Integrate with KServe (#3202)

* Integrate with KServe, To #48853387

Signed-off-by: cheyang <cheyang@163.com>

* Remove update from operations in kserve, To #48853387

Signed-off-by: cheyang <cheyang@163.com>

---------

Signed-off-by: cheyang <cheyang@163.com>
This commit is contained in:
cheyang 2023-05-15 14:38:02 +08:00 committed by GitHub
parent d103d62f8f
commit 886a5c114c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 20413 additions and 0 deletions

View File

@ -0,0 +1,311 @@
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-lgbserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --model_dir=/mnt/models
- --http_port=8080
- --nthread=1
image: kserve/lgbserver:v0.10.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
supportedModelFormats:
- autoSelect: true
name: lightgbm
version: "3"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-mlserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- env:
- name: MLSERVER_MODEL_IMPLEMENTATION
value: '{{.Labels.modelClass}}'
- name: MLSERVER_HTTP_PORT
value: "8080"
- name: MLSERVER_GRPC_PORT
value: "9000"
- name: MODELS_DIR
value: /mnt/models
image: docker.io/seldonio/mlserver:1.0.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v2
supportedModelFormats:
- autoSelect: true
name: sklearn
version: "0"
- autoSelect: true
name: xgboost
version: "1"
- autoSelect: true
name: lightgbm
version: "3"
- autoSelect: true
name: mlflow
version: "1"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-paddleserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --model_dir=/mnt/models
- --http_port=8080
image: kserve/paddleserver:v0.10.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
supportedModelFormats:
- autoSelect: true
name: paddle
version: "2"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-pmmlserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --model_dir=/mnt/models
- --http_port=8080
image: kserve/pmmlserver:v0.10.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
supportedModelFormats:
- autoSelect: true
name: pmml
version: "3"
- autoSelect: true
name: pmml
version: "4"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-sklearnserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --model_dir=/mnt/models
- --http_port=8080
image: kserve/sklearnserver:v0.10.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
supportedModelFormats:
- autoSelect: true
name: sklearn
version: "1"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-tensorflow-serving
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --port=9000
- --rest_api_port=8080
- --model_base_path=/mnt/models
- --rest_api_timeout_in_ms=60000
command:
- /usr/bin/tensorflow_model_server
image: tensorflow/serving:2.6.2
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
- grpc-v1
supportedModelFormats:
- autoSelect: true
name: tensorflow
version: "1"
- autoSelect: true
name: tensorflow
version: "2"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-torchserve
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8082"
containers:
- args:
- torchserve
- --start
- --model-store=/mnt/models/model-store
- --ts-config=/mnt/models/config/config.properties
env:
- name: TS_SERVICE_ENVELOPE
value: '{{.Labels.serviceEnvelope}}'
image: pytorch/torchserve-kfs:0.7.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
- v2
- grpc-v1
supportedModelFormats:
- autoSelect: true
name: pytorch
version: "1"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-tritonserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8002"
containers:
- args:
- tritonserver
- --model-store=/mnt/models
- --grpc-port=9000
- --http-port=8080
- --allow-grpc=true
- --allow-http=true
image: nvcr.io/nvidia/tritonserver:21.09-py3
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v2
- grpc-v2
supportedModelFormats:
- autoSelect: true
name: tensorrt
version: "8"
- autoSelect: true
name: tensorflow
version: "1"
- autoSelect: true
name: tensorflow
version: "2"
- autoSelect: true
name: onnx
version: "1"
- name: pytorch
version: "1"
- autoSelect: true
name: triton
version: "2"
---
apiVersion: serving.kserve.io/v1alpha1
kind: ClusterServingRuntime
metadata:
name: kserve-xgbserver
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8080"
containers:
- args:
- --model_name={{.Name}}
- --model_dir=/mnt/models
- --http_port=8080
- --nthread=1
image: kserve/xgbserver:v0.10.0
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
protocolVersions:
- v1
supportedModelFormats:
- autoSelect: true
name: xgboost
version: "1"

20102
integration/kserve/kserve.yaml Normal file

File diff suppressed because it is too large Load Diff