diff --git a/.idea/workspace.xml b/.idea/workspace.xml
new file mode 100644
index 0000000..353b0fc
--- /dev/null
+++ b/.idea/workspace.xml
@@ -0,0 +1,70 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1678025547077
+
+
+ 1678025547077
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/space-1/README.md b/space-1/README.md
index a734388..abc715c 100644
--- a/space-1/README.md
+++ b/space-1/README.md
@@ -57,11 +57,11 @@ The downloaded zip file `data.zip` contains pre-training corpora and four TOD be
## Pre-training
### Pre-training Corpora
-- [UniDA](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE1.0/Pre-training%20Data.zip): a new labeled dialog dataset consisting of 975,780 utterances, which are annotated with 20 frequently-used DAs, according to our proposed comprehensive unified DA taxonomy for task-oriented dialog.
-- [UnDial](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE1.0/Pre-training%20Data.zip): a large-scale unlabeled dialog dataset consisting of 35M utterances with careful processing, ranging from online forum chatting logs to customer service conversations.
+- [UniDA](https://drive.google.com/file/d/146ZPNI_FDKNX0xd_iErmD8etA5yj5mox/view?usp=share_link): a new labeled dialog dataset consisting of 975,780 utterances, which are annotated with 20 frequently-used DAs, according to our proposed comprehensive unified DA taxonomy for task-oriented dialog.
+- [UnDial](https://drive.google.com/file/d/1-1CEyd1gPJL8r9Na6aD9Wq0mHg-fAaI8/view?usp=share_link): a large-scale unlabeled dialog dataset consisting of 35M utterances with careful processing, ranging from online forum chatting logs to customer service conversations.
### Pre-trained Checkpoint
-- [SPACE1.0](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE1.0/model.zip): an uncased model with DA classification head (12-layers, 768-hidden, 12-heads, 109M parameters)
+- [SPACE1.0](https://drive.google.com/file/d/18NPZQ6SH9Q0nFZenf_hNyuJTyT9IFAjL/view?usp=share_link): an uncased model with DA classification head (12-layers, 768-hidden, 12-heads, 109M parameters)
You need to unzip the downloaded model file `model.zip`, then put the unzipped directory `model` into the project directory `SPACE1.0` for the further fine-tuning.
@@ -84,7 +84,7 @@ sh scripts/pre_train/train_multi.sh
## Fine-tuning
### Fine-tuned Checkpoints
-Download checkpoints from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE1.0/outputs.zip).
+Download checkpoints from this [link](https://drive.google.com/file/d/1JerSwvLzes6b-igQ7lPCTIrh6IvrTMK6/view?usp=share_link).
The downloaded zip file `outputs.zip` contains our best fine-tuned checkpoints on different datasets:
- the **7-th** epoch on MultiWOZ2.0 (**60** training epochs in total)
diff --git a/space-2/README.md b/space-2/README.md
index c7979ae..3b4a713 100644
--- a/space-2/README.md
+++ b/space-2/README.md
@@ -49,11 +49,11 @@ SAVE_ROOT=/${PROJECT_NAME} # root path of model's output
```
### Data Preparation
-Download data-split1 from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/data.zip).
+Download data-split1 from this [link](https://drive.google.com/file/d/1ocwnuOLxB3VzngeWZsm59IRrhEv22Scx/view?usp=share_link).
The downloaded zip file `data.zip` contains pre-training corpora (including BANKING77, CLINC150 and HWU64) and three extra task-oriented (TOD) benchmark datasets: REST8K, DSTC8 and TOP, which have already been processed. You need to put the unzipped directory `data` into the project directory `SPACE2.0` for the subsequent training.
-Download data-split2 from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/trippy/data.zip).
+Download data-split2 from this [link](https://drive.google.com/file/d/1BZvlARzxXobjpQQRWvkF3jwnLN9-9c-n/view?usp=share_link).
The downloaded zip file `data.zip` contains one TOD benchmark dataset: MultiWOZ2.1, which have already been processed. You need to put the unzipped directory `data` into the directory `SPACE2.0/trippy` for the subsequent training.
@@ -77,12 +77,12 @@ SPACE2.0/
## Pre-training
### Pre-training Corpora
-- [AnPreDial](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/AnPreDial.zip): a new labeled dialog dataset annotated with semantic trees, which contains 32 existing labeled TOD datasets with 3
+- [AnPreDial](https://drive.google.com/file/d/1ocwnuOLxB3VzngeWZsm59IRrhEv22Scx/view?usp=share_link): a new labeled dialog dataset annotated with semantic trees, which contains 32 existing labeled TOD datasets with 3
million turns, ranging from single-turn QA to multi-turn dialogs.
-- [UnPreDial](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/UnPreDial.zip): a large-scale unlabeled dialog dataset consisting of 19M utterances with careful processing from 21 online dialog corpora, ranging from online forums to conversational machine reading comprehension.
+- [UnPreDial](https://drive.google.com/file/d/1ocwnuOLxB3VzngeWZsm59IRrhEv22Scx/view?usp=share_link): a large-scale unlabeled dialog dataset consisting of 19M utterances with careful processing from 21 online dialog corpora, ranging from online forums to conversational machine reading comprehension.
### Pre-trained Checkpoint
-- [SPACE2.0](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/model.zip): an uncased model (12-layers, 768-hidden, 12-heads, 110M parameters)
+- [SPACE2.0](https://drive.google.com/file/d/1QOhrd_kB8VXevEAo1Gohr58LxMI4OjYo/view?usp=share_link): an uncased model (12-layers, 768-hidden, 12-heads, 110M parameters)
You need to unzip the downloaded model file `model.zip`, then put the unzipped directory `model` into the project directory `SPACE2.0` for the further fine-tuning.
@@ -100,7 +100,7 @@ sh scripts/pre_train/train.sh
## Fine-tuning
### Fine-tuned Checkpoints
-Download checkpoints-split1 from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/outputs.zip).
+Download checkpoints-split1 from this [link](https://drive.google.com/file/d/10QEEMNsjO5rH0ZRsJBj9zkDc5ozxc3Ch/view?usp=share_link).
The downloaded zip file `outputs.zip` contains our best fine-tuned checkpoints on the following six datasets:
- BANKING77, CLINC150, HWU64 (**Intent Prediction**)
@@ -109,7 +109,7 @@ The downloaded zip file `outputs.zip` contains our best fine-tuned checkpoints o
If you want to reproduce our reported results, you should put the unzipped directory `outputs` into the directory `${SAVE_ROOT}` (set in scripts).
-Download checkpoints-split2 from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/trippy/outputs.zip).
+Download checkpoints-split2 from this [link](https://drive.google.com/file/d/1G7K6AIBcRTC3CgMtSZdJ_TM6rFeXGe96/view?usp=share_link).
The downloaded zip file `outputs.zip` contains our best fine-tuned checkpoints on one dataset:
- MultiWOZ2.1 (**Dialog State Tracking**)
@@ -159,7 +159,7 @@ sh scripts/multiwoz21/train.sh
> **NOTE**: You can skip Step 1 if you directly download the output model of Step 1.
> For DST task, you should convert model parameters into Hugging Face format.
-> So you can download the model file from this [link](http://datarepo0.oss-cn-hangzhou-zmf.aliyuncs.com/Alibaba/SPACE2/trippy/model.zip) directly.
+> So you can download the model file from this [link](https://drive.google.com/file/d/1xzKhKBg0hJPAq1NebluLIwfVxnfN1-1R/view?usp=share_link) directly.
> Then you need to unzip the downloaded model file `model.zip`, and put the unzipped directory `model` into the directory `SPACE2.0/trippy` for the further fine-tuning.
### Inference