
|
|
|
|
2023-05-15 12:21:35 +08:00
|
|
|
|
- 🪴 2023/05/15:发布 [中文法律数据源汇总(Awesome Chinese Legal Resources)](https://github.com/pengxiao-song/awesome-chinese-legal-resources) 和 [法律领域词表](https://github.com/pengxiao-song/LaWGPT/blob/main/resources/legal_vocab.txt)
|
|
|
|
|
|
|
|
|
|
- 🌟 2023/05/13:公开发布
|
2023-05-14 19:57:20 +08:00
|
|
|
|
<a href=""><img src="https://img.shields.io/badge/Model-Legal--Base--7B-blue"></a>
|
|
|
|
|
<a href=""><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.0-yellow"></a>
|
2023-05-13 22:27:31 +08:00
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
- **Legal-Base-7B**:法律基座模型,使用 50w 中文裁判文书数据二次预训练
|
2023-05-13 22:27:31 +08:00
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
- **LaWGPT-7B-beta1.0**:法律对话模型,构造 30w 高质量法律问答数据集基于 Legal-Base-7B 指令精调
|
2023-05-13 22:27:31 +08:00
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
- 🌟 2023/04/12:内部测试
|
|
|
|
|
<a href=""><img src="https://img.shields.io/badge/Model-Lawgpt--7B--alpha-yellow"></a>
|
2023-05-13 23:39:22 +08:00
|
|
|
|
- **LaWGPT-7B-alpha**:在 Chinese-LLaMA-7B 的基础上直接构造 30w 法律问答数据集指令精调
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
## 快速开始
|
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
1. 准备代码,创建环境
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
```bash
|
|
|
|
|
git clone git@github.com:pengxiao-song/LaWGPT.git
|
|
|
|
|
cd LaWGPT
|
|
|
|
|
conda activate lawgpt
|
|
|
|
|
pip install -r requirements.txt
|
|
|
|
|
```
|
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
2. 合并模型权重(可选)
|
2023-05-13 22:27:31 +08:00
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
**如果您想使用 LaWGPT-7B-alpha 模型,可跳过改步,直接进入步骤3.**
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
|
|
|
|
如果您想使用 LaWGPT-7B-beta1.0 模型:
|
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
由于 [LLaMA](https://github.com/facebookresearch/llama) 和 [Chinese-LLaMA](https://github.com/ymcui/Chinese-LLaMA-Alpaca) 均未开源模型权重。根据相应开源许可,**本项目只能发布 LoRA 权重**,无法发布完整的模型权重,请各位谅解。
|
|
|
|
|
|
|
|
|
|
本项目给出[合并方式](https://github.com/pengxiao-song/LaWGPT/wiki/%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6),请各位获取原版权重后自行重构模型。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. 启动示例
|
|
|
|
|
|
|
|
|
|
启动本地服务:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
conda activate lawgpt
|
|
|
|
|
cd LaWGPT
|
|
|
|
|
sh src/scripts/generate.sh
|
|
|
|
|
```
|
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
接入服务:
|
2023-05-13 22:27:31 +08:00
|
|
|
|
|
|
|
|
|
<p align="center">
|
|
|
|
|
<img src="./assets/demo/demo.png" width="80%" >
|
|
|
|
|
</p>
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 项目结构
|
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
```bash
|
|
|
|
|
LaWGPT
|
|
|
|
|
├── assets # 项目静态资源
|
|
|
|
|
├── data # 语料及精调数据
|
|
|
|
|
├── tools # 数据清洗等工具
|
|
|
|
|
├── README.md
|
|
|
|
|
├── requirements.txt
|
|
|
|
|
└── src # 源码
|
|
|
|
|
├── finetune.py
|
|
|
|
|
├── generate.py
|
|
|
|
|
├── models # 基座模型及 Lora 权重
|
|
|
|
|
│ ├── base_models
|
|
|
|
|
│ └── lora_weights
|
|
|
|
|
├── outputs
|
|
|
|
|
├── scripts # 脚本文件
|
|
|
|
|
│ ├── finetune.sh # 指令微调
|
|
|
|
|
│ └── generate.sh # 服务创建
|
|
|
|
|
├── templates
|
|
|
|
|
└── utils
|
|
|
|
|
```
|
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
## 数据构建
|
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
本项目基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,详情参考[中文法律数据汇总]()
|
2023-05-13 17:26:44 +08:00
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
1. 初级数据生成:根据 [Stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca#data-generation-process) 和 [self-instruct](https://github.com/yizhongw/self-instruct) 方式生成对话问答数据
|
|
|
|
|
2. 知识引导的数据生成:通过 Knowledge-based Self-Instruct 方式基于中文法律结构化知识生成数据。
|
|
|
|
|
3. 引入 ChatGPT 清洗数据,辅助构造高质量数据集。
|
2023-05-13 17:26:44 +08:00
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 模型训练
|
|
|
|
|
|
2023-05-13 23:55:49 +08:00
|
|
|
|
LawGPT 系列模型的训练过程分为两个阶段:
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
1. 第一阶段:扩充法律领域词表,在大规模法律文书及法典数据上预训练 Chinese-LLaMA
|
|
|
|
|
2. 第二阶段:构造法律领域对话问答数据集,在预训练模型基础上指令精调
|
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
### 二次训练流程
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-16 23:19:38 +08:00
|
|
|
|
1. 参考 `src/data/example_instruction_train.json` 构造二次训练数据集
|
2023-05-16 16:53:03 +08:00
|
|
|
|
2. 运行 `src/scripts/train_lora.sh`
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
### 指令精调步骤
|
|
|
|
|
|
2023-05-16 23:18:44 +08:00
|
|
|
|
1. 参考 `src/data/example_instruction_tune.json` 构造指令微调数据集
|
2023-05-13 22:27:31 +08:00
|
|
|
|
2. 运行 `src/scripts/finetune.sh`
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
### 计算资源
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-20 15:31:58 +08:00
|
|
|
|
8 张 Tesla V100-SXM2-32GB :二次训练阶段耗时约 24h / epoch,微调阶段耗时约 12h / epoch
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
## 模型评估
|
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
### 输出示例
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-16 16:53:03 +08:00
|
|
|
|
<details><summary>问题:请给出判决意见。</summary>
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
2023-05-16 16:53:03 +08:00
|
|
|
|
![](assets/demo/example-05.jpeg)
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
<details><summary>问题:请介绍赌博罪的定义。</summary>
|
|
|
|
|
|
|
|
|
|
![](assets/demo/example-06.jpeg)
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
<details><summary>问题:请问加班工资怎么算?</summary>
|
|
|
|
|
|
|
|
|
|
![](assets/demo/example-04.jpeg)
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
<details><summary>问题:民间借贷受国家保护的合法利息是多少?</summary>
|
|
|
|
|
|
|
|
|
|
![](assets/demo/example-02.jpeg)
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
2023-05-16 16:53:03 +08:00
|
|
|
|
<details><summary>问题:欠了信用卡的钱还不上要坐牢吗?</summary>
|
|
|
|
|
|
|
|
|
|
![](assets/demo/example-01.jpeg)
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
<details><summary>问题:你能否写一段抢劫罪罪名的案情描述?</summary>
|
|
|
|
|
|
2023-05-16 16:53:03 +08:00
|
|
|
|
![](assets/demo/example-03.jpeg)
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
2023-05-16 16:53:03 +08:00
|
|
|
|
|
2023-05-13 22:27:31 +08:00
|
|
|
|
### 局限性
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
由于计算资源、数据规模等因素限制,当前阶段 LawGPT 存在诸多局限性:
|
|
|
|
|
|
|
|
|
|
1. 数据资源有限、模型容量较小,导致其相对较弱的模型记忆和语言能力。因此,在面对事实性知识任务时,可能会生成不正确的结果。
|
|
|
|
|
2. 该系列模型只进行了初步的人类意图对齐。因此,可能产生不可预测的有害内容以及不符合人类偏好和价值观的内容。
|
|
|
|
|
3. 自我认知能力存在问题,中文理解能力有待增强。
|
|
|
|
|
|
|
|
|
|
请诸君在使用前了解上述问题,以免造成误解和不必要的麻烦。
|
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 协作者
|
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
如下各位合作开展(按字母序排列):[@cainiao](https://github.com/herobrine19)、[@njuyxw](https://github.com/njuyxw)、[@pengxiao-song](https://github.com/pengxiao-song)
|
|
|
|
|
|
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 免责声明
|
|
|
|
|
|
|
|
|
|
请各位严格遵守如下约定:
|
|
|
|
|
|
|
|
|
|
1. 本项目任何资源**仅供学术研究使用,严禁任何商业用途**。
|
|
|
|
|
2. 模型输出受多种不确定性因素影响,本项目当前无法保证其准确性,**严禁用于真实法律场景**。
|
|
|
|
|
3. 本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
|
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 问题反馈
|
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
如有问题,请在 GitHub Issue 中提交。
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
- 提交问题之前,建议查阅 FAQ 及以往的 issue 看是否能解决您的问题。
|
|
|
|
|
- 请礼貌讨论,构建和谐社区。
|
|
|
|
|
|
|
|
|
|
协作者科研之余推进项目进展,由于人力有限难以实时反馈,给诸君带来不便,敬请谅解!
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
2023-05-14 19:57:20 +08:00
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 致谢
|
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
本项目基于如下开源项目展开,在此对相关项目和开发人员表示诚挚的感谢:
|
2023-04-27 21:42:17 +08:00
|
|
|
|
|
|
|
|
|
- Chinese-LLaMA-Alpaca: https://github.com/ymcui/Chinese-LLaMA-Alpaca
|
|
|
|
|
- LLaMA: https://github.com/facebookresearch/llama
|
|
|
|
|
- Alpaca: https://github.com/tatsu-lab/stanford_alpaca
|
|
|
|
|
- alpaca-lora: https://github.com/tloen/alpaca-lora
|
|
|
|
|
- ChatGLM-6B: https://github.com/THUDM/ChatGLM-6B
|
|
|
|
|
|
2023-05-15 12:21:35 +08:00
|
|
|
|
此外,本项目基于开放数据资源,详见 [Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources),一并表示感谢。
|
2023-05-14 19:57:20 +08:00
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
|
2023-04-27 21:42:17 +08:00
|
|
|
|
## 引用
|
|
|
|
|
|
2023-05-13 23:39:22 +08:00
|
|
|
|
如果您觉得我们的工作对您有所帮助,请考虑引用该项目
|