260 lines
8.9 KiB
Python
260 lines
8.9 KiB
Python
|
import os
|
||
|
import sys
|
||
|
from typing import List
|
||
|
|
||
|
import fire
|
||
|
import torch
|
||
|
import transformers
|
||
|
from datasets import load_dataset
|
||
|
|
||
|
from peft import (
|
||
|
LoraConfig,
|
||
|
get_peft_model,
|
||
|
get_peft_model_state_dict,
|
||
|
prepare_model_for_int8_training,
|
||
|
set_peft_model_state_dict,
|
||
|
)
|
||
|
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||
|
from utils.prompter import Prompter
|
||
|
|
||
|
|
||
|
def train(
|
||
|
# model/data params
|
||
|
base_model: str = "./models/base_models/your_base_model_dir",
|
||
|
data_path: str = "./data/your_data.json",
|
||
|
output_dir: str = "./outputs/your_version_dir",
|
||
|
|
||
|
# training hyperparams
|
||
|
batch_size: int = 128,
|
||
|
micro_batch_size: int = 4,
|
||
|
num_epochs: int = 10,
|
||
|
learning_rate: float = 3e-4,
|
||
|
cutoff_len: int = 512,
|
||
|
val_set_size: int = 2000,
|
||
|
|
||
|
# lora hyperparams
|
||
|
lora_r: int = 8,
|
||
|
lora_alpha: int = 16,
|
||
|
lora_dropout: float = 0.05,
|
||
|
lora_target_modules: List[str] = ["q_proj", "v_proj",],
|
||
|
|
||
|
# llm hyperparams
|
||
|
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
||
|
add_eos_token: bool = True,
|
||
|
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
||
|
|
||
|
# wandb params
|
||
|
wandb_project: str = "",
|
||
|
wandb_run_name: str = "",
|
||
|
wandb_watch: str = "", # options: false | gradients | all
|
||
|
wandb_log_model: str = "", # options: false | true
|
||
|
|
||
|
# either training checkpoint or final adapter
|
||
|
resume_from_checkpoint: str = None,
|
||
|
|
||
|
# The prompt template to use, will default to alpaca.
|
||
|
prompt_template_name: str = "alpaca",
|
||
|
):
|
||
|
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
||
|
print(
|
||
|
f"Training Alpaca-LoRA model with params:\n"
|
||
|
f"base_model: {base_model}\n"
|
||
|
f"data_path: {data_path}\n"
|
||
|
f"output_dir: {output_dir}\n"
|
||
|
f"batch_size: {batch_size}\n"
|
||
|
f"micro_batch_size: {micro_batch_size}\n"
|
||
|
f"num_epochs: {num_epochs}\n"
|
||
|
f"learning_rate: {learning_rate}\n"
|
||
|
f"cutoff_len: {cutoff_len}\n"
|
||
|
f"val_set_size: {val_set_size}\n"
|
||
|
f"lora_r: {lora_r}\n"
|
||
|
f"lora_alpha: {lora_alpha}\n"
|
||
|
f"lora_dropout: {lora_dropout}\n"
|
||
|
f"lora_target_modules: {lora_target_modules}\n"
|
||
|
f"train_on_inputs: {train_on_inputs}\n"
|
||
|
f"add_eos_token: {add_eos_token}\n"
|
||
|
f"group_by_length: {group_by_length}\n"
|
||
|
f"wandb_project: {wandb_project}\n"
|
||
|
f"wandb_run_name: {wandb_run_name}\n"
|
||
|
f"wandb_watch: {wandb_watch}\n"
|
||
|
f"wandb_log_model: {wandb_log_model}\n"
|
||
|
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
||
|
f"prompt template: {prompt_template_name}\n"
|
||
|
)
|
||
|
gradient_accumulation_steps = batch_size // micro_batch_size
|
||
|
|
||
|
prompter = Prompter(prompt_template_name)
|
||
|
|
||
|
# Configure device and distributed training
|
||
|
device_map = "auto"
|
||
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||
|
ddp = world_size != 1
|
||
|
if ddp:
|
||
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
||
|
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
||
|
|
||
|
# Check if parameter passed or if set within environ
|
||
|
use_wandb = len(wandb_project) > 0 or (
|
||
|
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0)
|
||
|
|
||
|
# Only overwrite environ if wandb param passed
|
||
|
if len(wandb_project) > 0:
|
||
|
os.environ["WANDB_PROJECT"] = wandb_project
|
||
|
if len(wandb_watch) > 0:
|
||
|
os.environ["WANDB_WATCH"] = wandb_watch
|
||
|
if len(wandb_log_model) > 0:
|
||
|
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
||
|
|
||
|
model = LlamaForCausalLM.from_pretrained(
|
||
|
base_model,
|
||
|
load_in_8bit=True,
|
||
|
torch_dtype=torch.float16,
|
||
|
device_map=device_map,
|
||
|
)
|
||
|
|
||
|
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
||
|
tokenizer.bos_token_id = 1
|
||
|
tokenizer.eos_token_id = 2
|
||
|
bos = tokenizer.bos_token_id
|
||
|
eos = tokenizer.eos_token_id
|
||
|
pad = tokenizer.pad_token_id
|
||
|
|
||
|
print("pre-trained model's BOS EOS and PAD token id:",
|
||
|
bos, eos, pad, " => It should be 1,2,none")
|
||
|
|
||
|
tokenizer.pad_token_id = (
|
||
|
0 # unk. we want this to be different from the eos token
|
||
|
)
|
||
|
tokenizer.padding_side = "left" # Allow batched inference
|
||
|
|
||
|
def tokenize(prompt, add_eos_token=True):
|
||
|
# there's probably a way to do this with the tokenizer settings
|
||
|
# but again, gotta move fast
|
||
|
result = tokenizer(
|
||
|
prompt,
|
||
|
truncation=True,
|
||
|
max_length=cutoff_len,
|
||
|
padding=False,
|
||
|
return_tensors=None,
|
||
|
)
|
||
|
if (
|
||
|
result["input_ids"][-1] != tokenizer.eos_token_id
|
||
|
and len(result["input_ids"]) < cutoff_len
|
||
|
and add_eos_token
|
||
|
):
|
||
|
result["input_ids"].append(tokenizer.eos_token_id)
|
||
|
result["attention_mask"].append(1)
|
||
|
|
||
|
result["labels"] = result["input_ids"].copy()
|
||
|
|
||
|
return result
|
||
|
|
||
|
def generate_and_tokenize_prompt(data_point):
|
||
|
text = data_point['content']
|
||
|
tokenized_full_prompt = tokenize(text)
|
||
|
return tokenized_full_prompt
|
||
|
|
||
|
model = prepare_model_for_int8_training(model)
|
||
|
|
||
|
config = LoraConfig(
|
||
|
r=lora_r,
|
||
|
lora_alpha=lora_alpha,
|
||
|
target_modules=lora_target_modules,
|
||
|
lora_dropout=lora_dropout,
|
||
|
bias="none",
|
||
|
task_type="CAUSAL_LM",
|
||
|
)
|
||
|
model = get_peft_model(model, config)
|
||
|
|
||
|
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
||
|
data = load_dataset("json", data_files=data_path)
|
||
|
else:
|
||
|
data = load_dataset(data_path)
|
||
|
|
||
|
if resume_from_checkpoint:
|
||
|
# Check the available weights and load them
|
||
|
checkpoint_name = os.path.join(
|
||
|
resume_from_checkpoint, "pytorch_model.bin"
|
||
|
) # Full checkpoint
|
||
|
if not os.path.exists(checkpoint_name):
|
||
|
checkpoint_name = os.path.join(
|
||
|
resume_from_checkpoint, "adapter_model.bin"
|
||
|
) # only LoRA model - LoRA config above has to fit
|
||
|
resume_from_checkpoint = (
|
||
|
False # So the trainer won't try loading its state
|
||
|
)
|
||
|
# The two files above have a different name depending on how they were saved, but are actually the same.
|
||
|
if os.path.exists(checkpoint_name):
|
||
|
print(f"Restarting from {checkpoint_name}")
|
||
|
adapters_weights = torch.load(checkpoint_name)
|
||
|
set_peft_model_state_dict(model, adapters_weights)
|
||
|
else:
|
||
|
print(f"Checkpoint {checkpoint_name} not found")
|
||
|
|
||
|
# Be more transparent about the % of trainable params.
|
||
|
model.print_trainable_parameters()
|
||
|
|
||
|
if val_set_size > 0:
|
||
|
train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
|
||
|
train_data = (train_val["train"].shuffle().map(generate_and_tokenize_prompt))
|
||
|
val_data = (train_val["test"].shuffle().map(generate_and_tokenize_prompt))
|
||
|
else:
|
||
|
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
||
|
val_data = None
|
||
|
|
||
|
if not ddp and torch.cuda.device_count() > 1:
|
||
|
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
||
|
model.is_parallelizable = True
|
||
|
model.model_parallel = True
|
||
|
|
||
|
trainer = transformers.Trainer(
|
||
|
model=model,
|
||
|
train_dataset=train_data,
|
||
|
eval_dataset=val_data,
|
||
|
args=transformers.TrainingArguments(
|
||
|
per_device_train_batch_size=micro_batch_size,
|
||
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
||
|
warmup_steps=100,
|
||
|
num_train_epochs=num_epochs,
|
||
|
learning_rate=learning_rate,
|
||
|
fp16=True,
|
||
|
logging_steps=10,
|
||
|
optim="adamw_torch",
|
||
|
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
||
|
save_strategy="steps",
|
||
|
eval_steps=100 if val_set_size > 0 else None,
|
||
|
save_steps=100,
|
||
|
output_dir=output_dir,
|
||
|
save_total_limit=3,
|
||
|
load_best_model_at_end=True if val_set_size > 0 else False,
|
||
|
ddp_find_unused_parameters=False if ddp else None,
|
||
|
group_by_length=group_by_length,
|
||
|
report_to="wandb" if use_wandb else None,
|
||
|
run_name=wandb_run_name if use_wandb else None,
|
||
|
),
|
||
|
data_collator=transformers.DataCollatorForSeq2Seq(
|
||
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
||
|
),
|
||
|
)
|
||
|
model.config.use_cache = False
|
||
|
|
||
|
old_state_dict = model.state_dict
|
||
|
model.state_dict = (
|
||
|
lambda self, *_, **__: get_peft_model_state_dict(
|
||
|
self, old_state_dict()
|
||
|
)
|
||
|
).__get__(model, type(model))
|
||
|
|
||
|
if torch.__version__ >= "2" and sys.platform != "win32":
|
||
|
model = torch.compile(model)
|
||
|
|
||
|
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
||
|
|
||
|
model.save_pretrained(output_dir)
|
||
|
|
||
|
print("\n If there's a warning about missing keys above, please disregard :)")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fire.Fire(train)
|