DAMO-ConvAI/sunsql/model/encoder/lgesql.py

99 lines
4.8 KiB
Python
Raw Permalink Normal View History

2022-09-19 09:42:32 +08:00
#coding=utf8
import copy, math
import torch, dgl
import torch.nn as nn
import dgl.function as fn
from model.model_utils import Registrable, FFN
from model.encoder.rgatsql import RGATLayer, MultiViewRGATLayer
from model.encoder.functions import *
@Registrable.register('lgesql')
class LGESQL(nn.Module):
""" Compared with RGAT, we utilize a line graph to explicitly model the propagation among edges:
1. aggregate info from in-edges
2. aggregate info from src nodes
"""
def __init__(self, args):
super(LGESQL, self).__init__()
self.num_layers, self.num_heads = args.gnn_num_layers, args.num_heads
self.relation_share_heads = args.relation_share_heads
self.graph_view = args.local_and_nonlocal
self.ndim = args.gnn_hidden_size # node feature dim
self.edim = self.ndim // self.num_heads if self.relation_share_heads else \
self.ndim // 2 if self.graph_view == 'mmc' else self.ndim
self.relation_num = args.relation_num
self.relation_embed = nn.Embedding(self.relation_num, self.edim)
self.gnn_layers = nn.ModuleList([
DualRGATLayer(self.ndim, self.edim, num_heads=args.num_heads, feat_drop=args.dropout, graph_view=self.graph_view)
for _ in range(self.num_layers)])
def forward(self, x, batch):
global_lgx = self.relation_embed(batch.graph.global_edges)
mask = batch.graph.local_mask
local_lgx = global_lgx[mask]
local_g, global_g, lg = batch.graph.local_g, batch.graph.global_g, batch.graph.lg
src_ids, dst_ids = batch.graph.src_ids, batch.graph.dst_ids
for i in range(self.num_layers):
x, local_lgx = self.gnn_layers[i](x, local_lgx, global_lgx, local_g, global_g, lg, src_ids, dst_ids)
if self.graph_view == 'msde':
# update local edge embeddings in the global edge embeddings matrix
global_lgx = global_lgx.masked_scatter_(mask.unsqueeze(-1), local_lgx)
return x
class DualRGATLayer(nn.Module):
def __init__(self, ndim, edim, num_heads=8, feat_drop=0.2, graph_view='mmc'):
super(DualRGATLayer, self).__init__()
self.ndim, self.edim = ndim, edim
self.num_heads, self.graph_view = num_heads, graph_view
NodeRGATLayer = MultiViewRGATLayer if self.graph_view == 'mmc' else RGATLayer
self.node_update = NodeRGATLayer(self.ndim, self.edim, self.num_heads, feat_drop=feat_drop)
self.edge_update = EdgeRGATLayer(self.edim, self.ndim, self.num_heads, feat_drop=feat_drop)
def forward(self, x, local_lgx, global_lgx, local_g, global_g, lg, src_ids, dst_ids):
if self.graph_view == 'mmc':
out_x, _ = self.node_update(x, local_lgx, global_lgx, local_g, global_g)
elif self.graph_view == 'msde':
out_x, _ = self.node_update(x, global_lgx, global_g)
else:
out_x, _ = self.node_update(x, local_lgx, local_g)
src_x = torch.index_select(x, dim=0, index=src_ids)
dst_x = torch.index_select(x, dim=0, index=dst_ids)
out_local_lgx, _ = self.edge_update(local_lgx, src_x, dst_x, lg)
return out_x, out_local_lgx
class EdgeRGATLayer(nn.Module):
def __init__(self, edim, ndim, num_heads=8, feat_drop=0.2):
super(EdgeRGATLayer, self).__init__()
self.edim, self.ndim = edim, ndim
self.num_heads = num_heads
self.d_k = self.ndim // self.num_heads
self.affine_q, self.affine_k, self.affine_v = nn.Linear(self.edim, self.ndim), \
nn.Linear(self.edim, self.ndim, bias=False), nn.Linear(self.edim, self.ndim, bias=False)
self.affine_o = nn.Linear(self.ndim, self.edim)
self.layernorm = nn.LayerNorm(self.edim)
self.feat_dropout = nn.Dropout(p=feat_drop)
self.ffn = FFN(self.edim)
def forward(self, x, src_x, dst_x, g):
q, k, v = self.affine_q(self.feat_dropout(x)), self.affine_k(self.feat_dropout(x)), self.affine_v(self.feat_dropout(x))
with g.local_scope():
g.ndata['q'] = (q + src_x).view(-1, self.num_heads, self.d_k)
g.ndata['k'] = k.view(-1, self.num_heads, self.d_k)
g.ndata['v'] = (v + dst_x).view(-1, self.num_heads, self.d_k)
out_x = self.propagate_attention(g)
out_x = self.layernorm(x + self.affine_o(out_x.view(-1, self.num_heads * self.d_k)))
out_x = self.ffn(out_x)
return out_x, (src_x, dst_x)
def propagate_attention(self, g):
# Compute attention score
g.apply_edges(src_dot_dst('k', 'q', 'score'))
g.apply_edges(scaled_exp('score', math.sqrt(self.d_k)))
# Update node state
g.update_all(fn.src_mul_edge('v', 'score', 'v'), fn.sum('v', 'wv'))
g.update_all(fn.copy_edge('score', 'score'), fn.sum('score', 'z'), div_by_z('wv', 'z', 'o'))
out_x = g.ndata['o']
return out_x