LaWGPT/README.md

258 lines
10 KiB
Markdown
Raw Permalink Normal View History

2023-04-27 21:42:17 +08:00
# LaWGPT基于中文法律知识的大语言模型
2023-04-27 21:45:10 +08:00
<p align="center">
2023-05-13 23:55:49 +08:00
<a href="assets/logo/lawgpt.jpeg">
2023-05-13 22:27:31 +08:00
<img src="./assets/logo/lawgpt.jpeg" width="80%" >
2023-04-27 21:45:10 +08:00
</a>
</p>
2023-04-27 21:42:17 +08:00
<p align="center">
2023-05-15 12:21:35 +08:00
<a href="https://github.com/pengxiao-song/LaWGPT/wiki"><img src="https://img.shields.io/badge/docs-Wiki-brightgreen"></a>
2023-05-30 15:32:48 +08:00
<a href="https://huggingface.co/entity303"><img src="https://img.shields.io/badge/Hugging%20Face-entity303-green"></a>
<a href=""><img src="https://img.shields.io/badge/version-beta1.1-blue"></a>
2023-05-23 14:25:24 +08:00
<a href=""><img src="https://img.shields.io/badge/os-Linux-9cf"></a>
2023-04-27 21:42:17 +08:00
<a href=""><img src="https://img.shields.io/github/last-commit/pengxiao-song/lawgpt"></a>
2023-05-24 04:03:54 +08:00
<a href="https://star-history.com/#pengxiao-song/LaWGPT&Timeline"><img src="https://img.shields.io/github/stars/pengxiao-song/lawgpt?color=yellow"></a>
2023-05-15 12:21:35 +08:00
<!-- <a href="https://www.lamda.nju.edu.cn/"><img src="https://img.shields.io/badge/support-NJU--LAMDA-9cf.svg"></a> -->
2023-04-27 21:42:17 +08:00
</p>
2023-05-13 17:26:44 +08:00
LaWGPT 是一系列基于中文法律知识的开源大语言模型。
2023-04-27 21:42:17 +08:00
2023-05-13 17:26:44 +08:00
该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、**大规模中文法律语料预训练**,增强了大模型在法律领域的基础语义理解能力。在此基础上,**构造法律领域对话问答数据集、中国司法考试数据集进行指令精调**,提升了模型对法律内容的理解和执行能力。
2023-04-27 21:42:17 +08:00
详细内容请参考[技术报告](https://arxiv.org/pdf/2406.04614)。
2023-04-27 21:42:17 +08:00
---
2023-05-13 23:55:49 +08:00
本项目持续开展,法律领域数据集及系列模型后续相继开源,敬请关注。
2023-04-27 21:42:17 +08:00
## 更新
2023-05-30 15:32:48 +08:00
- 🌟 2023/05/30公开发布
<a href="https://huggingface.co/entity303/lawgpt-lora-7b-v2"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.1-yellow"></a>
- **LaWGPT-7B-beta1.1**:法律对话模型,构造 35w 高质量法律问答数据集基于 Chinese-alpaca-plus-7B 指令精调
2023-05-26 15:38:39 +08:00
- 📣 2023/05/26开放 [Discussions 讨论区](https://github.com/pengxiao-song/LaWGPT/discussions),欢迎朋友们交流探讨、提出意见、分享观点!
2023-05-26 15:37:28 +08:00
2023-05-22 22:27:17 +08:00
- 🛠️ 2023/05/22项目主分支结构调整详见[项目结构](https://github.com/pengxiao-song/LaWGPT#项目结构);支持[命令行批量推理](https://github.com/pengxiao-song/LaWGPT/blob/main/scripts/infer.sh)
2023-04-27 21:42:17 +08:00
2023-05-15 12:21:35 +08:00
- 🪴 2023/05/15发布 [中文法律数据源汇总Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources) 和 [法律领域词表](https://github.com/pengxiao-song/LaWGPT/blob/main/resources/legal_vocab.txt)
- 🌟 2023/05/13公开发布
2023-05-30 15:32:48 +08:00
<a href="https://huggingface.co/entity303/legal-lora-7b"><img src="https://img.shields.io/badge/Model-Legal--Base--7B-blue"></a>
<a href="https://huggingface.co/entity303/lawgpt-legal-lora-7b"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.0-yellow"></a>
2023-05-13 22:27:31 +08:00
2023-05-13 23:39:22 +08:00
- **Legal-Base-7B**:法律基座模型,使用 50w 中文裁判文书数据二次预训练
2023-05-13 22:27:31 +08:00
2023-05-14 19:57:20 +08:00
- **LaWGPT-7B-beta1.0**:法律对话模型,构造 30w 高质量法律问答数据集基于 Legal-Base-7B 指令精调
2023-05-13 22:27:31 +08:00
2023-05-14 19:57:20 +08:00
- 🌟 2023/04/12内部测试
2023-05-30 15:32:48 +08:00
<a href="https://huggingface.co/entity303/lawgpt-lora-7b"><img src="https://img.shields.io/badge/Model-Lawgpt--7B--alpha-yellow"></a>
2023-05-13 23:39:22 +08:00
- **LaWGPT-7B-alpha**:在 Chinese-LLaMA-7B 的基础上直接构造 30w 法律问答数据集指令精调
2023-04-27 21:42:17 +08:00
## 快速开始
2023-05-13 22:27:31 +08:00
1. 准备代码,创建环境
2023-04-27 21:42:17 +08:00
2023-05-13 22:27:31 +08:00
```bash
2023-05-22 16:48:12 +08:00
# 下载代码
2023-05-13 22:27:31 +08:00
git clone git@github.com:pengxiao-song/LaWGPT.git
cd LaWGPT
# 创建环境
conda create -n lawgpt python=3.10 -y
2023-05-13 22:27:31 +08:00
conda activate lawgpt
pip install -r requirements.txt
```
2023-05-22 22:27:17 +08:00
2. **启动 web ui可选易于调节参数**
2023-05-22 22:32:09 +08:00
- 首先,执行服务启动脚本:`bash scripts/webui.sh`
2023-05-13 22:27:31 +08:00
2023-05-22 22:27:17 +08:00
- 其次,访问 http://127.0.0.1:7860
2023-05-24 04:03:54 +08:00
2023-05-22 15:33:57 +08:00
<p align="center">
2023-05-24 04:03:54 +08:00
<img style="border-radius: 50%; box-shadow: 0 0 10px rgba(0,0,0,0.5); width: 80%;", src="./assets/demo/example-03.jpeg">
2023-05-22 15:33:57 +08:00
</p>
2023-05-22 22:27:17 +08:00
3. **命令行推理(可选,支持批量测试)**
2023-05-22 15:33:57 +08:00
2023-05-22 22:27:17 +08:00
- 首先,参考 `resources/example_infer_data.json` 文件内容构造测试样本集;
2023-05-13 22:27:31 +08:00
2023-05-22 22:27:17 +08:00
- 其次,执行推理脚本:`bash scripts/infer.sh`。其中 `--infer_data_path` 参数为测试样本集路径,如果为空或者路径出错,则以交互模式运行。
2023-05-13 23:39:22 +08:00
2023-05-22 22:27:17 +08:00
注意,以上步骤的默认模型为 LaWGPT-7B-alpha ,如果您想使用 LaWGPT-7B-beta1.0 模型:
2023-05-13 23:39:22 +08:00
2023-05-22 22:27:17 +08:00
- 由于 [LLaMA](https://github.com/facebookresearch/llama) 和 [Chinese-LLaMA](https://github.com/ymcui/Chinese-LLaMA-Alpaca) 均未开源模型权重。根据相应开源许可,**本项目只能发布 LoRA 权重**,无法发布完整的模型权重,请各位谅解。
- 本项目给出[合并方式](https://github.com/pengxiao-song/LaWGPT/wiki/%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6),请各位获取原版权重后自行重构模型。
2023-05-13 22:27:31 +08:00
2023-04-27 21:42:17 +08:00
## 项目结构
2023-05-22 16:48:12 +08:00
```bash
2023-05-13 22:27:31 +08:00
LaWGPT
2023-05-22 16:48:12 +08:00
├── assets # 静态资源
├── resources # 项目资源
├── models # 基座模型及 lora 权重
│ ├── base_models
│ └── lora_weights
├── outputs # 指令微调的输出权重
├── data # 实验数据
├── scripts # 脚本目录
│ ├── finetune.sh # 指令微调脚本
│ └── webui.sh # 启动服务脚本
├── templates # prompt 模板
├── tools # 工具包
├── utils
├── train_clm.py # 二次训练
├── finetune.py # 指令微调
├── webui.py # 启动服务
2023-05-13 22:27:31 +08:00
├── README.md
2023-05-22 16:48:12 +08:00
└── requirements.txt
2023-05-13 22:27:31 +08:00
```
2023-04-27 21:42:17 +08:00
## 数据构建
2023-05-28 18:17:08 +08:00
本项目基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,详情参考[中文法律数据源汇总Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources)。
2023-05-13 17:26:44 +08:00
2023-05-13 23:55:49 +08:00
1. 初级数据生成:根据 [Stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca#data-generation-process) 和 [self-instruct](https://github.com/yizhongw/self-instruct) 方式生成对话问答数据
2. 知识引导的数据生成:通过 Knowledge-based Self-Instruct 方式基于中文法律结构化知识生成数据。
3. 引入 ChatGPT 清洗数据,辅助构造高质量数据集。
2023-05-13 17:26:44 +08:00
2023-04-27 21:42:17 +08:00
## 模型训练
2023-05-13 23:55:49 +08:00
LawGPT 系列模型的训练过程分为两个阶段:
2023-04-27 21:42:17 +08:00
1. 第一阶段:扩充法律领域词表,在大规模法律文书及法典数据上预训练 Chinese-LLaMA
2. 第二阶段:构造法律领域对话问答数据集,在预训练模型基础上指令精调
2023-05-13 22:27:31 +08:00
### 二次训练流程
2023-04-27 21:42:17 +08:00
2023-05-22 17:09:35 +08:00
1. 参考 `resources/example_instruction_train.json` 构造二次训练数据集
2. 运行 `scripts/train_clm.sh`
2023-05-13 23:39:22 +08:00
2023-05-13 22:27:31 +08:00
### 指令精调步骤
2023-05-22 17:09:35 +08:00
1. 参考 `resources/example_instruction_tune.json` 构造指令微调数据集
2023-05-22 16:48:12 +08:00
2. 运行 `scripts/finetune.sh`
2023-04-27 21:42:17 +08:00
2023-05-13 22:27:31 +08:00
### 计算资源
2023-04-27 21:42:17 +08:00
2023-05-20 15:31:58 +08:00
8 张 Tesla V100-SXM2-32GB :二次训练阶段耗时约 24h / epoch微调阶段耗时约 12h / epoch
2023-04-27 21:42:17 +08:00
## 模型评估
2023-05-13 22:27:31 +08:00
### 输出示例
2023-04-27 21:42:17 +08:00
2023-05-23 14:25:24 +08:00
<details><summary>问题:酒驾撞人怎么判刑?</summary>
2023-05-23 14:28:47 +08:00
![](assets/demo/demo07.jpeg)
2023-05-23 14:25:24 +08:00
</details>
2023-05-16 16:53:03 +08:00
<details><summary>问题:请给出判决意见。</summary>
2023-05-13 23:39:22 +08:00
2023-05-16 16:53:03 +08:00
![](assets/demo/example-05.jpeg)
</details>
<details><summary>问题:请介绍赌博罪的定义。</summary>
![](assets/demo/example-06.jpeg)
</details>
<details><summary>问题:请问加班工资怎么算?</summary>
![](assets/demo/example-04.jpeg)
2023-05-13 23:39:22 +08:00
</details>
<details><summary>问题:民间借贷受国家保护的合法利息是多少?</summary>
![](assets/demo/example-02.jpeg)
</details>
2023-05-16 16:53:03 +08:00
<details><summary>问题:欠了信用卡的钱还不上要坐牢吗?</summary>
![](assets/demo/example-01.jpeg)
</details>
2023-05-13 23:39:22 +08:00
<details><summary>问题:你能否写一段抢劫罪罪名的案情描述?</summary>
2023-05-16 16:53:03 +08:00
![](assets/demo/example-03.jpeg)
2023-05-13 23:39:22 +08:00
</details>
2023-05-16 16:53:03 +08:00
2023-05-13 22:27:31 +08:00
### 局限性
2023-04-27 21:42:17 +08:00
由于计算资源、数据规模等因素限制,当前阶段 LawGPT 存在诸多局限性:
1. 数据资源有限、模型容量较小,导致其相对较弱的模型记忆和语言能力。因此,在面对事实性知识任务时,可能会生成不正确的结果。
2. 该系列模型只进行了初步的人类意图对齐。因此,可能产生不可预测的有害内容以及不符合人类偏好和价值观的内容。
3. 自我认知能力存在问题,中文理解能力有待增强。
请诸君在使用前了解上述问题,以免造成误解和不必要的麻烦。
2023-05-14 19:57:20 +08:00
2023-04-27 21:42:17 +08:00
## 协作者
如下各位合作开展(按字母序排列):[@cainiao](https://github.com/herobrine19)、[@njuyxw](https://github.com/njuyxw)、[@pengxiao-song](https://github.com/pengxiao-song)、[@WNJXYK](https://github.com/WNJXYK)
指导老师:李宇峰、郭兰哲、涂威威(<img src="https://github.com/pengxiao-song/LaWGPT/assets/47233927/3ae2cfac-f2b0-4383-8a7e-0252d8558aed" width="10%" >),由南京大学机器学习与数据挖掘研究组(
<img src="assets/logo/lamda.png" width="8%"> &nbsp;
)支持
2023-05-14 19:57:20 +08:00
2023-04-27 21:42:17 +08:00
## 免责声明
请各位严格遵守如下约定:
1. 本项目任何资源**仅供学术研究使用,严禁任何商业用途**。
2. 模型输出受多种不确定性因素影响,本项目当前无法保证其准确性,**严禁用于真实法律场景**。
3. 本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
2023-05-14 19:57:20 +08:00
2023-04-27 21:42:17 +08:00
## 问题反馈
2023-05-13 23:39:22 +08:00
如有问题,请在 GitHub Issue 中提交。
2023-04-27 21:42:17 +08:00
2023-05-13 23:39:22 +08:00
- 提交问题之前,建议查阅 FAQ 及以往的 issue 看是否能解决您的问题。
- 请礼貌讨论,构建和谐社区。
协作者科研之余推进项目进展,由于人力有限难以实时反馈,给诸君带来不便,敬请谅解!
2023-04-27 21:42:17 +08:00
2023-05-14 19:57:20 +08:00
2023-04-27 21:42:17 +08:00
## 致谢
2023-05-13 23:39:22 +08:00
本项目基于如下开源项目展开,在此对相关项目和开发人员表示诚挚的感谢:
2023-04-27 21:42:17 +08:00
- Chinese-LLaMA-Alpaca: https://github.com/ymcui/Chinese-LLaMA-Alpaca
- LLaMA: https://github.com/facebookresearch/llama
- Alpaca: https://github.com/tatsu-lab/stanford_alpaca
- alpaca-lora: https://github.com/tloen/alpaca-lora
- ChatGLM-6B: https://github.com/THUDM/ChatGLM-6B
2023-05-15 12:21:35 +08:00
此外,本项目基于开放数据资源,详见 [Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources),一并表示感谢。
2023-05-14 19:57:20 +08:00
2023-05-13 23:39:22 +08:00
2023-04-27 21:42:17 +08:00
## 引用
如果您觉得我们的工作对您有所帮助,请考虑引用该项目。
```plain
@misc{lawgpt,
title={LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model},
author={Zhi Zhou and Jiang-Xin Shi and Peng-Xiao Song and Xiao-Wen Yang and Yi-Xuan Jin and Lan-Zhe Guo and Yu-Feng Li},
year={2024},
eprint={2406.04614},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```