go mod vendor

This commit is contained in:
UlricQin 2021-01-31 11:04:17 +08:00
parent 37868777e7
commit b5becda6fc
48 changed files with 3960 additions and 6795 deletions

18
go.mod
View File

@ -8,9 +8,9 @@ require (
github.com/codegangsta/negroni v1.0.0 github.com/codegangsta/negroni v1.0.0
github.com/coreos/go-oidc v2.2.1+incompatible github.com/coreos/go-oidc v2.2.1+incompatible
github.com/dgryski/go-tsz v0.0.0-20180227144327-03b7d791f4fe github.com/dgryski/go-tsz v0.0.0-20180227144327-03b7d791f4fe
github.com/ericchiang/k8s v1.2.0 github.com/ericchiang/k8s v1.2.0 // indirect
github.com/garyburd/redigo v1.6.2 github.com/garyburd/redigo v1.6.2
github.com/ghodss/yaml v1.0.1-0.20190212211648-25d852aebe32 github.com/ghodss/yaml v1.0.1-0.20190212211648-25d852aebe32 // indirect
github.com/gin-contrib/pprof v1.3.0 github.com/gin-contrib/pprof v1.3.0
github.com/gin-gonic/gin v1.6.3 github.com/gin-gonic/gin v1.6.3
github.com/go-sql-driver/mysql v1.5.0 github.com/go-sql-driver/mysql v1.5.0
@ -20,20 +20,20 @@ require (
github.com/hpcloud/tail v1.0.0 github.com/hpcloud/tail v1.0.0
github.com/influxdata/influxdb v1.8.0 github.com/influxdata/influxdb v1.8.0
github.com/influxdata/telegraf v1.16.2 github.com/influxdata/telegraf v1.16.2
github.com/influxdata/toml v0.0.0-20190415235208-270119a8ce65 github.com/influxdata/toml v0.0.0-20190415235208-270119a8ce65 // indirect
github.com/influxdata/wlog v0.0.0-20160411224016-7c63b0a71ef8 github.com/influxdata/wlog v0.0.0-20160411224016-7c63b0a71ef8 // indirect
github.com/m3db/m3 v0.15.17 github.com/m3db/m3 v0.15.17
github.com/mattn/go-isatty v0.0.12 github.com/mattn/go-isatty v0.0.12
github.com/mattn/go-sqlite3 v1.14.0 // indirect github.com/mattn/go-sqlite3 v1.14.0 // indirect
github.com/matttproud/golang_protobuf_extensions v1.0.1 github.com/matttproud/golang_protobuf_extensions v1.0.1 // indirect
github.com/mojocn/base64Captcha v1.3.1 github.com/mojocn/base64Captcha v1.3.1
github.com/open-falcon/rrdlite v0.0.0-20200214140804-bf5829f786ad github.com/open-falcon/rrdlite v0.0.0-20200214140804-bf5829f786ad
github.com/pquerna/cachecontrol v0.0.0-20200819021114-67c6ae64274f // indirect github.com/pquerna/cachecontrol v0.0.0-20200819021114-67c6ae64274f // indirect
github.com/prometheus/client_model v0.2.0 github.com/prometheus/client_model v0.2.0 // indirect
github.com/prometheus/common v0.9.1 github.com/prometheus/common v0.9.1 // indirect
github.com/robfig/go-cache v0.0.0-20130306151617-9fc39e0dbf62 // indirect github.com/robfig/go-cache v0.0.0-20130306151617-9fc39e0dbf62 // indirect
github.com/shirou/gopsutil v3.20.11+incompatible // indirect github.com/shirou/gopsutil v3.20.11+incompatible // indirect
github.com/soniah/gosnmp v1.25.0 github.com/soniah/gosnmp v1.25.0 // indirect
github.com/spaolacci/murmur3 v1.1.0 github.com/spaolacci/murmur3 v1.1.0
github.com/spf13/viper v1.7.1 github.com/spf13/viper v1.7.1
github.com/streadway/amqp v1.0.0 github.com/streadway/amqp v1.0.0
@ -47,7 +47,7 @@ require (
gopkg.in/alexcesaro/quotedprintable.v3 v3.0.0-20150716171945-2caba252f4dc // indirect gopkg.in/alexcesaro/quotedprintable.v3 v3.0.0-20150716171945-2caba252f4dc // indirect
gopkg.in/gomail.v2 v2.0.0-20160411212932-81ebce5c23df gopkg.in/gomail.v2 v2.0.0-20160411212932-81ebce5c23df
gopkg.in/ldap.v3 v3.1.0 gopkg.in/ldap.v3 v3.1.0
gopkg.in/mgo.v2 v2.0.0-20180705113604-9856a29383ce gopkg.in/mgo.v2 v2.0.0-20180705113604-9856a29383ce // indirect
gopkg.in/square/go-jose.v2 v2.5.1 // indirect gopkg.in/square/go-jose.v2 v2.5.1 // indirect
gopkg.in/yaml.v2 v2.3.0 gopkg.in/yaml.v2 v2.3.0
xorm.io/core v0.7.3 xorm.io/core v0.7.3

View File

@ -1,27 +0,0 @@
Copyright (c) 2017 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,156 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmpopts provides common options for the cmp package.
package cmpopts
import (
"math"
"reflect"
"time"
"github.com/google/go-cmp/cmp"
"golang.org/x/xerrors"
)
func equateAlways(_, _ interface{}) bool { return true }
// EquateEmpty returns a Comparer option that determines all maps and slices
// with a length of zero to be equal, regardless of whether they are nil.
//
// EquateEmpty can be used in conjunction with SortSlices and SortMaps.
func EquateEmpty() cmp.Option {
return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways))
}
func isEmpty(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) &&
(vx.Len() == 0 && vy.Len() == 0)
}
// EquateApprox returns a Comparer option that determines float32 or float64
// values to be equal if they are within a relative fraction or absolute margin.
// This option is not used when either x or y is NaN or infinite.
//
// The fraction determines that the difference of two values must be within the
// smaller fraction of the two values, while the margin determines that the two
// values must be within some absolute margin.
// To express only a fraction or only a margin, use 0 for the other parameter.
// The fraction and margin must be non-negative.
//
// The mathematical expression used is equivalent to:
// |x-y| ≤ max(fraction*min(|x|, |y|), margin)
//
// EquateApprox can be used in conjunction with EquateNaNs.
func EquateApprox(fraction, margin float64) cmp.Option {
if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) {
panic("margin or fraction must be a non-negative number")
}
a := approximator{fraction, margin}
return cmp.Options{
cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)),
cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)),
}
}
type approximator struct{ frac, marg float64 }
func areRealF64s(x, y float64) bool {
return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0)
}
func areRealF32s(x, y float32) bool {
return areRealF64s(float64(x), float64(y))
}
func (a approximator) compareF64(x, y float64) bool {
relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y))
return math.Abs(x-y) <= math.Max(a.marg, relMarg)
}
func (a approximator) compareF32(x, y float32) bool {
return a.compareF64(float64(x), float64(y))
}
// EquateNaNs returns a Comparer option that determines float32 and float64
// NaN values to be equal.
//
// EquateNaNs can be used in conjunction with EquateApprox.
func EquateNaNs() cmp.Option {
return cmp.Options{
cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)),
cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)),
}
}
func areNaNsF64s(x, y float64) bool {
return math.IsNaN(x) && math.IsNaN(y)
}
func areNaNsF32s(x, y float32) bool {
return areNaNsF64s(float64(x), float64(y))
}
// EquateApproxTime returns a Comparer option that determines two non-zero
// time.Time values to be equal if they are within some margin of one another.
// If both times have a monotonic clock reading, then the monotonic time
// difference will be used. The margin must be non-negative.
func EquateApproxTime(margin time.Duration) cmp.Option {
if margin < 0 {
panic("margin must be a non-negative number")
}
a := timeApproximator{margin}
return cmp.FilterValues(areNonZeroTimes, cmp.Comparer(a.compare))
}
func areNonZeroTimes(x, y time.Time) bool {
return !x.IsZero() && !y.IsZero()
}
type timeApproximator struct {
margin time.Duration
}
func (a timeApproximator) compare(x, y time.Time) bool {
// Avoid subtracting times to avoid overflow when the
// difference is larger than the largest representible duration.
if x.After(y) {
// Ensure x is always before y
x, y = y, x
}
// We're within the margin if x+margin >= y.
// Note: time.Time doesn't have AfterOrEqual method hence the negation.
return !x.Add(a.margin).Before(y)
}
// AnyError is an error that matches any non-nil error.
var AnyError anyError
type anyError struct{}
func (anyError) Error() string { return "any error" }
func (anyError) Is(err error) bool { return err != nil }
// EquateErrors returns a Comparer option that determines errors to be equal
// if errors.Is reports them to match. The AnyError error can be used to
// match any non-nil error.
func EquateErrors() cmp.Option {
return cmp.FilterValues(areConcreteErrors, cmp.Comparer(compareErrors))
}
// areConcreteErrors reports whether x and y are types that implement error.
// The input types are deliberately of the interface{} type rather than the
// error type so that we can handle situations where the current type is an
// interface{}, but the underlying concrete types both happen to implement
// the error interface.
func areConcreteErrors(x, y interface{}) bool {
_, ok1 := x.(error)
_, ok2 := y.(error)
return ok1 && ok2
}
func compareErrors(x, y interface{}) bool {
xe := x.(error)
ye := y.(error)
// TODO(≥go1.13): Use standard definition of errors.Is.
return xerrors.Is(xe, ye) || xerrors.Is(ye, xe)
}

View File

@ -1,206 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// IgnoreFields returns an Option that ignores fields of the
// given names on a single struct type. It respects the names of exported fields
// that are forwarded due to struct embedding.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to ignore a
// specific sub-field that is embedded or nested within the parent struct.
func IgnoreFields(typ interface{}, names ...string) cmp.Option {
sf := newStructFilter(typ, names...)
return cmp.FilterPath(sf.filter, cmp.Ignore())
}
// IgnoreTypes returns an Option that ignores all values assignable to
// certain types, which are specified by passing in a value of each type.
func IgnoreTypes(typs ...interface{}) cmp.Option {
tf := newTypeFilter(typs...)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type typeFilter []reflect.Type
func newTypeFilter(typs ...interface{}) (tf typeFilter) {
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil {
// This occurs if someone tries to pass in sync.Locker(nil)
panic("cannot determine type; consider using IgnoreInterfaces")
}
tf = append(tf, t)
}
return tf
}
func (tf typeFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreInterfaces returns an Option that ignores all values or references of
// values assignable to certain interface types. These interfaces are specified
// by passing in an anonymous struct with the interface types embedded in it.
// For example, to ignore sync.Locker, pass in struct{sync.Locker}{}.
func IgnoreInterfaces(ifaces interface{}) cmp.Option {
tf := newIfaceFilter(ifaces)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type ifaceFilter []reflect.Type
func newIfaceFilter(ifaces interface{}) (tf ifaceFilter) {
t := reflect.TypeOf(ifaces)
if ifaces == nil || t.Name() != "" || t.Kind() != reflect.Struct {
panic("input must be an anonymous struct")
}
for i := 0; i < t.NumField(); i++ {
fi := t.Field(i)
switch {
case !fi.Anonymous:
panic("struct cannot have named fields")
case fi.Type.Kind() != reflect.Interface:
panic("embedded field must be an interface type")
case fi.Type.NumMethod() == 0:
// This matches everything; why would you ever want this?
panic("cannot ignore empty interface")
default:
tf = append(tf, fi.Type)
}
}
return tf
}
func (tf ifaceFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
if t.Kind() != reflect.Ptr && reflect.PtrTo(t).AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreUnexported returns an Option that only ignores the immediate unexported
// fields of a struct, including anonymous fields of unexported types.
// In particular, unexported fields within the struct's exported fields
// of struct types, including anonymous fields, will not be ignored unless the
// type of the field itself is also passed to IgnoreUnexported.
//
// Avoid ignoring unexported fields of a type which you do not control (i.e. a
// type from another repository), as changes to the implementation of such types
// may change how the comparison behaves. Prefer a custom Comparer instead.
func IgnoreUnexported(typs ...interface{}) cmp.Option {
ux := newUnexportedFilter(typs...)
return cmp.FilterPath(ux.filter, cmp.Ignore())
}
type unexportedFilter struct{ m map[reflect.Type]bool }
func newUnexportedFilter(typs ...interface{}) unexportedFilter {
ux := unexportedFilter{m: make(map[reflect.Type]bool)}
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
ux.m[t] = true
}
return ux
}
func (xf unexportedFilter) filter(p cmp.Path) bool {
sf, ok := p.Index(-1).(cmp.StructField)
if !ok {
return false
}
return xf.m[p.Index(-2).Type()] && !isExported(sf.Name())
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// IgnoreSliceElements returns an Option that ignores elements of []V.
// The discard function must be of the form "func(T) bool" which is used to
// ignore slice elements of type V, where V is assignable to T.
// Elements are ignored if the function reports true.
func IgnoreSliceElements(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.ValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
si, ok := p.Index(-1).(cmp.SliceIndex)
if !ok {
return false
}
if !si.Type().AssignableTo(vf.Type().In(0)) {
return false
}
vx, vy := si.Values()
if vx.IsValid() && vf.Call([]reflect.Value{vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}
// IgnoreMapEntries returns an Option that ignores entries of map[K]V.
// The discard function must be of the form "func(T, R) bool" which is used to
// ignore map entries of type K and V, where K and V are assignable to T and R.
// Entries are ignored if the function reports true.
func IgnoreMapEntries(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.KeyValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
if !mi.Key().Type().AssignableTo(vf.Type().In(0)) || !mi.Type().AssignableTo(vf.Type().In(1)) {
return false
}
k := mi.Key()
vx, vy := mi.Values()
if vx.IsValid() && vf.Call([]reflect.Value{k, vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{k, vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}

View File

@ -1,147 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"sort"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// SortSlices returns a Transformer option that sorts all []V.
// The less function must be of the form "func(T, T) bool" which is used to
// sort any slice with element type V that is assignable to T.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
//
// The less function does not have to be "total". That is, if !less(x, y) and
// !less(y, x) for two elements x and y, their relative order is maintained.
//
// SortSlices can be used in conjunction with EquateEmpty.
func SortSlices(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ss := sliceSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ss.filter, cmp.Transformer("cmpopts.SortSlices", ss.sort))
}
type sliceSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ss sliceSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
if !(x != nil && y != nil && vx.Type() == vy.Type()) ||
!(vx.Kind() == reflect.Slice && vx.Type().Elem().AssignableTo(ss.in)) ||
(vx.Len() <= 1 && vy.Len() <= 1) {
return false
}
// Check whether the slices are already sorted to avoid an infinite
// recursion cycle applying the same transform to itself.
ok1 := sort.SliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sort.SliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
return !ok1 || !ok2
}
func (ss sliceSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
dst := reflect.MakeSlice(src.Type(), src.Len(), src.Len())
for i := 0; i < src.Len(); i++ {
dst.Index(i).Set(src.Index(i))
}
sort.SliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
ss.checkSort(dst)
return dst.Interface()
}
func (ss sliceSorter) checkSort(v reflect.Value) {
start := -1 // Start of a sequence of equal elements.
for i := 1; i < v.Len(); i++ {
if ss.less(v, i-1, i) {
// Check that first and last elements in v[start:i] are equal.
if start >= 0 && (ss.less(v, start, i-1) || ss.less(v, i-1, start)) {
panic(fmt.Sprintf("incomparable values detected: want equal elements: %v", v.Slice(start, i)))
}
start = -1
} else if start == -1 {
start = i
}
}
}
func (ss sliceSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i), v.Index(j)
return ss.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}
// SortMaps returns a Transformer option that flattens map[K]V types to be a
// sorted []struct{K, V}. The less function must be of the form
// "func(T, T) bool" which is used to sort any map with key K that is
// assignable to T.
//
// Flattening the map into a slice has the property that cmp.Equal is able to
// use Comparers on K or the K.Equal method if it exists.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
// • Total: if x != y, then either less(x, y) or less(y, x)
//
// SortMaps can be used in conjunction with EquateEmpty.
func SortMaps(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ms := mapSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ms.filter, cmp.Transformer("cmpopts.SortMaps", ms.sort))
}
type mapSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ms mapSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Map && vx.Type().Key().AssignableTo(ms.in)) &&
(vx.Len() != 0 || vy.Len() != 0)
}
func (ms mapSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
outType := reflect.StructOf([]reflect.StructField{
{Name: "K", Type: src.Type().Key()},
{Name: "V", Type: src.Type().Elem()},
})
dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len())
for i, k := range src.MapKeys() {
v := reflect.New(outType).Elem()
v.Field(0).Set(k)
v.Field(1).Set(src.MapIndex(k))
dst.Index(i).Set(v)
}
sort.Slice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
ms.checkSort(dst)
return dst.Interface()
}
func (ms mapSorter) checkSort(v reflect.Value) {
for i := 1; i < v.Len(); i++ {
if !ms.less(v, i-1, i) {
panic(fmt.Sprintf("partial order detected: want %v < %v", v.Index(i-1), v.Index(i)))
}
}
}
func (ms mapSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i).Field(0), v.Index(j).Field(0)
return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}

View File

@ -1,187 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp"
)
// filterField returns a new Option where opt is only evaluated on paths that
// include a specific exported field on a single struct type.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to select a
// specific sub-field that is embedded or nested within the parent struct.
func filterField(typ interface{}, name string, opt cmp.Option) cmp.Option {
// TODO: This is currently unexported over concerns of how helper filters
// can be composed together easily.
// TODO: Add tests for FilterField.
sf := newStructFilter(typ, name)
return cmp.FilterPath(sf.filter, opt)
}
type structFilter struct {
t reflect.Type // The root struct type to match on
ft fieldTree // Tree of fields to match on
}
func newStructFilter(typ interface{}, names ...string) structFilter {
// TODO: Perhaps allow * as a special identifier to allow ignoring any
// number of path steps until the next field match?
// This could be useful when a concrete struct gets transformed into
// an anonymous struct where it is not possible to specify that by type,
// but the transformer happens to provide guarantees about the names of
// the transformed fields.
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
var ft fieldTree
for _, name := range names {
cname, err := canonicalName(t, name)
if err != nil {
panic(fmt.Sprintf("%s: %v", strings.Join(cname, "."), err))
}
ft.insert(cname)
}
return structFilter{t, ft}
}
func (sf structFilter) filter(p cmp.Path) bool {
for i, ps := range p {
if ps.Type().AssignableTo(sf.t) && sf.ft.matchPrefix(p[i+1:]) {
return true
}
}
return false
}
// fieldTree represents a set of dot-separated identifiers.
//
// For example, inserting the following selectors:
// Foo
// Foo.Bar.Baz
// Foo.Buzz
// Nuka.Cola.Quantum
//
// Results in a tree of the form:
// {sub: {
// "Foo": {ok: true, sub: {
// "Bar": {sub: {
// "Baz": {ok: true},
// }},
// "Buzz": {ok: true},
// }},
// "Nuka": {sub: {
// "Cola": {sub: {
// "Quantum": {ok: true},
// }},
// }},
// }}
type fieldTree struct {
ok bool // Whether this is a specified node
sub map[string]fieldTree // The sub-tree of fields under this node
}
// insert inserts a sequence of field accesses into the tree.
func (ft *fieldTree) insert(cname []string) {
if ft.sub == nil {
ft.sub = make(map[string]fieldTree)
}
if len(cname) == 0 {
ft.ok = true
return
}
sub := ft.sub[cname[0]]
sub.insert(cname[1:])
ft.sub[cname[0]] = sub
}
// matchPrefix reports whether any selector in the fieldTree matches
// the start of path p.
func (ft fieldTree) matchPrefix(p cmp.Path) bool {
for _, ps := range p {
switch ps := ps.(type) {
case cmp.StructField:
ft = ft.sub[ps.Name()]
if ft.ok {
return true
}
if len(ft.sub) == 0 {
return false
}
case cmp.Indirect:
default:
return false
}
}
return false
}
// canonicalName returns a list of identifiers where any struct field access
// through an embedded field is expanded to include the names of the embedded
// types themselves.
//
// For example, suppose field "Foo" is not directly in the parent struct,
// but actually from an embedded struct of type "Bar". Then, the canonical name
// of "Foo" is actually "Bar.Foo".
//
// Suppose field "Foo" is not directly in the parent struct, but actually
// a field in two different embedded structs of types "Bar" and "Baz".
// Then the selector "Foo" causes a panic since it is ambiguous which one it
// refers to. The user must specify either "Bar.Foo" or "Baz.Foo".
func canonicalName(t reflect.Type, sel string) ([]string, error) {
var name string
sel = strings.TrimPrefix(sel, ".")
if sel == "" {
return nil, fmt.Errorf("name must not be empty")
}
if i := strings.IndexByte(sel, '.'); i < 0 {
name, sel = sel, ""
} else {
name, sel = sel[:i], sel[i:]
}
// Type must be a struct or pointer to struct.
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return nil, fmt.Errorf("%v must be a struct", t)
}
// Find the canonical name for this current field name.
// If the field exists in an embedded struct, then it will be expanded.
sf, _ := t.FieldByName(name)
if !isExported(name) {
// Avoid using reflect.Type.FieldByName for unexported fields due to
// buggy behavior with regard to embeddeding and unexported fields.
// See https://golang.org/issue/4876 for details.
sf = reflect.StructField{}
for i := 0; i < t.NumField() && sf.Name == ""; i++ {
if t.Field(i).Name == name {
sf = t.Field(i)
}
}
}
if sf.Name == "" {
return []string{name}, fmt.Errorf("does not exist")
}
var ss []string
for i := range sf.Index {
ss = append(ss, t.FieldByIndex(sf.Index[:i+1]).Name)
}
if sel == "" {
return ss, nil
}
ssPost, err := canonicalName(sf.Type, sel)
return append(ss, ssPost...), err
}

View File

@ -1,35 +0,0 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"github.com/google/go-cmp/cmp"
)
type xformFilter struct{ xform cmp.Option }
func (xf xformFilter) filter(p cmp.Path) bool {
for _, ps := range p {
if t, ok := ps.(cmp.Transform); ok && t.Option() == xf.xform {
return false
}
}
return true
}
// AcyclicTransformer returns a Transformer with a filter applied that ensures
// that the transformer cannot be recursively applied upon its own output.
//
// An example use case is a transformer that splits a string by lines:
// AcyclicTransformer("SplitLines", func(s string) []string{
// return strings.Split(s, "\n")
// })
//
// Had this been an unfiltered Transformer instead, this would result in an
// infinite cycle converting a string to []string to [][]string and so on.
func AcyclicTransformer(name string, xformFunc interface{}) cmp.Option {
xf := xformFilter{cmp.Transformer(name, xformFunc)}
return cmp.FilterPath(xf.filter, xf.xform)
}

View File

@ -1,682 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
// It is intended to only be used in tests, as performance is not a goal and
// it may panic if it cannot compare the values. Its propensity towards
// panicking means that its unsuitable for production environments where a
// spurious panic may be fatal.
//
// The primary features of cmp are:
//
// • When the default behavior of equality does not suit the needs of the test,
// custom equality functions can override the equality operation.
// For example, an equality function may report floats as equal so long as they
// are within some tolerance of each other.
//
// • Types that have an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation for the types
// that they define.
//
// • If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
// compared using the Exporter option.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value"
)
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is greater than one,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform the current
// values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
// evaluation proceeds to the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
//
// Structs are equal if recursively calling Equal on all fields report equal.
// If a struct contains unexported fields, Equal panics unless an Ignore option
// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
// explicitly permits comparing the unexported field.
//
// Slices are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored slice or array elements report equal.
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
// consider using cmpopts.EquateEmpty.
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using cmpopts.EquateEmpty.
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively
// calling Equal on the underlying values reports equal.
//
// Before recursing into a pointer, slice element, or map, the current path
// is checked to detect whether the address has already been visited.
// If there is a cycle, then the pointed at values are considered equal
// only if both addresses were previously visited in the same path step.
func Equal(x, y interface{}, opts ...Option) bool {
s := newState(opts)
s.compareAny(rootStep(x, y))
return s.result.Equal()
}
// Diff returns a human-readable report of the differences between two values:
// y - x. It returns an empty string if and only if Equal returns true for the
// same input values and options.
//
// The output is displayed as a literal in pseudo-Go syntax.
// At the start of each line, a "-" prefix indicates an element removed from y,
// a "+" prefix to indicates an element added to y, and the lack of a prefix
// indicates an element common to both x and y. If possible, the output
// uses fmt.Stringer.String or error.Error methods to produce more humanly
// readable outputs. In such cases, the string is prefixed with either an
// 's' or 'e' character, respectively, to indicate that the method was called.
//
// Do not depend on this output being stable. If you need the ability to
// programmatically interpret the difference, consider using a custom Reporter.
func Diff(x, y interface{}, opts ...Option) string {
s := newState(opts)
// Optimization: If there are no other reporters, we can optimize for the
// common case where the result is equal (and thus no reported difference).
// This avoids the expensive construction of a difference tree.
if len(s.reporters) == 0 {
s.compareAny(rootStep(x, y))
if s.result.Equal() {
return ""
}
s.result = diff.Result{} // Reset results
}
r := new(defaultReporter)
s.reporters = append(s.reporters, reporter{r})
s.compareAny(rootStep(x, y))
d := r.String()
if (d == "") != s.result.Equal() {
panic("inconsistent difference and equality results")
}
return d
}
// rootStep constructs the first path step. If x and y have differing types,
// then they are stored within an empty interface type.
func rootStep(x, y interface{}) PathStep {
vx := reflect.ValueOf(x)
vy := reflect.ValueOf(y)
// If the inputs are different types, auto-wrap them in an empty interface
// so that they have the same parent type.
var t reflect.Type
if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
t = reflect.TypeOf((*interface{})(nil)).Elem()
if vx.IsValid() {
vvx := reflect.New(t).Elem()
vvx.Set(vx)
vx = vvx
}
if vy.IsValid() {
vvy := reflect.New(t).Elem()
vvy.Set(vy)
vy = vvy
}
} else {
t = vx.Type()
}
return &pathStep{t, vx, vy}
}
type state struct {
// These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
curPtrs pointerPath // The current set of visited pointers
reporters []reporter // Optional reporters
// recChecker checks for infinite cycles applying the same set of
// transformers upon the output of itself.
recChecker recChecker
// dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value.
dynChecker dynChecker
// These fields, once set by processOption, will not change.
exporters []exporter // List of exporters for structs with unexported fields
opts Options // List of all fundamental and filter options
}
func newState(opts []Option) *state {
// Always ensure a validator option exists to validate the inputs.
s := &state{opts: Options{validator{}}}
s.curPtrs.Init()
s.processOption(Options(opts))
return s
}
func (s *state) processOption(opt Option) {
switch opt := opt.(type) {
case nil:
case Options:
for _, o := range opt {
s.processOption(o)
}
case coreOption:
type filtered interface {
isFiltered() bool
}
if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
}
s.opts = append(s.opts, opt)
case exporter:
s.exporters = append(s.exporters, opt)
case reporter:
s.reporters = append(s.reporters, opt)
default:
panic(fmt.Sprintf("unknown option %T", opt))
}
}
// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(step PathStep) diff.Result {
// We do not save and restore curPath and curPtrs because all of the
// compareX methods should properly push and pop from them.
// It is an implementation bug if the contents of the paths differ from
// when calling this function to when returning from it.
oldResult, oldReporters := s.result, s.reporters
s.result = diff.Result{} // Reset result
s.reporters = nil // Remove reporters to avoid spurious printouts
s.compareAny(step)
res := s.result
s.result, s.reporters = oldResult, oldReporters
return res
}
func (s *state) compareAny(step PathStep) {
// Update the path stack.
s.curPath.push(step)
defer s.curPath.pop()
for _, r := range s.reporters {
r.PushStep(step)
defer r.PopStep()
}
s.recChecker.Check(s.curPath)
// Cycle-detection for slice elements (see NOTE in compareSlice).
t := step.Type()
vx, vy := step.Values()
if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
px, py := vx.Addr(), vy.Addr()
if eq, visited := s.curPtrs.Push(px, py); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(px, py)
}
// Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(t, vx, vy) {
return
}
// Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(t, vx, vy) {
return
}
// Rule 3: Compare based on the underlying kind.
switch t.Kind() {
case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), 0)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), 0)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), 0)
case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), 0)
case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), 0)
case reflect.String:
s.report(vx.String() == vy.String(), 0)
case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), 0)
case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), 0)
case reflect.Struct:
s.compareStruct(t, vx, vy)
case reflect.Slice, reflect.Array:
s.compareSlice(t, vx, vy)
case reflect.Map:
s.compareMap(t, vx, vy)
case reflect.Ptr:
s.comparePtr(t, vx, vy)
case reflect.Interface:
s.compareInterface(t, vx, vy)
default:
panic(fmt.Sprintf("%v kind not handled", t.Kind()))
}
}
func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
// Evaluate all filters and apply the remaining options.
if opt := s.opts.filter(s, t, vx, vy); opt != nil {
opt.apply(s, vx, vy)
return true
}
return false
}
func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
// Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) {
return false
}
eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, reportByMethod)
return true
}
func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
v = sanitizeValue(v, f.Type().In(0))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0]
}
// Run the function twice and ensure that we get the same results back.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, v)
got := <-c
want := f.Call([]reflect.Value{v})[0]
if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
// To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself.
if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
return want
}
panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
}
return want
}
func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
x = sanitizeValue(x, f.Type().In(0))
y = sanitizeValue(y, f.Type().In(1))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{x, y})[0].Bool()
}
// Swapping the input arguments is sufficient to check that
// f is symmetric and deterministic.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, y, x)
got := <-c
want := f.Call([]reflect.Value{x, y})[0].Bool()
if !got.IsValid() || got.Bool() != want {
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
}
return want
}
func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
var ret reflect.Value
defer func() {
recover() // Ignore panics, let the other call to f panic instead
c <- ret
}()
ret = f.Call(vs)[0]
}
// sanitizeValue converts nil interfaces of type T to those of type R,
// assuming that T is assignable to R.
// Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
// TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143).
if !flags.AtLeastGo110 {
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem()
}
}
return v
}
func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
var addr bool
var vax, vay reflect.Value // Addressable versions of vx and vy
var mayForce, mayForceInit bool
step := StructField{&structField{}}
for i := 0; i < t.NumField(); i++ {
step.typ = t.Field(i).Type
step.vx = vx.Field(i)
step.vy = vy.Field(i)
step.name = t.Field(i).Name
step.idx = i
step.unexported = !isExported(step.name)
if step.unexported {
if step.name == "_" {
continue
}
// Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() {
// For retrieveUnexportedField to work, the parent struct must
// be addressable. Create a new copy of the values if
// necessary to make them addressable.
addr = vx.CanAddr() || vy.CanAddr()
vax = makeAddressable(vx)
vay = makeAddressable(vy)
}
if !mayForceInit {
for _, xf := range s.exporters {
mayForce = mayForce || xf(t)
}
mayForceInit = true
}
step.mayForce = mayForce
step.paddr = addr
step.pvx = vax
step.pvy = vay
step.field = t.Field(i)
}
s.compareAny(step)
}
}
func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
isSlice := t.Kind() == reflect.Slice
if isSlice && (vx.IsNil() || vy.IsNil()) {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
// since slices represents a list of pointers, rather than a single pointer.
// The pointer checking logic must be handled on a per-element basis
// in compareAny.
//
// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
// pointer P, a length N, and a capacity C. Supposing each slice element has
// a memory size of M, then the slice is equivalent to the list of pointers:
// [P+i*M for i in range(N)]
//
// For example, v[:0] and v[:1] are slices with the same starting pointer,
// but they are clearly different values. Using the slice pointer alone
// violates the assumption that equal pointers implies equal values.
step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
withIndexes := func(ix, iy int) SliceIndex {
if ix >= 0 {
step.vx, step.xkey = vx.Index(ix), ix
} else {
step.vx, step.xkey = reflect.Value{}, -1
}
if iy >= 0 {
step.vy, step.ykey = vy.Index(iy), iy
} else {
step.vy, step.ykey = reflect.Value{}, -1
}
return step
}
// Ignore options are able to ignore missing elements in a slice.
// However, detecting these reliably requires an optimal differencing
// algorithm, for which diff.Difference is not.
//
// Instead, we first iterate through both slices to detect which elements
// would be ignored if standing alone. The index of non-discarded elements
// are stored in a separate slice, which diffing is then performed on.
var indexesX, indexesY []int
var ignoredX, ignoredY []bool
for ix := 0; ix < vx.Len(); ix++ {
ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
if !ignored {
indexesX = append(indexesX, ix)
}
ignoredX = append(ignoredX, ignored)
}
for iy := 0; iy < vy.Len(); iy++ {
ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
if !ignored {
indexesY = append(indexesY, iy)
}
ignoredY = append(ignoredY, ignored)
}
// Compute an edit-script for slices vx and vy (excluding ignored elements).
edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
})
// Replay the ignore-scripts and the edit-script.
var ix, iy int
for ix < vx.Len() || iy < vy.Len() {
var e diff.EditType
switch {
case ix < len(ignoredX) && ignoredX[ix]:
e = diff.UniqueX
case iy < len(ignoredY) && ignoredY[iy]:
e = diff.UniqueY
default:
e, edits = edits[0], edits[1:]
}
switch e {
case diff.UniqueX:
s.compareAny(withIndexes(ix, -1))
ix++
case diff.UniqueY:
s.compareAny(withIndexes(-1, iy))
iy++
default:
s.compareAny(withIndexes(ix, iy))
ix++
iy++
}
}
}
func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for maps.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.vx = vx.MapIndex(k)
step.vy = vy.MapIndex(k)
step.key = k
if !step.vx.IsValid() && !step.vy.IsValid() {
// It is possible for both vx and vy to be invalid if the
// key contained a NaN value in it.
//
// Even with the ability to retrieve NaN keys in Go 1.12,
// there still isn't a sensible way to compare the values since
// a NaN key may map to multiple unordered values.
// The most reasonable way to compare NaNs would be to compare the
// set of values. However, this is impossible to do efficiently
// since set equality is provably an O(n^2) operation given only
// an Equal function. If we had a Less function or Hash function,
// this could be done in O(n*log(n)) or O(n), respectively.
//
// Rather than adding complex logic to deal with NaNs, make it
// the user's responsibility to compare such obscure maps.
const help = "consider providing a Comparer to compare the map"
panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
}
s.compareAny(step)
}
}
func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for pointers.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
vx, vy = vx.Elem(), vy.Elem()
s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
}
func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
vx, vy = vx.Elem(), vy.Elem()
if vx.Type() != vy.Type() {
s.report(false, 0)
return
}
s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
}
func (s *state) report(eq bool, rf resultFlags) {
if rf&reportByIgnore == 0 {
if eq {
s.result.NumSame++
rf |= reportEqual
} else {
s.result.NumDiff++
rf |= reportUnequal
}
}
for _, r := range s.reporters {
r.Report(Result{flags: rf})
}
}
// recChecker tracks the state needed to periodically perform checks that
// user provided transformers are not stuck in an infinitely recursive cycle.
type recChecker struct{ next int }
// Check scans the Path for any recursive transformers and panics when any
// recursive transformers are detected. Note that the presence of a
// recursive Transformer does not necessarily imply an infinite cycle.
// As such, this check only activates after some minimal number of path steps.
func (rc *recChecker) Check(p Path) {
const minLen = 1 << 16
if rc.next == 0 {
rc.next = minLen
}
if len(p) < rc.next {
return
}
rc.next <<= 1
// Check whether the same transformer has appeared at least twice.
var ss []string
m := map[Option]int{}
for _, ps := range p {
if t, ok := ps.(Transform); ok {
t := t.Option()
if m[t] == 1 { // Transformer was used exactly once before
tf := t.(*transformer).fnc.Type()
ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
}
m[t]++
}
}
if len(ss) > 0 {
const warning = "recursive set of Transformers detected"
const help = "consider using cmpopts.AcyclicTransformer"
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
}
}
// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }
// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
ok := dc.curr == dc.next
if ok {
dc.curr = 0
dc.next++
}
dc.curr++
return ok
}
// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
if v.CanAddr() {
return v
}
vc := reflect.New(v.Type()).Elem()
vc.Set(v)
return vc
}

View File

@ -1,15 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego
package cmp
import "reflect"
const supportExporters = false
func retrieveUnexportedField(reflect.Value, reflect.StructField, bool) reflect.Value {
panic("no support for forcibly accessing unexported fields")
}

View File

@ -1,35 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego
package cmp
import (
"reflect"
"unsafe"
)
const supportExporters = true
// retrieveUnexportedField uses unsafe to forcibly retrieve any field from
// a struct such that the value has read-write permissions.
//
// The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve. If addr is false,
// then the returned value will be shallowed copied to be non-addressable.
func retrieveUnexportedField(v reflect.Value, f reflect.StructField, addr bool) reflect.Value {
ve := reflect.NewAt(f.Type, unsafe.Pointer(uintptr(unsafe.Pointer(v.UnsafeAddr()))+f.Offset)).Elem()
if !addr {
// A field is addressable if and only if the struct is addressable.
// If the original parent value was not addressable, shallow copy the
// value to make it non-addressable to avoid leaking an implementation
// detail of how forcibly exporting a field works.
if ve.Kind() == reflect.Interface && ve.IsNil() {
return reflect.Zero(f.Type)
}
return reflect.ValueOf(ve.Interface()).Convert(f.Type)
}
return ve
}

View File

@ -1,17 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !cmp_debug
package diff
var debug debugger
type debugger struct{}
func (debugger) Begin(_, _ int, f EqualFunc, _, _ *EditScript) EqualFunc {
return f
}
func (debugger) Update() {}
func (debugger) Finish() {}

View File

@ -1,122 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build cmp_debug
package diff
import (
"fmt"
"strings"
"sync"
"time"
)
// The algorithm can be seen running in real-time by enabling debugging:
// go test -tags=cmp_debug -v
//
// Example output:
// === RUN TestDifference/#34
// ┌───────────────────────────────┐
// │ \ · · · · · · · · · · · · · · │
// │ · # · · · · · · · · · · · · · │
// │ · \ · · · · · · · · · · · · · │
// │ · · \ · · · · · · · · · · · · │
// │ · · · X # · · · · · · · · · · │
// │ · · · # \ · · · · · · · · · · │
// │ · · · · · # # · · · · · · · · │
// │ · · · · · # \ · · · · · · · · │
// │ · · · · · · · \ · · · · · · · │
// │ · · · · · · · · \ · · · · · · │
// │ · · · · · · · · · \ · · · · · │
// │ · · · · · · · · · · \ · · # · │
// │ · · · · · · · · · · · \ # # · │
// │ · · · · · · · · · · · # # # · │
// │ · · · · · · · · · · # # # # · │
// │ · · · · · · · · · # # # # # · │
// │ · · · · · · · · · · · · · · \ │
// └───────────────────────────────┘
// [.Y..M.XY......YXYXY.|]
//
// The grid represents the edit-graph where the horizontal axis represents
// list X and the vertical axis represents list Y. The start of the two lists
// is the top-left, while the ends are the bottom-right. The '·' represents
// an unexplored node in the graph. The '\' indicates that the two symbols
// from list X and Y are equal. The 'X' indicates that two symbols are similar
// (but not exactly equal) to each other. The '#' indicates that the two symbols
// are different (and not similar). The algorithm traverses this graph trying to
// make the paths starting in the top-left and the bottom-right connect.
//
// The series of '.', 'X', 'Y', and 'M' characters at the bottom represents
// the currently established path from the forward and reverse searches,
// separated by a '|' character.
const (
updateDelay = 100 * time.Millisecond
finishDelay = 500 * time.Millisecond
ansiTerminal = true // ANSI escape codes used to move terminal cursor
)
var debug debugger
type debugger struct {
sync.Mutex
p1, p2 EditScript
fwdPath, revPath *EditScript
grid []byte
lines int
}
func (dbg *debugger) Begin(nx, ny int, f EqualFunc, p1, p2 *EditScript) EqualFunc {
dbg.Lock()
dbg.fwdPath, dbg.revPath = p1, p2
top := "┌─" + strings.Repeat("──", nx) + "┐\n"
row := "│ " + strings.Repeat("· ", nx) + "│\n"
btm := "└─" + strings.Repeat("──", nx) + "┘\n"
dbg.grid = []byte(top + strings.Repeat(row, ny) + btm)
dbg.lines = strings.Count(dbg.String(), "\n")
fmt.Print(dbg)
// Wrap the EqualFunc so that we can intercept each result.
return func(ix, iy int) (r Result) {
cell := dbg.grid[len(top)+iy*len(row):][len("│ ")+len("· ")*ix:][:len("·")]
for i := range cell {
cell[i] = 0 // Zero out the multiple bytes of UTF-8 middle-dot
}
switch r = f(ix, iy); {
case r.Equal():
cell[0] = '\\'
case r.Similar():
cell[0] = 'X'
default:
cell[0] = '#'
}
return
}
}
func (dbg *debugger) Update() {
dbg.print(updateDelay)
}
func (dbg *debugger) Finish() {
dbg.print(finishDelay)
dbg.Unlock()
}
func (dbg *debugger) String() string {
dbg.p1, dbg.p2 = *dbg.fwdPath, dbg.p2[:0]
for i := len(*dbg.revPath) - 1; i >= 0; i-- {
dbg.p2 = append(dbg.p2, (*dbg.revPath)[i])
}
return fmt.Sprintf("%s[%v|%v]\n\n", dbg.grid, dbg.p1, dbg.p2)
}
func (dbg *debugger) print(d time.Duration) {
if ansiTerminal {
fmt.Printf("\x1b[%dA", dbg.lines) // Reset terminal cursor
}
fmt.Print(dbg)
time.Sleep(d)
}

View File

@ -1,392 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package diff implements an algorithm for producing edit-scripts.
// The edit-script is a sequence of operations needed to transform one list
// of symbols into another (or vice-versa). The edits allowed are insertions,
// deletions, and modifications. The summation of all edits is called the
// Levenshtein distance as this problem is well-known in computer science.
//
// This package prioritizes performance over accuracy. That is, the run time
// is more important than obtaining a minimal Levenshtein distance.
package diff
import (
"math/rand"
"time"
"github.com/google/go-cmp/cmp/internal/flags"
)
// EditType represents a single operation within an edit-script.
type EditType uint8
const (
// Identity indicates that a symbol pair is identical in both list X and Y.
Identity EditType = iota
// UniqueX indicates that a symbol only exists in X and not Y.
UniqueX
// UniqueY indicates that a symbol only exists in Y and not X.
UniqueY
// Modified indicates that a symbol pair is a modification of each other.
Modified
)
// EditScript represents the series of differences between two lists.
type EditScript []EditType
// String returns a human-readable string representing the edit-script where
// Identity, UniqueX, UniqueY, and Modified are represented by the
// '.', 'X', 'Y', and 'M' characters, respectively.
func (es EditScript) String() string {
b := make([]byte, len(es))
for i, e := range es {
switch e {
case Identity:
b[i] = '.'
case UniqueX:
b[i] = 'X'
case UniqueY:
b[i] = 'Y'
case Modified:
b[i] = 'M'
default:
panic("invalid edit-type")
}
}
return string(b)
}
// stats returns a histogram of the number of each type of edit operation.
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
for _, e := range es {
switch e {
case Identity:
s.NI++
case UniqueX:
s.NX++
case UniqueY:
s.NY++
case Modified:
s.NM++
default:
panic("invalid edit-type")
}
}
return
}
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
// lists X and Y are equal.
func (es EditScript) Dist() int { return len(es) - es.stats().NI }
// LenX is the length of the X list.
func (es EditScript) LenX() int { return len(es) - es.stats().NY }
// LenY is the length of the Y list.
func (es EditScript) LenY() int { return len(es) - es.stats().NX }
// EqualFunc reports whether the symbols at indexes ix and iy are equal.
// When called by Difference, the index is guaranteed to be within nx and ny.
type EqualFunc func(ix int, iy int) Result
// Result is the result of comparison.
// NumSame is the number of sub-elements that are equal.
// NumDiff is the number of sub-elements that are not equal.
type Result struct{ NumSame, NumDiff int }
// BoolResult returns a Result that is either Equal or not Equal.
func BoolResult(b bool) Result {
if b {
return Result{NumSame: 1} // Equal, Similar
} else {
return Result{NumDiff: 2} // Not Equal, not Similar
}
}
// Equal indicates whether the symbols are equal. Two symbols are equal
// if and only if NumDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NumDiff == 0 }
// Similar indicates whether two symbols are similar and may be represented
// by using the Modified type. As a special case, we consider binary comparisons
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
//
// The exact ratio of NumSame to NumDiff to determine similarity may change.
func (r Result) Similar() bool {
// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
return r.NumSame+1 >= r.NumDiff
}
var randInt = rand.New(rand.NewSource(time.Now().Unix())).Intn(2)
// Difference reports whether two lists of lengths nx and ny are equal
// given the definition of equality provided as f.
//
// This function returns an edit-script, which is a sequence of operations
// needed to convert one list into the other. The following invariants for
// the edit-script are maintained:
// • eq == (es.Dist()==0)
// • nx == es.LenX()
// • ny == es.LenY()
//
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
// produces an edit-script with a minimal Levenshtein distance). This algorithm
// favors performance over optimality. The exact output is not guaranteed to
// be stable and may change over time.
func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// This algorithm is based on traversing what is known as an "edit-graph".
// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
// by Eugene W. Myers. Since D can be as large as N itself, this is
// effectively O(N^2). Unlike the algorithm from that paper, we are not
// interested in the optimal path, but at least some "decent" path.
//
// For example, let X and Y be lists of symbols:
// X = [A B C A B B A]
// Y = [C B A B A C]
//
// The edit-graph can be drawn as the following:
// A B C A B B A
// ┌─────────────┐
// C │_|_|\|_|_|_|_│ 0
// B │_|\|_|_|\|\|_│ 1
// A │\|_|_|\|_|_|\│ 2
// B │_|\|_|_|\|\|_│ 3
// A │\|_|_|\|_|_|\│ 4
// C │ | |\| | | | │ 5
// └─────────────┘ 6
// 0 1 2 3 4 5 6 7
//
// List X is written along the horizontal axis, while list Y is written
// along the vertical axis. At any point on this grid, if the symbol in
// list X matches the corresponding symbol in list Y, then a '\' is drawn.
// The goal of any minimal edit-script algorithm is to find a path from the
// top-left corner to the bottom-right corner, while traveling through the
// fewest horizontal or vertical edges.
// A horizontal edge is equivalent to inserting a symbol from list X.
// A vertical edge is equivalent to inserting a symbol from list Y.
// A diagonal edge is equivalent to a matching symbol between both X and Y.
// To ensure flexibility in changing the algorithm in the future,
// introduce some degree of deliberate instability.
// This is achieved by fiddling the zigzag iterator to start searching
// the graph starting from the bottom-right versus than the top-left.
// The result may differ depending on the starting search location,
// but still produces a valid edit script.
zigzagInit := randInt // either 0 or 1
if flags.Deterministic {
zigzagInit = 0
}
// Invariants:
// • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
// • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
//
// In general:
// • fwdFrontier.X < revFrontier.X
// • fwdFrontier.Y < revFrontier.Y
// Unless, it is time for the algorithm to terminate.
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
fwdFrontier := fwdPath.point // Forward search frontier
revFrontier := revPath.point // Reverse search frontier
// Search budget bounds the cost of searching for better paths.
// The longest sequence of non-matching symbols that can be tolerated is
// approximately the square-root of the search budget.
searchBudget := 4 * (nx + ny) // O(n)
// The algorithm below is a greedy, meet-in-the-middle algorithm for
// computing sub-optimal edit-scripts between two lists.
//
// The algorithm is approximately as follows:
// • Searching for differences switches back-and-forth between
// a search that starts at the beginning (the top-left corner), and
// a search that starts at the end (the bottom-right corner). The goal of
// the search is connect with the search from the opposite corner.
// • As we search, we build a path in a greedy manner, where the first
// match seen is added to the path (this is sub-optimal, but provides a
// decent result in practice). When matches are found, we try the next pair
// of symbols in the lists and follow all matches as far as possible.
// • When searching for matches, we search along a diagonal going through
// through the "frontier" point. If no matches are found, we advance the
// frontier towards the opposite corner.
// • This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
//
// This algorithm is correct even if searching only in the forward direction
// or in the reverse direction. We do both because it is commonly observed
// that two lists commonly differ because elements were added to the front
// or end of the other list.
//
// Running the tests with the "cmp_debug" build tag prints a visualization
// of the algorithm running in real-time. This is educational for
// understanding how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
for {
// Forward search from the beginning.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, zigzagInit; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
switch {
case p.X >= revPath.X || p.Y < fwdPath.Y:
stop1 = true // Hit top-right corner
case p.Y >= revPath.Y || p.X < fwdPath.X:
stop2 = true // Hit bottom-left corner
case f(p.X, p.Y).Equal():
// Match found, so connect the path to this point.
fwdPath.connect(p, f)
fwdPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(fwdPath.X, fwdPath.Y).Equal() {
break
}
fwdPath.append(Identity)
}
fwdFrontier = fwdPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards reverse point.
if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
fwdFrontier.X++
} else {
fwdFrontier.Y++
}
// Reverse search from the end.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{revFrontier.X - z, revFrontier.Y + z}
switch {
case fwdPath.X >= p.X || revPath.Y < p.Y:
stop1 = true // Hit bottom-left corner
case fwdPath.Y >= p.Y || revPath.X < p.X:
stop2 = true // Hit top-right corner
case f(p.X-1, p.Y-1).Equal():
// Match found, so connect the path to this point.
revPath.connect(p, f)
revPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(revPath.X-1, revPath.Y-1).Equal() {
break
}
revPath.append(Identity)
}
revFrontier = revPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards forward point.
if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
revFrontier.X--
} else {
revFrontier.Y--
}
}
// Join the forward and reverse paths and then append the reverse path.
fwdPath.connect(revPath.point, f)
for i := len(revPath.es) - 1; i >= 0; i-- {
t := revPath.es[i]
revPath.es = revPath.es[:i]
fwdPath.append(t)
}
debug.Finish()
return fwdPath.es
}
type path struct {
dir int // +1 if forward, -1 if reverse
point // Leading point of the EditScript path
es EditScript
}
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
// to the edit-script to connect p.point to dst.
func (p *path) connect(dst point, f EqualFunc) {
if p.dir > 0 {
// Connect in forward direction.
for dst.X > p.X && dst.Y > p.Y {
switch r := f(p.X, p.Y); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case dst.X-p.X >= dst.Y-p.Y:
p.append(UniqueX)
default:
p.append(UniqueY)
}
}
for dst.X > p.X {
p.append(UniqueX)
}
for dst.Y > p.Y {
p.append(UniqueY)
}
} else {
// Connect in reverse direction.
for p.X > dst.X && p.Y > dst.Y {
switch r := f(p.X-1, p.Y-1); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case p.Y-dst.Y >= p.X-dst.X:
p.append(UniqueY)
default:
p.append(UniqueX)
}
}
for p.X > dst.X {
p.append(UniqueX)
}
for p.Y > dst.Y {
p.append(UniqueY)
}
}
}
func (p *path) append(t EditType) {
p.es = append(p.es, t)
switch t {
case Identity, Modified:
p.add(p.dir, p.dir)
case UniqueX:
p.add(p.dir, 0)
case UniqueY:
p.add(0, p.dir)
}
debug.Update()
}
type point struct{ X, Y int }
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
func zigzag(x int) int {
if x&1 != 0 {
x = ^x
}
return x >> 1
}

View File

@ -1,9 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package flags
// Deterministic controls whether the output of Diff should be deterministic.
// This is only used for testing.
var Deterministic bool

View File

@ -1,10 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = false

View File

@ -1,10 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = true

View File

@ -1,99 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package function provides functionality for identifying function types.
package function
import (
"reflect"
"regexp"
"runtime"
"strings"
)
type funcType int
const (
_ funcType = iota
tbFunc // func(T) bool
ttbFunc // func(T, T) bool
trbFunc // func(T, R) bool
tibFunc // func(T, I) bool
trFunc // func(T) R
Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool
ValuePredicate = tbFunc // func(T) bool
KeyValuePredicate = trbFunc // func(T, R) bool
)
var boolType = reflect.TypeOf(true)
// IsType reports whether the reflect.Type is of the specified function type.
func IsType(t reflect.Type, ft funcType) bool {
if t == nil || t.Kind() != reflect.Func || t.IsVariadic() {
return false
}
ni, no := t.NumIn(), t.NumOut()
switch ft {
case tbFunc: // func(T) bool
if ni == 1 && no == 1 && t.Out(0) == boolType {
return true
}
case ttbFunc: // func(T, T) bool
if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType {
return true
}
case trbFunc: // func(T, R) bool
if ni == 2 && no == 1 && t.Out(0) == boolType {
return true
}
case tibFunc: // func(T, I) bool
if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType {
return true
}
case trFunc: // func(T) R
if ni == 1 && no == 1 {
return true
}
}
return false
}
var lastIdentRx = regexp.MustCompile(`[_\p{L}][_\p{L}\p{N}]*$`)
// NameOf returns the name of the function value.
func NameOf(v reflect.Value) string {
fnc := runtime.FuncForPC(v.Pointer())
if fnc == nil {
return "<unknown>"
}
fullName := fnc.Name() // e.g., "long/path/name/mypkg.(*MyType).(long/path/name/mypkg.myMethod)-fm"
// Method closures have a "-fm" suffix.
fullName = strings.TrimSuffix(fullName, "-fm")
var name string
for len(fullName) > 0 {
inParen := strings.HasSuffix(fullName, ")")
fullName = strings.TrimSuffix(fullName, ")")
s := lastIdentRx.FindString(fullName)
if s == "" {
break
}
name = s + "." + name
fullName = strings.TrimSuffix(fullName, s)
if i := strings.LastIndexByte(fullName, '('); inParen && i >= 0 {
fullName = fullName[:i]
}
fullName = strings.TrimSuffix(fullName, ".")
}
return strings.TrimSuffix(name, ".")
}

View File

@ -1,157 +0,0 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"reflect"
"strconv"
)
// TypeString is nearly identical to reflect.Type.String,
// but has an additional option to specify that full type names be used.
func TypeString(t reflect.Type, qualified bool) string {
return string(appendTypeName(nil, t, qualified, false))
}
func appendTypeName(b []byte, t reflect.Type, qualified, elideFunc bool) []byte {
// BUG: Go reflection provides no way to disambiguate two named types
// of the same name and within the same package,
// but declared within the namespace of different functions.
// Named type.
if t.Name() != "" {
if qualified && t.PkgPath() != "" {
b = append(b, '"')
b = append(b, t.PkgPath()...)
b = append(b, '"')
b = append(b, '.')
b = append(b, t.Name()...)
} else {
b = append(b, t.String()...)
}
return b
}
// Unnamed type.
switch k := t.Kind(); k {
case reflect.Bool, reflect.String, reflect.UnsafePointer,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
b = append(b, k.String()...)
case reflect.Chan:
if t.ChanDir() == reflect.RecvDir {
b = append(b, "<-"...)
}
b = append(b, "chan"...)
if t.ChanDir() == reflect.SendDir {
b = append(b, "<-"...)
}
b = append(b, ' ')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Func:
if !elideFunc {
b = append(b, "func"...)
}
b = append(b, '(')
for i := 0; i < t.NumIn(); i++ {
if i > 0 {
b = append(b, ", "...)
}
if i == t.NumIn()-1 && t.IsVariadic() {
b = append(b, "..."...)
b = appendTypeName(b, t.In(i).Elem(), qualified, false)
} else {
b = appendTypeName(b, t.In(i), qualified, false)
}
}
b = append(b, ')')
switch t.NumOut() {
case 0:
// Do nothing
case 1:
b = append(b, ' ')
b = appendTypeName(b, t.Out(0), qualified, false)
default:
b = append(b, " ("...)
for i := 0; i < t.NumOut(); i++ {
if i > 0 {
b = append(b, ", "...)
}
b = appendTypeName(b, t.Out(i), qualified, false)
}
b = append(b, ')')
}
case reflect.Struct:
b = append(b, "struct{ "...)
for i := 0; i < t.NumField(); i++ {
if i > 0 {
b = append(b, "; "...)
}
sf := t.Field(i)
if !sf.Anonymous {
if qualified && sf.PkgPath != "" {
b = append(b, '"')
b = append(b, sf.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, sf.Name...)
b = append(b, ' ')
}
b = appendTypeName(b, sf.Type, qualified, false)
if sf.Tag != "" {
b = append(b, ' ')
b = strconv.AppendQuote(b, string(sf.Tag))
}
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
case reflect.Slice, reflect.Array:
b = append(b, '[')
if k == reflect.Array {
b = strconv.AppendUint(b, uint64(t.Len()), 10)
}
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Map:
b = append(b, "map["...)
b = appendTypeName(b, t.Key(), qualified, false)
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Ptr:
b = append(b, '*')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Interface:
b = append(b, "interface{ "...)
for i := 0; i < t.NumMethod(); i++ {
if i > 0 {
b = append(b, "; "...)
}
m := t.Method(i)
if qualified && m.PkgPath != "" {
b = append(b, '"')
b = append(b, m.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, m.Name...)
b = appendTypeName(b, m.Type, qualified, true)
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
default:
panic("invalid kind: " + k.String())
}
return b
}

View File

@ -1,33 +0,0 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego
package value
import "reflect"
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p uintptr
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// NOTE: Storing a pointer as an uintptr is technically incorrect as it
// assumes that the GC implementation does not use a moving collector.
return Pointer{v.Pointer(), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == 0
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return p.p
}

View File

@ -1,36 +0,0 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego
package value
import (
"reflect"
"unsafe"
)
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p unsafe.Pointer
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// The proper representation of a pointer is unsafe.Pointer,
// which is necessary if the GC ever uses a moving collector.
return Pointer{unsafe.Pointer(v.Pointer()), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == nil
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return uintptr(p.p)
}

View File

@ -1,106 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"fmt"
"math"
"reflect"
"sort"
)
// SortKeys sorts a list of map keys, deduplicating keys if necessary.
// The type of each value must be comparable.
func SortKeys(vs []reflect.Value) []reflect.Value {
if len(vs) == 0 {
return vs
}
// Sort the map keys.
sort.SliceStable(vs, func(i, j int) bool { return isLess(vs[i], vs[j]) })
// Deduplicate keys (fails for NaNs).
vs2 := vs[:1]
for _, v := range vs[1:] {
if isLess(vs2[len(vs2)-1], v) {
vs2 = append(vs2, v)
}
}
return vs2
}
// isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool {
switch x.Type().Kind() {
case reflect.Bool:
return !x.Bool() && y.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return x.Int() < y.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return x.Uint() < y.Uint()
case reflect.Float32, reflect.Float64:
// NOTE: This does not sort -0 as less than +0
// since Go maps treat -0 and +0 as equal keys.
fx, fy := x.Float(), y.Float()
return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy)
case reflect.Complex64, reflect.Complex128:
cx, cy := x.Complex(), y.Complex()
rx, ix, ry, iy := real(cx), imag(cx), real(cy), imag(cy)
if rx == ry || (math.IsNaN(rx) && math.IsNaN(ry)) {
return ix < iy || math.IsNaN(ix) && !math.IsNaN(iy)
}
return rx < ry || math.IsNaN(rx) && !math.IsNaN(ry)
case reflect.Ptr, reflect.UnsafePointer, reflect.Chan:
return x.Pointer() < y.Pointer()
case reflect.String:
return x.String() < y.String()
case reflect.Array:
for i := 0; i < x.Len(); i++ {
if isLess(x.Index(i), y.Index(i)) {
return true
}
if isLess(y.Index(i), x.Index(i)) {
return false
}
}
return false
case reflect.Struct:
for i := 0; i < x.NumField(); i++ {
if isLess(x.Field(i), y.Field(i)) {
return true
}
if isLess(y.Field(i), x.Field(i)) {
return false
}
}
return false
case reflect.Interface:
vx, vy := x.Elem(), y.Elem()
if !vx.IsValid() || !vy.IsValid() {
return !vx.IsValid() && vy.IsValid()
}
tx, ty := vx.Type(), vy.Type()
if tx == ty {
return isLess(x.Elem(), y.Elem())
}
if tx.Kind() != ty.Kind() {
return vx.Kind() < vy.Kind()
}
if tx.String() != ty.String() {
return tx.String() < ty.String()
}
if tx.PkgPath() != ty.PkgPath() {
return tx.PkgPath() < ty.PkgPath()
}
// This can happen in rare situations, so we fallback to just comparing
// the unique pointer for a reflect.Type. This guarantees deterministic
// ordering within a program, but it is obviously not stable.
return reflect.ValueOf(vx.Type()).Pointer() < reflect.ValueOf(vy.Type()).Pointer()
default:
// Must be Func, Map, or Slice; which are not comparable.
panic(fmt.Sprintf("%T is not comparable", x.Type()))
}
}

View File

@ -1,48 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"math"
"reflect"
)
// IsZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func IsZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return math.Float64bits(v.Float()) == 0
case reflect.Complex64, reflect.Complex128:
return math.Float64bits(real(v.Complex())) == 0 && math.Float64bits(imag(v.Complex())) == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !IsZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !IsZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View File

@ -1,552 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"regexp"
"strings"
"github.com/google/go-cmp/cmp/internal/function"
)
// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
type Option interface {
// filter applies all filters and returns the option that remains.
// Each option may only read s.curPath and call s.callTTBFunc.
//
// An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types.
filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption
}
// applicableOption represents the following types:
// Fundamental: ignore | validator | *comparer | *transformer
// Grouping: Options
type applicableOption interface {
Option
// apply executes the option, which may mutate s or panic.
apply(s *state, vx, vy reflect.Value)
}
// coreOption represents the following types:
// Fundamental: ignore | validator | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter
type coreOption interface {
Option
isCore()
}
type core struct{}
func (core) isCore() {}
// Options is a list of Option values that also satisfies the Option interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
// on all individual options held within.
type Options []Option
func (opts Options) filter(s *state, t reflect.Type, vx, vy reflect.Value) (out applicableOption) {
for _, opt := range opts {
switch opt := opt.filter(s, t, vx, vy); opt.(type) {
case ignore:
return ignore{} // Only ignore can short-circuit evaluation
case validator:
out = validator{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options:
switch out.(type) {
case nil:
out = opt
case validator:
// Keep validator
case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers
}
}
}
return out
}
func (opts Options) apply(s *state, _, _ reflect.Value) {
const warning = "ambiguous set of applicable options"
const help = "consider using filters to ensure at most one Comparer or Transformer may apply"
var ss []string
for _, opt := range flattenOptions(nil, opts) {
ss = append(ss, fmt.Sprint(opt))
}
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", warning, s.curPath, set, help))
}
func (opts Options) String() string {
var ss []string
for _, opt := range opts {
ss = append(ss, fmt.Sprint(opt))
}
return fmt.Sprintf("Options{%s}", strings.Join(ss, ", "))
}
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option {
if f == nil {
panic("invalid path filter function")
}
if opt := normalizeOption(opt); opt != nil {
return &pathFilter{fnc: f, opt: opt}
}
return nil
}
type pathFilter struct {
core
fnc func(Path) bool
opt Option
}
func (f pathFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if f.fnc(s.curPath) {
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f pathFilter) String() string {
return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(f.fnc)), f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If either value is invalid or
// the type of the values is not assignable to T, then this filter implicitly
// returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
// deterministic (i.e., produces the same result when given the same inputs).
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterValues(f interface{}, opt Option) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() {
panic(fmt.Sprintf("invalid values filter function: %T", f))
}
if opt := normalizeOption(opt); opt != nil {
vf := &valuesFilter{fnc: v, opt: opt}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
vf.typ = ti
}
return vf
}
return nil
}
type valuesFilter struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
opt Option
}
func (f valuesFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vx.CanInterface() || !vy.IsValid() || !vy.CanInterface() {
return nil
}
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f valuesFilter) String() string {
return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(f.fnc), f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
func Ignore() Option { return ignore{} }
type ignore struct{ core }
func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption { return ignore{} }
func (ignore) apply(s *state, _, _ reflect.Value) { s.report(true, reportByIgnore) }
func (ignore) String() string { return "Ignore()" }
// validator is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields, missing slice elements, or
// missing map entries. Both values are validator only for unexported fields.
type validator struct{ core }
func (validator) filter(_ *state, _ reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return validator{}
}
if !vx.CanInterface() || !vy.CanInterface() {
return validator{}
}
return nil
}
func (validator) apply(s *state, vx, vy reflect.Value) {
// Implies missing slice element or map entry.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), 0)
return
}
// Unable to Interface implies unexported field without visibility access.
if !vx.CanInterface() || !vy.CanInterface() {
help := "consider using a custom Comparer; if you control the implementation of type, you can also consider using an Exporter, AllowUnexported, or cmpopts.IgnoreUnexported"
var name string
if t := s.curPath.Index(-2).Type(); t.Name() != "" {
// Named type with unexported fields.
name = fmt.Sprintf("%q.%v", t.PkgPath(), t.Name()) // e.g., "path/to/package".MyType
if _, ok := reflect.New(t).Interface().(error); ok {
help = "consider using cmpopts.EquateErrors to compare error values"
}
} else {
// Unnamed type with unexported fields. Derive PkgPath from field.
var pkgPath string
for i := 0; i < t.NumField() && pkgPath == ""; i++ {
pkgPath = t.Field(i).PkgPath
}
name = fmt.Sprintf("%q.(%v)", pkgPath, t.String()) // e.g., "path/to/package".(struct { a int })
}
panic(fmt.Sprintf("cannot handle unexported field at %#v:\n\t%v\n%s", s.curPath, name, help))
}
panic("not reachable")
}
// identRx represents a valid identifier according to the Go specification.
const identRx = `[_\p{L}][_\p{L}\p{N}]*`
var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
// type T to those of type R and is implicitly filtered to input values
// assignable to T. The transformer must not mutate T in any way.
//
// To help prevent some cases of infinite recursive cycles applying the
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep (and eventually shown in the Diff output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f))
}
if name == "" {
name = function.NameOf(v)
if !identsRx.MatchString(name) {
name = "λ" // Lambda-symbol as placeholder name
}
} else if !identsRx.MatchString(name) {
panic(fmt.Sprintf("invalid name: %q", name))
}
tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
tr.typ = ti
}
return tr
}
type transformer struct {
core
name string
typ reflect.Type // T
fnc reflect.Value // func(T) R
}
func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, t reflect.Type, _, _ reflect.Value) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(Transform); !ok {
break // Hit most recent non-Transform step
} else if tr == t.trans {
return nil // Cannot directly use same Transform
}
}
if tr.typ == nil || t.AssignableTo(tr.typ) {
return tr
}
return nil
}
func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
step := Transform{&transform{pathStep{typ: tr.fnc.Type().Out(0)}, tr}}
vvx := s.callTRFunc(tr.fnc, vx, step)
vvy := s.callTRFunc(tr.fnc, vy, step)
step.vx, step.vy = vvx, vvy
s.compareAny(step)
}
func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, function.NameOf(tr.fnc))
}
// Comparer returns an Option that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
// filtered to input values assignable to T. If T is an interface, it is
// possible that f is called with two values of different concrete types that
// both implement T.
//
// The equality function must be:
// • Symmetric: equal(x, y) == equal(y, x)
// • Deterministic: equal(x, y) == equal(x, y)
// • Pure: equal(x, y) does not modify x or y
func Comparer(f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Equal) || v.IsNil() {
panic(fmt.Sprintf("invalid comparer function: %T", f))
}
cm := &comparer{fnc: v}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
cm.typ = ti
}
return cm
}
type comparer struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, t reflect.Type, _, _ reflect.Value) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm
}
return nil
}
func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, reportByFunc)
}
func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", function.NameOf(cm.fnc))
}
// Exporter returns an Option that specifies whether Equal is allowed to
// introspect into the unexported fields of certain struct types.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// In many cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
//
// Comparer(func(x, y reflect.Type) bool { return x == y })
// Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func Exporter(f func(reflect.Type) bool) Option {
if !supportExporters {
panic("Exporter is not supported on purego builds")
}
return exporter(f)
}
type exporter func(reflect.Type) bool
func (exporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// AllowUnexported returns an Options that allows Equal to forcibly introspect
// unexported fields of the specified struct types.
//
// See Exporter for the proper use of this option.
func AllowUnexported(types ...interface{}) Option {
m := make(map[reflect.Type]bool)
for _, typ := range types {
t := reflect.TypeOf(typ)
if t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
}
m[t] = true
}
return exporter(func(t reflect.Type) bool { return m[t] })
}
// Result represents the comparison result for a single node and
// is provided by cmp when calling Result (see Reporter).
type Result struct {
_ [0]func() // Make Result incomparable
flags resultFlags
}
// Equal reports whether the node was determined to be equal or not.
// As a special case, ignored nodes are considered equal.
func (r Result) Equal() bool {
return r.flags&(reportEqual|reportByIgnore) != 0
}
// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
func (r Result) ByIgnore() bool {
return r.flags&reportByIgnore != 0
}
// ByMethod reports whether the Equal method determined equality.
func (r Result) ByMethod() bool {
return r.flags&reportByMethod != 0
}
// ByFunc reports whether a Comparer function determined equality.
func (r Result) ByFunc() bool {
return r.flags&reportByFunc != 0
}
// ByCycle reports whether a reference cycle was detected.
func (r Result) ByCycle() bool {
return r.flags&reportByCycle != 0
}
type resultFlags uint
const (
_ resultFlags = (1 << iota) / 2
reportEqual
reportUnequal
reportByIgnore
reportByMethod
reportByFunc
reportByCycle
)
// Reporter is an Option that can be passed to Equal. When Equal traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported
// as such by calling the Report method.
func Reporter(r interface {
// PushStep is called when a tree-traversal operation is performed.
// The PathStep itself is only valid until the step is popped.
// The PathStep.Values are valid for the duration of the entire traversal
// and must not be mutated.
//
// Equal always calls PushStep at the start to provide an operation-less
// PathStep used to report the root values.
//
// Within a slice, the exact set of inserted, removed, or modified elements
// is unspecified and may change in future implementations.
// The entries of a map are iterated through in an unspecified order.
PushStep(PathStep)
// Report is called exactly once on leaf nodes to report whether the
// comparison identified the node as equal, unequal, or ignored.
// A leaf node is one that is immediately preceded by and followed by
// a pair of PushStep and PopStep calls.
Report(Result)
// PopStep ascends back up the value tree.
// There is always a matching pop call for every push call.
PopStep()
}) Option {
return reporter{r}
}
type reporter struct{ reporterIface }
type reporterIface interface {
PushStep(PathStep)
Report(Result)
PopStep()
}
func (reporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// normalizeOption normalizes the input options such that all Options groups
// are flattened and groups with a single element are reduced to that element.
// Only coreOptions and Options containing coreOptions are allowed.
func normalizeOption(src Option) Option {
switch opts := flattenOptions(nil, Options{src}); len(opts) {
case 0:
return nil
case 1:
return opts[0]
default:
return opts
}
}
// flattenOptions copies all options in src to dst as a flat list.
// Only coreOptions and Options containing coreOptions are allowed.
func flattenOptions(dst, src Options) Options {
for _, opt := range src {
switch opt := opt.(type) {
case nil:
continue
case Options:
dst = flattenOptions(dst, opt)
case coreOption:
dst = append(dst, opt)
default:
panic(fmt.Sprintf("invalid option type: %T", opt))
}
}
return dst
}

View File

@ -1,378 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
// Path is a list of PathSteps describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// simply to identify the initial type.
//
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
type Path []PathStep
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
//
// Implementations of this interface are
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
type PathStep interface {
String() string
// Type is the resulting type after performing the path step.
Type() reflect.Type
// Values is the resulting values after performing the path step.
// The type of each valid value is guaranteed to be identical to Type.
//
// In some cases, one or both may be invalid or have restrictions:
// • For StructField, both are not interface-able if the current field
// is unexported and the struct type is not explicitly permitted by
// an Exporter to traverse unexported fields.
// • For SliceIndex, one may be invalid if an element is missing from
// either the x or y slice.
// • For MapIndex, one may be invalid if an entry is missing from
// either the x or y map.
//
// The provided values must not be mutated.
Values() (vx, vy reflect.Value)
}
var (
_ PathStep = StructField{}
_ PathStep = SliceIndex{}
_ PathStep = MapIndex{}
_ PathStep = Indirect{}
_ PathStep = TypeAssertion{}
_ PathStep = Transform{}
)
func (pa *Path) push(s PathStep) {
*pa = append(*pa, s)
}
func (pa *Path) pop() {
*pa = (*pa)[:len(*pa)-1]
}
// Last returns the last PathStep in the Path.
// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Last() PathStep {
return pa.Index(-1)
}
// Index returns the ith step in the Path and supports negative indexing.
// A negative index starts counting from the tail of the Path such that -1
// refers to the last step, -2 refers to the second-to-last step, and so on.
// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Index(i int) PathStep {
if i < 0 {
i = len(pa) + i
}
if i < 0 || i >= len(pa) {
return pathStep{}
}
return pa[i]
}
// String returns the simplified path to a node.
// The simplified path only contains struct field accesses.
//
// For example:
// MyMap.MySlices.MyField
func (pa Path) String() string {
var ss []string
for _, s := range pa {
if _, ok := s.(StructField); ok {
ss = append(ss, s.String())
}
}
return strings.TrimPrefix(strings.Join(ss, ""), ".")
}
// GoString returns the path to a specific node using Go syntax.
//
// For example:
// (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
func (pa Path) GoString() string {
var ssPre, ssPost []string
var numIndirect int
for i, s := range pa {
var nextStep PathStep
if i+1 < len(pa) {
nextStep = pa[i+1]
}
switch s := s.(type) {
case Indirect:
numIndirect++
pPre, pPost := "(", ")"
switch nextStep.(type) {
case Indirect:
continue // Next step is indirection, so let them batch up
case StructField:
numIndirect-- // Automatic indirection on struct fields
case nil:
pPre, pPost = "", "" // Last step; no need for parenthesis
}
if numIndirect > 0 {
ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
ssPost = append(ssPost, pPost)
}
numIndirect = 0
continue
case Transform:
ssPre = append(ssPre, s.trans.name+"(")
ssPost = append(ssPost, ")")
continue
}
ssPost = append(ssPost, s.String())
}
for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
}
return strings.Join(ssPre, "") + strings.Join(ssPost, "")
}
type pathStep struct {
typ reflect.Type
vx, vy reflect.Value
}
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
func (ps pathStep) String() string {
if ps.typ == nil {
return "<nil>"
}
s := ps.typ.String()
if s == "" || strings.ContainsAny(s, "{}\n") {
return "root" // Type too simple or complex to print
}
return fmt.Sprintf("{%s}", s)
}
// StructField represents a struct field access on a field called Name.
type StructField struct{ *structField }
type structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
mayForce bool // Forcibly allow visibility
paddr bool // Was parent addressable?
pvx, pvy reflect.Value // Parent values (always addressible)
field reflect.StructField // Field information
}
func (sf StructField) Type() reflect.Type { return sf.typ }
func (sf StructField) Values() (vx, vy reflect.Value) {
if !sf.unexported {
return sf.vx, sf.vy // CanInterface reports true
}
// Forcibly obtain read-write access to an unexported struct field.
if sf.mayForce {
vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
return vx, vy // CanInterface reports true
}
return sf.vx, sf.vy // CanInterface reports false
}
func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
// Name is the field name.
func (sf StructField) Name() string { return sf.name }
// Index is the index of the field in the parent struct type.
// See reflect.Type.Field.
func (sf StructField) Index() int { return sf.idx }
// SliceIndex is an index operation on a slice or array at some index Key.
type SliceIndex struct{ *sliceIndex }
type sliceIndex struct {
pathStep
xkey, ykey int
isSlice bool // False for reflect.Array
}
func (si SliceIndex) Type() reflect.Type { return si.typ }
func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
func (si SliceIndex) String() string {
switch {
case si.xkey == si.ykey:
return fmt.Sprintf("[%d]", si.xkey)
case si.ykey == -1:
// [5->?] means "I don't know where X[5] went"
return fmt.Sprintf("[%d->?]", si.xkey)
case si.xkey == -1:
// [?->3] means "I don't know where Y[3] came from"
return fmt.Sprintf("[?->%d]", si.ykey)
default:
// [5->3] means "X[5] moved to Y[3]"
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
}
}
// Key is the index key; it may return -1 if in a split state
func (si SliceIndex) Key() int {
if si.xkey != si.ykey {
return -1
}
return si.xkey
}
// SplitKeys are the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
// MapIndex is an index operation on a map at some index Key.
type MapIndex struct{ *mapIndex }
type mapIndex struct {
pathStep
key reflect.Value
}
func (mi MapIndex) Type() reflect.Type { return mi.typ }
func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
// Key is the value of the map key.
func (mi MapIndex) Key() reflect.Value { return mi.key }
// Indirect represents pointer indirection on the parent type.
type Indirect struct{ *indirect }
type indirect struct {
pathStep
}
func (in Indirect) Type() reflect.Type { return in.typ }
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
func (in Indirect) String() string { return "*" }
// TypeAssertion represents a type assertion on an interface.
type TypeAssertion struct{ *typeAssertion }
type typeAssertion struct {
pathStep
}
func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
// Transform is a transformation from the parent type to the current type.
type Transform struct{ *transform }
type transform struct {
pathStep
trans *transformer
}
func (tf Transform) Type() reflect.Type { return tf.typ }
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
// Name is the name of the Transformer.
func (tf Transform) Name() string { return tf.trans.name }
// Func is the function pointer to the transformer function.
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
func (tf Transform) Option() Option { return tf.trans }
// pointerPath represents a dual-stack of pointers encountered when
// recursively traversing the x and y values. This data structure supports
// detection of cycles and determining whether the cycles are equal.
// In Go, cycles can occur via pointers, slices, and maps.
//
// The pointerPath uses a map to represent a stack; where descension into a
// pointer pushes the address onto the stack, and ascension from a pointer
// pops the address from the stack. Thus, when traversing into a pointer from
// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
// by checking whether the pointer has already been visited. The cycle detection
// uses a seperate stack for the x and y values.
//
// If a cycle is detected we need to determine whether the two pointers
// should be considered equal. The definition of equality chosen by Equal
// requires two graphs to have the same structure. To determine this, both the
// x and y values must have a cycle where the previous pointers were also
// encountered together as a pair.
//
// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
// MapIndex with pointer information for the x and y values.
// Suppose px and py are two pointers to compare, we then search the
// Path for whether px was ever encountered in the Path history of x, and
// similarly so with py. If either side has a cycle, the comparison is only
// equal if both px and py have a cycle resulting from the same PathStep.
//
// Using a map as a stack is more performant as we can perform cycle detection
// in O(1) instead of O(N) where N is len(Path).
type pointerPath struct {
// mx is keyed by x pointers, where the value is the associated y pointer.
mx map[value.Pointer]value.Pointer
// my is keyed by y pointers, where the value is the associated x pointer.
my map[value.Pointer]value.Pointer
}
func (p *pointerPath) Init() {
p.mx = make(map[value.Pointer]value.Pointer)
p.my = make(map[value.Pointer]value.Pointer)
}
// Push indicates intent to descend into pointers vx and vy where
// visited reports whether either has been seen before. If visited before,
// equal reports whether both pointers were encountered together.
// Pop must be called if and only if the pointers were never visited.
//
// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
// and be non-nil.
func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
px := value.PointerOf(vx)
py := value.PointerOf(vy)
_, ok1 := p.mx[px]
_, ok2 := p.my[py]
if ok1 || ok2 {
equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
return equal, true
}
p.mx[px] = py
p.my[py] = px
return false, false
}
// Pop ascends from pointers vx and vy.
func (p pointerPath) Pop(vx, vy reflect.Value) {
delete(p.mx, value.PointerOf(vx))
delete(p.my, value.PointerOf(vy))
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}

View File

@ -1,54 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
// defaultReporter implements the reporter interface.
//
// As Equal serially calls the PushStep, Report, and PopStep methods, the
// defaultReporter constructs a tree-based representation of the compared value
// and the result of each comparison (see valueNode).
//
// When the String method is called, the FormatDiff method transforms the
// valueNode tree into a textNode tree, which is a tree-based representation
// of the textual output (see textNode).
//
// Lastly, the textNode.String method produces the final report as a string.
type defaultReporter struct {
root *valueNode
curr *valueNode
}
func (r *defaultReporter) PushStep(ps PathStep) {
r.curr = r.curr.PushStep(ps)
if r.root == nil {
r.root = r.curr
}
}
func (r *defaultReporter) Report(rs Result) {
r.curr.Report(rs)
}
func (r *defaultReporter) PopStep() {
r.curr = r.curr.PopStep()
}
// String provides a full report of the differences detected as a structured
// literal in pseudo-Go syntax. String may only be called after the entire tree
// has been traversed.
func (r *defaultReporter) String() string {
assert(r.root != nil && r.curr == nil)
if r.root.NumDiff == 0 {
return ""
}
ptrs := new(pointerReferences)
text := formatOptions{}.FormatDiff(r.root, ptrs)
resolveReferences(text)
return text.String()
}
func assert(ok bool) {
if !ok {
panic("assertion failure")
}
}

View File

@ -1,432 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/value"
)
// numContextRecords is the number of surrounding equal records to print.
const numContextRecords = 2
type diffMode byte
const (
diffUnknown diffMode = 0
diffIdentical diffMode = ' '
diffRemoved diffMode = '-'
diffInserted diffMode = '+'
)
type typeMode int
const (
// emitType always prints the type.
emitType typeMode = iota
// elideType never prints the type.
elideType
// autoType prints the type only for composite kinds
// (i.e., structs, slices, arrays, and maps).
autoType
)
type formatOptions struct {
// DiffMode controls the output mode of FormatDiff.
//
// If diffUnknown, then produce a diff of the x and y values.
// If diffIdentical, then emit values as if they were equal.
// If diffRemoved, then only emit x values (ignoring y values).
// If diffInserted, then only emit y values (ignoring x values).
DiffMode diffMode
// TypeMode controls whether to print the type for the current node.
//
// As a general rule of thumb, we always print the type of the next node
// after an interface, and always elide the type of the next node after
// a slice or map node.
TypeMode typeMode
// formatValueOptions are options specific to printing reflect.Values.
formatValueOptions
}
func (opts formatOptions) WithDiffMode(d diffMode) formatOptions {
opts.DiffMode = d
return opts
}
func (opts formatOptions) WithTypeMode(t typeMode) formatOptions {
opts.TypeMode = t
return opts
}
func (opts formatOptions) WithVerbosity(level int) formatOptions {
opts.VerbosityLevel = level
opts.LimitVerbosity = true
return opts
}
func (opts formatOptions) verbosity() uint {
switch {
case opts.VerbosityLevel < 0:
return 0
case opts.VerbosityLevel > 16:
return 16 // some reasonable maximum to avoid shift overflow
default:
return uint(opts.VerbosityLevel)
}
}
const maxVerbosityPreset = 3
// verbosityPreset modifies the verbosity settings given an index
// between 0 and maxVerbosityPreset, inclusive.
func verbosityPreset(opts formatOptions, i int) formatOptions {
opts.VerbosityLevel = int(opts.verbosity()) + 2*i
if i > 0 {
opts.AvoidStringer = true
}
if i >= maxVerbosityPreset {
opts.PrintAddresses = true
opts.QualifiedNames = true
}
return opts
}
// FormatDiff converts a valueNode tree into a textNode tree, where the later
// is a textual representation of the differences detected in the former.
func (opts formatOptions) FormatDiff(v *valueNode, ptrs *pointerReferences) (out textNode) {
if opts.DiffMode == diffIdentical {
opts = opts.WithVerbosity(1)
} else {
opts = opts.WithVerbosity(3)
}
// Check whether we have specialized formatting for this node.
// This is not necessary, but helpful for producing more readable outputs.
if opts.CanFormatDiffSlice(v) {
return opts.FormatDiffSlice(v)
}
var parentKind reflect.Kind
if v.parent != nil && v.parent.TransformerName == "" {
parentKind = v.parent.Type.Kind()
}
// For leaf nodes, format the value based on the reflect.Values alone.
if v.MaxDepth == 0 {
switch opts.DiffMode {
case diffUnknown, diffIdentical:
// Format Equal.
if v.NumDiff == 0 {
outx := opts.FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.FormatValue(v.ValueY, parentKind, ptrs)
if v.NumIgnored > 0 && v.NumSame == 0 {
return textEllipsis
} else if outx.Len() < outy.Len() {
return outx
} else {
return outy
}
}
// Format unequal.
assert(opts.DiffMode == diffUnknown)
var list textList
outx := opts.WithTypeMode(elideType).FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.WithTypeMode(elideType).FormatValue(v.ValueY, parentKind, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i).WithTypeMode(elideType)
outx = opts2.FormatValue(v.ValueX, parentKind, ptrs)
outy = opts2.FormatValue(v.ValueY, parentKind, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: '-', Value: outx})
}
if outy != nil {
list = append(list, textRecord{Diff: '+', Value: outy})
}
return opts.WithTypeMode(emitType).FormatType(v.Type, list)
case diffRemoved:
return opts.FormatValue(v.ValueX, parentKind, ptrs)
case diffInserted:
return opts.FormatValue(v.ValueY, parentKind, ptrs)
default:
panic("invalid diff mode")
}
}
// Register slice element to support cycle detection.
if parentKind == reflect.Slice {
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, true)
defer ptrs.Pop()
defer func() { out = wrapTrunkReferences(ptrRefs, out) }()
}
// Descend into the child value node.
if v.TransformerName != "" {
out := opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
out = &textWrap{Prefix: "Inverse(" + v.TransformerName + ", ", Value: out, Suffix: ")"}
return opts.FormatType(v.Type, out)
} else {
switch k := v.Type.Kind(); k {
case reflect.Struct, reflect.Array, reflect.Slice:
out = opts.formatDiffList(v.Records, k, ptrs)
out = opts.FormatType(v.Type, out)
case reflect.Map:
// Register map to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.formatDiffList(v.Records, k, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = opts.FormatType(v.Type, out)
case reflect.Ptr:
// Register pointer to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.FormatDiff(v.Value, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = &textWrap{Prefix: "&", Value: out}
case reflect.Interface:
out = opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
default:
panic(fmt.Sprintf("%v cannot have children", k))
}
return out
}
}
func (opts formatOptions) formatDiffList(recs []reportRecord, k reflect.Kind, ptrs *pointerReferences) textNode {
// Derive record name based on the data structure kind.
var name string
var formatKey func(reflect.Value) string
switch k {
case reflect.Struct:
name = "field"
opts = opts.WithTypeMode(autoType)
formatKey = func(v reflect.Value) string { return v.String() }
case reflect.Slice, reflect.Array:
name = "element"
opts = opts.WithTypeMode(elideType)
formatKey = func(reflect.Value) string { return "" }
case reflect.Map:
name = "entry"
opts = opts.WithTypeMode(elideType)
formatKey = func(v reflect.Value) string { return formatMapKey(v, false, ptrs) }
}
maxLen := -1
if opts.LimitVerbosity {
if opts.DiffMode == diffIdentical {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
} else {
maxLen = (1 << opts.verbosity()) << 1 // 2, 4, 8, 16, 32, 64, etc...
}
opts.VerbosityLevel--
}
// Handle unification.
switch opts.DiffMode {
case diffIdentical, diffRemoved, diffInserted:
var list textList
var deferredEllipsis bool // Add final "..." to indicate records were dropped
for _, r := range recs {
if len(list) == maxLen {
deferredEllipsis = true
break
}
// Elide struct fields that are zero value.
if k == reflect.Struct {
var isZero bool
switch opts.DiffMode {
case diffIdentical:
isZero = value.IsZero(r.Value.ValueX) || value.IsZero(r.Value.ValueY)
case diffRemoved:
isZero = value.IsZero(r.Value.ValueX)
case diffInserted:
isZero = value.IsZero(r.Value.ValueY)
}
if isZero {
continue
}
}
// Elide ignored nodes.
if r.Value.NumIgnored > 0 && r.Value.NumSame+r.Value.NumDiff == 0 {
deferredEllipsis = !(k == reflect.Slice || k == reflect.Array)
if !deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
continue
}
if out := opts.FormatDiff(r.Value, ptrs); out != nil {
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
}
if deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case diffUnknown:
default:
panic("invalid diff mode")
}
// Handle differencing.
var numDiffs int
var list textList
var keys []reflect.Value // invariant: len(list) == len(keys)
groups := coalesceAdjacentRecords(name, recs)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Handle equal records.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing records to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < numContextRecords && numLo+numHi < numEqual && i != 0 {
if r := recs[numLo].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numLo++
}
for numHi < numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
if r := recs[numEqual-numHi-1].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numHi++
}
if numEqual-(numLo+numHi) == 1 && ds.NumIgnored == 0 {
numHi++ // Avoid pointless coalescing of a single equal record
}
// Format the equal values.
for _, r := range recs[:numLo] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
for _, r := range recs[numEqual-numHi : numEqual] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
recs = recs[numEqual:]
continue
}
// Handle unequal records.
for _, r := range recs[:ds.NumDiff()] {
switch {
case opts.CanFormatDiffSlice(r.Value):
out := opts.FormatDiffSlice(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
case r.Value.NumChildren == r.Value.MaxDepth:
outx := opts.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy := opts.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i)
outx = opts2.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy = opts2.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: diffRemoved, Key: formatKey(r.Key), Value: outx})
keys = append(keys, r.Key)
}
if outy != nil {
list = append(list, textRecord{Diff: diffInserted, Key: formatKey(r.Key), Value: outy})
keys = append(keys, r.Key)
}
default:
out := opts.FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
}
recs = recs[ds.NumDiff():]
numDiffs += ds.NumDiff()
}
if maxGroup.IsZero() {
assert(len(recs) == 0)
} else {
list.AppendEllipsis(maxGroup)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
assert(len(list) == len(keys))
// For maps, the default formatting logic uses fmt.Stringer which may
// produce ambiguous output. Avoid calling String to disambiguate.
if k == reflect.Map {
var ambiguous bool
seenKeys := map[string]reflect.Value{}
for i, currKey := range keys {
if currKey.IsValid() {
strKey := list[i].Key
prevKey, seen := seenKeys[strKey]
if seen && prevKey.CanInterface() && currKey.CanInterface() {
ambiguous = prevKey.Interface() != currKey.Interface()
if ambiguous {
break
}
}
seenKeys[strKey] = currKey
}
}
if ambiguous {
for i, k := range keys {
if k.IsValid() {
list[i].Key = formatMapKey(k, true, ptrs)
}
}
}
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
}
// coalesceAdjacentRecords coalesces the list of records into groups of
// adjacent equal, or unequal counts.
func coalesceAdjacentRecords(name string, recs []reportRecord) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, r := range recs {
switch rv := r.Value; {
case rv.NumIgnored > 0 && rv.NumSame+rv.NumDiff == 0:
lastStats(1).NumIgnored++
case rv.NumDiff == 0:
lastStats(1).NumIdentical++
case rv.NumDiff > 0 && !rv.ValueY.IsValid():
lastStats(2).NumRemoved++
case rv.NumDiff > 0 && !rv.ValueX.IsValid():
lastStats(2).NumInserted++
default:
lastStats(2).NumModified++
}
}
return groups
}

View File

@ -1,264 +0,0 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/value"
)
const (
pointerDelimPrefix = "⟪"
pointerDelimSuffix = "⟫"
)
// formatPointer prints the address of the pointer.
func formatPointer(p value.Pointer, withDelims bool) string {
v := p.Uintptr()
if flags.Deterministic {
v = 0xdeadf00f // Only used for stable testing purposes
}
if withDelims {
return pointerDelimPrefix + formatHex(uint64(v)) + pointerDelimSuffix
}
return formatHex(uint64(v))
}
// pointerReferences is a stack of pointers visited so far.
type pointerReferences [][2]value.Pointer
func (ps *pointerReferences) PushPair(vx, vy reflect.Value, d diffMode, deref bool) (pp [2]value.Pointer) {
if deref && vx.IsValid() {
vx = vx.Addr()
}
if deref && vy.IsValid() {
vy = vy.Addr()
}
switch d {
case diffUnknown, diffIdentical:
pp = [2]value.Pointer{value.PointerOf(vx), value.PointerOf(vy)}
case diffRemoved:
pp = [2]value.Pointer{value.PointerOf(vx), value.Pointer{}}
case diffInserted:
pp = [2]value.Pointer{value.Pointer{}, value.PointerOf(vy)}
}
*ps = append(*ps, pp)
return pp
}
func (ps *pointerReferences) Push(v reflect.Value) (p value.Pointer, seen bool) {
p = value.PointerOf(v)
for _, pp := range *ps {
if p == pp[0] || p == pp[1] {
return p, true
}
}
*ps = append(*ps, [2]value.Pointer{p, p})
return p, false
}
func (ps *pointerReferences) Pop() {
*ps = (*ps)[:len(*ps)-1]
}
// trunkReferences is metadata for a textNode indicating that the sub-tree
// represents the value for either pointer in a pair of references.
type trunkReferences struct{ pp [2]value.Pointer }
// trunkReference is metadata for a textNode indicating that the sub-tree
// represents the value for the given pointer reference.
type trunkReference struct{ p value.Pointer }
// leafReference is metadata for a textNode indicating that the value is
// truncated as it refers to another part of the tree (i.e., a trunk).
type leafReference struct{ p value.Pointer }
func wrapTrunkReferences(pp [2]value.Pointer, s textNode) textNode {
switch {
case pp[0].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[1]}}
case pp[1].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
case pp[0] == pp[1]:
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
default:
return &textWrap{Value: s, Metadata: trunkReferences{pp}}
}
}
func wrapTrunkReference(p value.Pointer, printAddress bool, s textNode) textNode {
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: s, Metadata: trunkReference{p}}
}
func makeLeafReference(p value.Pointer, printAddress bool) textNode {
out := &textWrap{Prefix: "(", Value: textEllipsis, Suffix: ")"}
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: out, Metadata: leafReference{p}}
}
// resolveReferences walks the textNode tree searching for any leaf reference
// metadata and resolves each against the corresponding trunk references.
// Since pointer addresses in memory are not particularly readable to the user,
// it replaces each pointer value with an arbitrary and unique reference ID.
func resolveReferences(s textNode) {
var walkNodes func(textNode, func(textNode))
walkNodes = func(s textNode, f func(textNode)) {
f(s)
switch s := s.(type) {
case *textWrap:
walkNodes(s.Value, f)
case textList:
for _, r := range s {
walkNodes(r.Value, f)
}
}
}
// Collect all trunks and leaves with reference metadata.
var trunks, leaves []*textWrap
walkNodes(s, func(s textNode) {
if s, ok := s.(*textWrap); ok {
switch s.Metadata.(type) {
case leafReference:
leaves = append(leaves, s)
case trunkReference, trunkReferences:
trunks = append(trunks, s)
}
}
})
// No leaf references to resolve.
if len(leaves) == 0 {
return
}
// Collect the set of all leaf references to resolve.
leafPtrs := make(map[value.Pointer]bool)
for _, leaf := range leaves {
leafPtrs[leaf.Metadata.(leafReference).p] = true
}
// Collect the set of trunk pointers that are always paired together.
// This allows us to assign a single ID to both pointers for brevity.
// If a pointer in a pair ever occurs by itself or as a different pair,
// then the pair is broken.
pairedTrunkPtrs := make(map[value.Pointer]value.Pointer)
unpair := func(p value.Pointer) {
if !pairedTrunkPtrs[p].IsNil() {
pairedTrunkPtrs[pairedTrunkPtrs[p]] = value.Pointer{} // invalidate other half
}
pairedTrunkPtrs[p] = value.Pointer{} // invalidate this half
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
unpair(p.p) // standalone pointer cannot be part of a pair
case trunkReferences:
p0, ok0 := pairedTrunkPtrs[p.pp[0]]
p1, ok1 := pairedTrunkPtrs[p.pp[1]]
switch {
case !ok0 && !ok1:
// Register the newly seen pair.
pairedTrunkPtrs[p.pp[0]] = p.pp[1]
pairedTrunkPtrs[p.pp[1]] = p.pp[0]
case ok0 && ok1 && p0 == p.pp[1] && p1 == p.pp[0]:
// Exact pair already seen; do nothing.
default:
// Pair conflicts with some other pair; break all pairs.
unpair(p.pp[0])
unpair(p.pp[1])
}
}
}
// Correlate each pointer referenced by leaves to a unique identifier,
// and print the IDs for each trunk that matches those pointers.
var nextID uint
ptrIDs := make(map[value.Pointer]uint)
newID := func() uint {
id := nextID
nextID++
return id
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
if print := leafPtrs[p.p]; print {
id, ok := ptrIDs[p.p]
if !ok {
id = newID()
ptrIDs[p.p] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
}
case trunkReferences:
print0 := leafPtrs[p.pp[0]]
print1 := leafPtrs[p.pp[1]]
if print0 || print1 {
id0, ok0 := ptrIDs[p.pp[0]]
id1, ok1 := ptrIDs[p.pp[1]]
isPair := pairedTrunkPtrs[p.pp[0]] == p.pp[1] && pairedTrunkPtrs[p.pp[1]] == p.pp[0]
if isPair {
var id uint
assert(ok0 == ok1) // must be seen together or not at all
if ok0 {
assert(id0 == id1) // must have the same ID
id = id0
} else {
id = newID()
ptrIDs[p.pp[0]] = id
ptrIDs[p.pp[1]] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
} else {
if print0 && !ok0 {
id0 = newID()
ptrIDs[p.pp[0]] = id0
}
if print1 && !ok1 {
id1 = newID()
ptrIDs[p.pp[1]] = id1
}
switch {
case print0 && print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0)+","+formatReference(id1))
case print0:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0))
case print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id1))
}
}
}
}
}
// Update all leaf references with the unique identifier.
for _, leaf := range leaves {
if id, ok := ptrIDs[leaf.Metadata.(leafReference).p]; ok {
leaf.Prefix = updateReferencePrefix(leaf.Prefix, formatReference(id))
}
}
}
func formatReference(id uint) string {
return fmt.Sprintf("ref#%d", id)
}
func updateReferencePrefix(prefix, ref string) string {
if prefix == "" {
return pointerDelimPrefix + ref + pointerDelimSuffix
}
suffix := strings.TrimPrefix(prefix, pointerDelimPrefix)
return pointerDelimPrefix + ref + ": " + suffix
}

View File

@ -1,400 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
type formatValueOptions struct {
// AvoidStringer controls whether to avoid calling custom stringer
// methods like error.Error or fmt.Stringer.String.
AvoidStringer bool
// PrintAddresses controls whether to print the address of all pointers,
// slice elements, and maps.
PrintAddresses bool
// QualifiedNames controls whether FormatType uses the fully qualified name
// (including the full package path as opposed to just the package name).
QualifiedNames bool
// VerbosityLevel controls the amount of output to produce.
// A higher value produces more output. A value of zero or lower produces
// no output (represented using an ellipsis).
// If LimitVerbosity is false, then the level is treated as infinite.
VerbosityLevel int
// LimitVerbosity specifies that formatting should respect VerbosityLevel.
LimitVerbosity bool
}
// FormatType prints the type as if it were wrapping s.
// This may return s as-is depending on the current type and TypeMode mode.
func (opts formatOptions) FormatType(t reflect.Type, s textNode) textNode {
// Check whether to emit the type or not.
switch opts.TypeMode {
case autoType:
switch t.Kind() {
case reflect.Struct, reflect.Slice, reflect.Array, reflect.Map:
if s.Equal(textNil) {
return s
}
default:
return s
}
if opts.DiffMode == diffIdentical {
return s // elide type for identical nodes
}
case elideType:
return s
}
// Determine the type label, applying special handling for unnamed types.
typeName := value.TypeString(t, opts.QualifiedNames)
if t.Name() == "" {
// According to Go grammar, certain type literals contain symbols that
// do not strongly bind to the next lexicographical token (e.g., *T).
switch t.Kind() {
case reflect.Chan, reflect.Func, reflect.Ptr:
typeName = "(" + typeName + ")"
}
}
return &textWrap{Prefix: typeName, Value: wrapParens(s)}
}
// wrapParens wraps s with a set of parenthesis, but avoids it if the
// wrapped node itself is already surrounded by a pair of parenthesis or braces.
// It handles unwrapping one level of pointer-reference nodes.
func wrapParens(s textNode) textNode {
var refNode *textWrap
if s2, ok := s.(*textWrap); ok {
// Unwrap a single pointer reference node.
switch s2.Metadata.(type) {
case leafReference, trunkReference, trunkReferences:
refNode = s2
if s3, ok := refNode.Value.(*textWrap); ok {
s2 = s3
}
}
// Already has delimiters that make parenthesis unnecessary.
hasParens := strings.HasPrefix(s2.Prefix, "(") && strings.HasSuffix(s2.Suffix, ")")
hasBraces := strings.HasPrefix(s2.Prefix, "{") && strings.HasSuffix(s2.Suffix, "}")
if hasParens || hasBraces {
return s
}
}
if refNode != nil {
refNode.Value = &textWrap{Prefix: "(", Value: refNode.Value, Suffix: ")"}
return s
}
return &textWrap{Prefix: "(", Value: s, Suffix: ")"}
}
// FormatValue prints the reflect.Value, taking extra care to avoid descending
// into pointers already in ptrs. As pointers are visited, ptrs is also updated.
func (opts formatOptions) FormatValue(v reflect.Value, parentKind reflect.Kind, ptrs *pointerReferences) (out textNode) {
if !v.IsValid() {
return nil
}
t := v.Type()
// Check slice element for cycles.
if parentKind == reflect.Slice {
ptrRef, visited := ptrs.Push(v.Addr())
if visited {
return makeLeafReference(ptrRef, false)
}
defer ptrs.Pop()
defer func() { out = wrapTrunkReference(ptrRef, false, out) }()
}
// Check whether there is an Error or String method to call.
if !opts.AvoidStringer && v.CanInterface() {
// Avoid calling Error or String methods on nil receivers since many
// implementations crash when doing so.
if (t.Kind() != reflect.Ptr && t.Kind() != reflect.Interface) || !v.IsNil() {
var prefix, strVal string
func() {
// Swallow and ignore any panics from String or Error.
defer func() { recover() }()
switch v := v.Interface().(type) {
case error:
strVal = v.Error()
prefix = "e"
case fmt.Stringer:
strVal = v.String()
prefix = "s"
}
}()
if prefix != "" {
return opts.formatString(prefix, strVal)
}
}
}
// Check whether to explicitly wrap the result with the type.
var skipType bool
defer func() {
if !skipType {
out = opts.FormatType(t, out)
}
}()
switch t.Kind() {
case reflect.Bool:
return textLine(fmt.Sprint(v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return textLine(fmt.Sprint(v.Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uint8:
if parentKind == reflect.Slice || parentKind == reflect.Array {
return textLine(formatHex(v.Uint()))
}
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uintptr:
return textLine(formatHex(v.Uint()))
case reflect.Float32, reflect.Float64:
return textLine(fmt.Sprint(v.Float()))
case reflect.Complex64, reflect.Complex128:
return textLine(fmt.Sprint(v.Complex()))
case reflect.String:
return opts.formatString("", v.String())
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return textLine(formatPointer(value.PointerOf(v), true))
case reflect.Struct:
var list textList
v := makeAddressable(v) // needed for retrieveUnexportedField
maxLen := v.NumField()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if value.IsZero(vv) {
continue // Elide fields with zero values
}
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sf := t.Field(i)
if supportExporters && !isExported(sf.Name) {
vv = retrieveUnexportedField(v, sf, true)
}
s := opts.WithTypeMode(autoType).FormatValue(vv, t.Kind(), ptrs)
list = append(list, textRecord{Key: sf.Name, Value: s})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case reflect.Slice:
if v.IsNil() {
return textNil
}
// Check whether this is a []byte of text data.
if t.Elem() == reflect.TypeOf(byte(0)) {
b := v.Bytes()
isPrintSpace := func(r rune) bool { return unicode.IsPrint(r) && unicode.IsSpace(r) }
if len(b) > 0 && utf8.Valid(b) && len(bytes.TrimFunc(b, isPrintSpace)) == 0 {
out = opts.formatString("", string(b))
return opts.WithTypeMode(emitType).FormatType(t, out)
}
}
fallthrough
case reflect.Array:
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for i := 0; i < v.Len(); i++ {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
s := opts.WithTypeMode(elideType).FormatValue(v.Index(i), t.Kind(), ptrs)
list = append(list, textRecord{Value: s})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if t.Kind() == reflect.Slice && opts.PrintAddresses {
header := fmt.Sprintf("ptr:%v, len:%d, cap:%d", formatPointer(value.PointerOf(v), false), v.Len(), v.Cap())
out = &textWrap{Prefix: pointerDelimPrefix + header + pointerDelimSuffix, Value: out}
}
return out
case reflect.Map:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
return makeLeafReference(ptrRef, opts.PrintAddresses)
}
defer ptrs.Pop()
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for _, k := range value.SortKeys(v.MapKeys()) {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sk := formatMapKey(k, false, ptrs)
sv := opts.WithTypeMode(elideType).FormatValue(v.MapIndex(k), t.Kind(), ptrs)
list = append(list, textRecord{Key: sk, Value: sv})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
return out
case reflect.Ptr:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
out = makeLeafReference(ptrRef, opts.PrintAddresses)
return &textWrap{Prefix: "&", Value: out}
}
defer ptrs.Pop()
skipType = true // Let the underlying value print the type instead
out = opts.FormatValue(v.Elem(), t.Kind(), ptrs)
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
out = &textWrap{Prefix: "&", Value: out}
return out
case reflect.Interface:
if v.IsNil() {
return textNil
}
// Interfaces accept different concrete types,
// so configure the underlying value to explicitly print the type.
skipType = true // Print the concrete type instead
return opts.WithTypeMode(emitType).FormatValue(v.Elem(), t.Kind(), ptrs)
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func (opts formatOptions) formatString(prefix, s string) textNode {
maxLen := len(s)
maxLines := strings.Count(s, "\n") + 1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 5 // 32, 64, 128, 256, etc...
maxLines = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
}
// For multiline strings, use the triple-quote syntax,
// but only use it when printing removed or inserted nodes since
// we only want the extra verbosity for those cases.
lines := strings.Split(strings.TrimSuffix(s, "\n"), "\n")
isTripleQuoted := len(lines) >= 4 && (opts.DiffMode == '-' || opts.DiffMode == '+')
for i := 0; i < len(lines) && isTripleQuoted; i++ {
lines[i] = strings.TrimPrefix(strings.TrimSuffix(lines[i], "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
line := lines[i]
isTripleQuoted = !strings.HasPrefix(strings.TrimPrefix(line, prefix), `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == "" && len(line) <= maxLen
}
if isTripleQuoted {
var list textList
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
for i, line := range lines {
if numElided := len(lines) - i; i == maxLines-1 && numElided > 1 {
comment := commentString(fmt.Sprintf("%d elided lines", numElided))
list = append(list, textRecord{Diff: opts.DiffMode, Value: textEllipsis, ElideComma: true, Comment: comment})
break
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(line), ElideComma: true})
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
return &textWrap{Prefix: "(", Value: list, Suffix: ")"}
}
// Format the string as a single-line quoted string.
if len(s) > maxLen+len(textEllipsis) {
return textLine(prefix + formatString(s[:maxLen]) + string(textEllipsis))
}
return textLine(prefix + formatString(s))
}
// formatMapKey formats v as if it were a map key.
// The result is guaranteed to be a single line.
func formatMapKey(v reflect.Value, disambiguate bool, ptrs *pointerReferences) string {
var opts formatOptions
opts.DiffMode = diffIdentical
opts.TypeMode = elideType
opts.PrintAddresses = disambiguate
opts.AvoidStringer = disambiguate
opts.QualifiedNames = disambiguate
s := opts.FormatValue(v, reflect.Map, ptrs).String()
return strings.TrimSpace(s)
}
// formatString prints s as a double-quoted or backtick-quoted string.
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !(unicode.IsPrint(r) || r == '\t')
}
if utf8.ValidString(s) && strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
// formatHex prints u as a hexadecimal integer in Go notation.
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}

View File

@ -1,448 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/diff"
)
// CanFormatDiffSlice reports whether we support custom formatting for nodes
// that are slices of primitive kinds or strings.
func (opts formatOptions) CanFormatDiffSlice(v *valueNode) bool {
switch {
case opts.DiffMode != diffUnknown:
return false // Must be formatting in diff mode
case v.NumDiff == 0:
return false // No differences detected
case !v.ValueX.IsValid() || !v.ValueY.IsValid():
return false // Both values must be valid
case v.Type.Kind() == reflect.Slice && (v.ValueX.Len() == 0 || v.ValueY.Len() == 0):
return false // Both slice values have to be non-empty
case v.NumIgnored > 0:
return false // Some ignore option was used
case v.NumTransformed > 0:
return false // Some transform option was used
case v.NumCompared > 1:
return false // More than one comparison was used
case v.NumCompared == 1 && v.Type.Name() != "":
// The need for cmp to check applicability of options on every element
// in a slice is a significant performance detriment for large []byte.
// The workaround is to specify Comparer(bytes.Equal),
// which enables cmp to compare []byte more efficiently.
// If they differ, we still want to provide batched diffing.
// The logic disallows named types since they tend to have their own
// String method, with nicer formatting than what this provides.
return false
}
switch t := v.Type; t.Kind() {
case reflect.String:
case reflect.Array, reflect.Slice:
// Only slices of primitive types have specialized handling.
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
default:
return false
}
// If a sufficient number of elements already differ,
// use specialized formatting even if length requirement is not met.
if v.NumDiff > v.NumSame {
return true
}
default:
return false
}
// Use specialized string diffing for longer slices or strings.
const minLength = 64
return v.ValueX.Len() >= minLength && v.ValueY.Len() >= minLength
}
// FormatDiffSlice prints a diff for the slices (or strings) represented by v.
// This provides custom-tailored logic to make printing of differences in
// textual strings and slices of primitive kinds more readable.
func (opts formatOptions) FormatDiffSlice(v *valueNode) textNode {
assert(opts.DiffMode == diffUnknown)
t, vx, vy := v.Type, v.ValueX, v.ValueY
// Auto-detect the type of the data.
var isLinedText, isText, isBinary bool
var sx, sy string
switch {
case t.Kind() == reflect.String:
sx, sy = vx.String(), vy.String()
isText = true // Initial estimate, verify later
case t.Kind() == reflect.Slice && t.Elem() == reflect.TypeOf(byte(0)):
sx, sy = string(vx.Bytes()), string(vy.Bytes())
isBinary = true // Initial estimate, verify later
case t.Kind() == reflect.Array:
// Arrays need to be addressable for slice operations to work.
vx2, vy2 := reflect.New(t).Elem(), reflect.New(t).Elem()
vx2.Set(vx)
vy2.Set(vy)
vx, vy = vx2, vy2
}
if isText || isBinary {
var numLines, lastLineIdx, maxLineLen int
isBinary = !utf8.ValidString(sx) || !utf8.ValidString(sy)
for i, r := range sx + sy {
if !(unicode.IsPrint(r) || unicode.IsSpace(r)) || r == utf8.RuneError {
isBinary = true
break
}
if r == '\n' {
if maxLineLen < i-lastLineIdx {
maxLineLen = i - lastLineIdx
}
lastLineIdx = i + 1
numLines++
}
}
isText = !isBinary
isLinedText = isText && numLines >= 4 && maxLineLen <= 1024
}
// Format the string into printable records.
var list textList
var delim string
switch {
// If the text appears to be multi-lined text,
// then perform differencing across individual lines.
case isLinedText:
ssx := strings.Split(sx, "\n")
ssy := strings.Split(sy, "\n")
list = opts.formatDiffSlice(
reflect.ValueOf(ssx), reflect.ValueOf(ssy), 1, "line",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.Index(0).String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = "\n"
// If possible, use a custom triple-quote (""") syntax for printing
// differences in a string literal. This format is more readable,
// but has edge-cases where differences are visually indistinguishable.
// This format is avoided under the following conditions:
// • A line starts with `"""`
// • A line starts with "..."
// • A line contains non-printable characters
// • Adjacent different lines differ only by whitespace
//
// For example:
// """
// ... // 3 identical lines
// foo
// bar
// - baz
// + BAZ
// """
isTripleQuoted := true
prevRemoveLines := map[string]bool{}
prevInsertLines := map[string]bool{}
var list2 textList
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
for _, r := range list {
if !r.Value.Equal(textEllipsis) {
line, _ := strconv.Unquote(string(r.Value.(textLine)))
line = strings.TrimPrefix(strings.TrimSuffix(line, "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
normLine := strings.Map(func(r rune) rune {
if unicode.IsSpace(r) {
return -1 // drop whitespace to avoid visually indistinguishable output
}
return r
}, line)
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
isTripleQuoted = !strings.HasPrefix(line, `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == ""
switch r.Diff {
case diffRemoved:
isTripleQuoted = isTripleQuoted && !prevInsertLines[normLine]
prevRemoveLines[normLine] = true
case diffInserted:
isTripleQuoted = isTripleQuoted && !prevRemoveLines[normLine]
prevInsertLines[normLine] = true
}
if !isTripleQuoted {
break
}
r.Value = textLine(line)
r.ElideComma = true
}
if !(r.Diff == diffRemoved || r.Diff == diffInserted) { // start a new non-adjacent difference group
prevRemoveLines = map[string]bool{}
prevInsertLines = map[string]bool{}
}
list2 = append(list2, r)
}
if r := list2[len(list2)-1]; r.Diff == diffIdentical && len(r.Value.(textLine)) == 0 {
list2 = list2[:len(list2)-1] // elide single empty line at the end
}
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
if isTripleQuoted {
var out textNode = &textWrap{Prefix: "(", Value: list2, Suffix: ")"}
switch t.Kind() {
case reflect.String:
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
// Always emit type for slices since the triple-quote syntax
// looks like a string (not a slice).
opts = opts.WithTypeMode(emitType)
out = opts.FormatType(t, out)
}
return out
}
// If the text appears to be single-lined text,
// then perform differencing in approximately fixed-sized chunks.
// The output is printed as quoted strings.
case isText:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 64, "byte",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = ""
// If the text appears to be binary data,
// then perform differencing in approximately fixed-sized chunks.
// The output is inspired by hexdump.
case isBinary:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 16, "byte",
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
ss = append(ss, formatHex(v.Index(i).Uint()))
}
s := strings.Join(ss, ", ")
comment := commentString(fmt.Sprintf("%c|%v|", d, formatASCII(v.String())))
return textRecord{Diff: d, Value: textLine(s), Comment: comment}
},
)
// For all other slices of primitive types,
// then perform differencing in approximately fixed-sized chunks.
// The size of each chunk depends on the width of the element kind.
default:
var chunkSize int
if t.Elem().Kind() == reflect.Bool {
chunkSize = 16
} else {
switch t.Elem().Bits() {
case 8:
chunkSize = 16
case 16:
chunkSize = 12
case 32:
chunkSize = 8
default:
chunkSize = 8
}
}
list = opts.formatDiffSlice(
vx, vy, chunkSize, t.Elem().Kind().String(),
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
ss = append(ss, fmt.Sprint(v.Index(i).Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
ss = append(ss, fmt.Sprint(v.Index(i).Uint()))
case reflect.Uint8, reflect.Uintptr:
ss = append(ss, formatHex(v.Index(i).Uint()))
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
ss = append(ss, fmt.Sprint(v.Index(i).Interface()))
}
}
s := strings.Join(ss, ", ")
return textRecord{Diff: d, Value: textLine(s)}
},
)
}
// Wrap the output with appropriate type information.
var out textNode = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if !isText {
// The "{...}" byte-sequence literal is not valid Go syntax for strings.
// Emit the type for extra clarity (e.g. "string{...}").
if t.Kind() == reflect.String {
opts = opts.WithTypeMode(emitType)
}
return opts.FormatType(t, out)
}
switch t.Kind() {
case reflect.String:
out = &textWrap{Prefix: "strings.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
out = &textWrap{Prefix: "bytes.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf([]byte(nil)) {
out = opts.FormatType(t, out)
}
}
return out
}
// formatASCII formats s as an ASCII string.
// This is useful for printing binary strings in a semi-legible way.
func formatASCII(s string) string {
b := bytes.Repeat([]byte{'.'}, len(s))
for i := 0; i < len(s); i++ {
if ' ' <= s[i] && s[i] <= '~' {
b[i] = s[i]
}
}
return string(b)
}
func (opts formatOptions) formatDiffSlice(
vx, vy reflect.Value, chunkSize int, name string,
makeRec func(reflect.Value, diffMode) textRecord,
) (list textList) {
es := diff.Difference(vx.Len(), vy.Len(), func(ix int, iy int) diff.Result {
return diff.BoolResult(vx.Index(ix).Interface() == vy.Index(iy).Interface())
})
appendChunks := func(v reflect.Value, d diffMode) int {
n0 := v.Len()
for v.Len() > 0 {
n := chunkSize
if n > v.Len() {
n = v.Len()
}
list = append(list, makeRec(v.Slice(0, n), d))
v = v.Slice(n, v.Len())
}
return n0 - v.Len()
}
var numDiffs int
maxLen := -1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
opts.VerbosityLevel--
}
groups := coalesceAdjacentEdits(name, es)
groups = coalesceInterveningIdentical(groups, chunkSize/4)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Print equal.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing equal bytes to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < chunkSize*numContextRecords && numLo+numHi < numEqual && i != 0 {
numLo++
}
for numHi < chunkSize*numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
numHi++
}
if numEqual-(numLo+numHi) <= chunkSize && ds.NumIgnored == 0 {
numHi = numEqual - numLo // Avoid pointless coalescing of single equal row
}
// Print the equal bytes.
appendChunks(vx.Slice(0, numLo), diffIdentical)
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
}
appendChunks(vx.Slice(numEqual-numHi, numEqual), diffIdentical)
vx = vx.Slice(numEqual, vx.Len())
vy = vy.Slice(numEqual, vy.Len())
continue
}
// Print unequal.
len0 := len(list)
nx := appendChunks(vx.Slice(0, ds.NumIdentical+ds.NumRemoved+ds.NumModified), diffRemoved)
vx = vx.Slice(nx, vx.Len())
ny := appendChunks(vy.Slice(0, ds.NumIdentical+ds.NumInserted+ds.NumModified), diffInserted)
vy = vy.Slice(ny, vy.Len())
numDiffs += len(list) - len0
}
if maxGroup.IsZero() {
assert(vx.Len() == 0 && vy.Len() == 0)
} else {
list.AppendEllipsis(maxGroup)
}
return list
}
// coalesceAdjacentEdits coalesces the list of edits into groups of adjacent
// equal or unequal counts.
func coalesceAdjacentEdits(name string, es diff.EditScript) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, e := range es {
switch e {
case diff.Identity:
lastStats(1).NumIdentical++
case diff.UniqueX:
lastStats(2).NumRemoved++
case diff.UniqueY:
lastStats(2).NumInserted++
case diff.Modified:
lastStats(2).NumModified++
}
}
return groups
}
// coalesceInterveningIdentical coalesces sufficiently short (<= windowSize)
// equal groups into adjacent unequal groups that currently result in a
// dual inserted/removed printout. This acts as a high-pass filter to smooth
// out high-frequency changes within the windowSize.
func coalesceInterveningIdentical(groups []diffStats, windowSize int) []diffStats {
groups, groupsOrig := groups[:0], groups
for i, ds := range groupsOrig {
if len(groups) >= 2 && ds.NumDiff() > 0 {
prev := &groups[len(groups)-2] // Unequal group
curr := &groups[len(groups)-1] // Equal group
next := &groupsOrig[i] // Unequal group
hadX, hadY := prev.NumRemoved > 0, prev.NumInserted > 0
hasX, hasY := next.NumRemoved > 0, next.NumInserted > 0
if ((hadX || hasX) && (hadY || hasY)) && curr.NumIdentical <= windowSize {
*prev = prev.Append(*curr).Append(*next)
groups = groups[:len(groups)-1] // Truncate off equal group
continue
}
}
groups = append(groups, ds)
}
return groups
}

View File

@ -1,431 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"math/rand"
"strings"
"time"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/flags"
)
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
const maxColumnLength = 80
type indentMode int
func (n indentMode) appendIndent(b []byte, d diffMode) []byte {
// The output of Diff is documented as being unstable to provide future
// flexibility in changing the output for more humanly readable reports.
// This logic intentionally introduces instability to the exact output
// so that users can detect accidental reliance on stability early on,
// rather than much later when an actual change to the format occurs.
if flags.Deterministic || randBool {
// Use regular spaces (U+0020).
switch d {
case diffUnknown, diffIdentical:
b = append(b, " "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
} else {
// Use non-breaking spaces (U+00a0).
switch d {
case diffUnknown, diffIdentical:
b = append(b, "  "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
}
return repeatCount(n).appendChar(b, '\t')
}
type repeatCount int
func (n repeatCount) appendChar(b []byte, c byte) []byte {
for ; n > 0; n-- {
b = append(b, c)
}
return b
}
// textNode is a simplified tree-based representation of structured text.
// Possible node types are textWrap, textList, or textLine.
type textNode interface {
// Len reports the length in bytes of a single-line version of the tree.
// Nested textRecord.Diff and textRecord.Comment fields are ignored.
Len() int
// Equal reports whether the two trees are structurally identical.
// Nested textRecord.Diff and textRecord.Comment fields are compared.
Equal(textNode) bool
// String returns the string representation of the text tree.
// It is not guaranteed that len(x.String()) == x.Len(),
// nor that x.String() == y.String() implies that x.Equal(y).
String() string
// formatCompactTo formats the contents of the tree as a single-line string
// to the provided buffer. Any nested textRecord.Diff and textRecord.Comment
// fields are ignored.
//
// However, not all nodes in the tree should be collapsed as a single-line.
// If a node can be collapsed as a single-line, it is replaced by a textLine
// node. Since the top-level node cannot replace itself, this also returns
// the current node itself.
//
// This does not mutate the receiver.
formatCompactTo([]byte, diffMode) ([]byte, textNode)
// formatExpandedTo formats the contents of the tree as a multi-line string
// to the provided buffer. In order for column alignment to operate well,
// formatCompactTo must be called before calling formatExpandedTo.
formatExpandedTo([]byte, diffMode, indentMode) []byte
}
// textWrap is a wrapper that concatenates a prefix and/or a suffix
// to the underlying node.
type textWrap struct {
Prefix string // e.g., "bytes.Buffer{"
Value textNode // textWrap | textList | textLine
Suffix string // e.g., "}"
Metadata interface{} // arbitrary metadata; has no effect on formatting
}
func (s *textWrap) Len() int {
return len(s.Prefix) + s.Value.Len() + len(s.Suffix)
}
func (s1 *textWrap) Equal(s2 textNode) bool {
if s2, ok := s2.(*textWrap); ok {
return s1.Prefix == s2.Prefix && s1.Value.Equal(s2.Value) && s1.Suffix == s2.Suffix
}
return false
}
func (s *textWrap) String() string {
var d diffMode
var n indentMode
_, s2 := s.formatCompactTo(nil, d)
b := n.appendIndent(nil, d) // Leading indent
b = s2.formatExpandedTo(b, d, n) // Main body
b = append(b, '\n') // Trailing newline
return string(b)
}
func (s *textWrap) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
n0 := len(b) // Original buffer length
b = append(b, s.Prefix...)
b, s.Value = s.Value.formatCompactTo(b, d)
b = append(b, s.Suffix...)
if _, ok := s.Value.(textLine); ok {
return b, textLine(b[n0:])
}
return b, s
}
func (s *textWrap) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
b = append(b, s.Prefix...)
b = s.Value.formatExpandedTo(b, d, n)
b = append(b, s.Suffix...)
return b
}
// textList is a comma-separated list of textWrap or textLine nodes.
// The list may be formatted as multi-lines or single-line at the discretion
// of the textList.formatCompactTo method.
type textList []textRecord
type textRecord struct {
Diff diffMode // e.g., 0 or '-' or '+'
Key string // e.g., "MyField"
Value textNode // textWrap | textLine
ElideComma bool // avoid trailing comma
Comment fmt.Stringer // e.g., "6 identical fields"
}
// AppendEllipsis appends a new ellipsis node to the list if none already
// exists at the end. If cs is non-zero it coalesces the statistics with the
// previous diffStats.
func (s *textList) AppendEllipsis(ds diffStats) {
hasStats := !ds.IsZero()
if len(*s) == 0 || !(*s)[len(*s)-1].Value.Equal(textEllipsis) {
if hasStats {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true, Comment: ds})
} else {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true})
}
return
}
if hasStats {
(*s)[len(*s)-1].Comment = (*s)[len(*s)-1].Comment.(diffStats).Append(ds)
}
}
func (s textList) Len() (n int) {
for i, r := range s {
n += len(r.Key)
if r.Key != "" {
n += len(": ")
}
n += r.Value.Len()
if i < len(s)-1 {
n += len(", ")
}
}
return n
}
func (s1 textList) Equal(s2 textNode) bool {
if s2, ok := s2.(textList); ok {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
r1, r2 := s1[i], s2[i]
if !(r1.Diff == r2.Diff && r1.Key == r2.Key && r1.Value.Equal(r2.Value) && r1.Comment == r2.Comment) {
return false
}
}
return true
}
return false
}
func (s textList) String() string {
return (&textWrap{Prefix: "{", Value: s, Suffix: "}"}).String()
}
func (s textList) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
s = append(textList(nil), s...) // Avoid mutating original
// Determine whether we can collapse this list as a single line.
n0 := len(b) // Original buffer length
var multiLine bool
for i, r := range s {
if r.Diff == diffInserted || r.Diff == diffRemoved {
multiLine = true
}
b = append(b, r.Key...)
if r.Key != "" {
b = append(b, ": "...)
}
b, s[i].Value = r.Value.formatCompactTo(b, d|r.Diff)
if _, ok := s[i].Value.(textLine); !ok {
multiLine = true
}
if r.Comment != nil {
multiLine = true
}
if i < len(s)-1 {
b = append(b, ", "...)
}
}
// Force multi-lined output when printing a removed/inserted node that
// is sufficiently long.
if (d == diffInserted || d == diffRemoved) && len(b[n0:]) > maxColumnLength {
multiLine = true
}
if !multiLine {
return b, textLine(b[n0:])
}
return b, s
}
func (s textList) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
alignKeyLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return r.Key == "" || !isLine
},
func(r textRecord) int { return utf8.RuneCountInString(r.Key) },
)
alignValueLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return !isLine || r.Value.Equal(textEllipsis) || r.Comment == nil
},
func(r textRecord) int { return utf8.RuneCount(r.Value.(textLine)) },
)
// Format lists of simple lists in a batched form.
// If the list is sequence of only textLine values,
// then batch multiple values on a single line.
var isSimple bool
for _, r := range s {
_, isLine := r.Value.(textLine)
isSimple = r.Diff == 0 && r.Key == "" && isLine && r.Comment == nil
if !isSimple {
break
}
}
if isSimple {
n++
var batch []byte
emitBatch := func() {
if len(batch) > 0 {
b = n.appendIndent(append(b, '\n'), d)
b = append(b, bytes.TrimRight(batch, " ")...)
batch = batch[:0]
}
}
for _, r := range s {
line := r.Value.(textLine)
if len(batch)+len(line)+len(", ") > maxColumnLength {
emitBatch()
}
batch = append(batch, line...)
batch = append(batch, ", "...)
}
emitBatch()
n--
return n.appendIndent(append(b, '\n'), d)
}
// Format the list as a multi-lined output.
n++
for i, r := range s {
b = n.appendIndent(append(b, '\n'), d|r.Diff)
if r.Key != "" {
b = append(b, r.Key+": "...)
}
b = alignKeyLens[i].appendChar(b, ' ')
b = r.Value.formatExpandedTo(b, d|r.Diff, n)
if !r.ElideComma {
b = append(b, ',')
}
b = alignValueLens[i].appendChar(b, ' ')
if r.Comment != nil {
b = append(b, " // "+r.Comment.String()...)
}
}
n--
return n.appendIndent(append(b, '\n'), d)
}
func (s textList) alignLens(
skipFunc func(textRecord) bool,
lenFunc func(textRecord) int,
) []repeatCount {
var startIdx, endIdx, maxLen int
lens := make([]repeatCount, len(s))
for i, r := range s {
if skipFunc(r) {
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
startIdx, endIdx, maxLen = i+1, i+1, 0
} else {
if maxLen < lenFunc(r) {
maxLen = lenFunc(r)
}
endIdx = i + 1
}
}
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
return lens
}
// textLine is a single-line segment of text and is always a leaf node
// in the textNode tree.
type textLine []byte
var (
textNil = textLine("nil")
textEllipsis = textLine("...")
)
func (s textLine) Len() int {
return len(s)
}
func (s1 textLine) Equal(s2 textNode) bool {
if s2, ok := s2.(textLine); ok {
return bytes.Equal([]byte(s1), []byte(s2))
}
return false
}
func (s textLine) String() string {
return string(s)
}
func (s textLine) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
return append(b, s...), s
}
func (s textLine) formatExpandedTo(b []byte, _ diffMode, _ indentMode) []byte {
return append(b, s...)
}
type diffStats struct {
Name string
NumIgnored int
NumIdentical int
NumRemoved int
NumInserted int
NumModified int
}
func (s diffStats) IsZero() bool {
s.Name = ""
return s == diffStats{}
}
func (s diffStats) NumDiff() int {
return s.NumRemoved + s.NumInserted + s.NumModified
}
func (s diffStats) Append(ds diffStats) diffStats {
assert(s.Name == ds.Name)
s.NumIgnored += ds.NumIgnored
s.NumIdentical += ds.NumIdentical
s.NumRemoved += ds.NumRemoved
s.NumInserted += ds.NumInserted
s.NumModified += ds.NumModified
return s
}
// String prints a humanly-readable summary of coalesced records.
//
// Example:
// diffStats{Name: "Field", NumIgnored: 5}.String() => "5 ignored fields"
func (s diffStats) String() string {
var ss []string
var sum int
labels := [...]string{"ignored", "identical", "removed", "inserted", "modified"}
counts := [...]int{s.NumIgnored, s.NumIdentical, s.NumRemoved, s.NumInserted, s.NumModified}
for i, n := range counts {
if n > 0 {
ss = append(ss, fmt.Sprintf("%d %v", n, labels[i]))
}
sum += n
}
// Pluralize the name (adjusting for some obscure English grammar rules).
name := s.Name
if sum > 1 {
name += "s"
if strings.HasSuffix(name, "ys") {
name = name[:len(name)-2] + "ies" // e.g., "entrys" => "entries"
}
}
// Format the list according to English grammar (with Oxford comma).
switch n := len(ss); n {
case 0:
return ""
case 1, 2:
return strings.Join(ss, " and ") + " " + name
default:
return strings.Join(ss[:n-1], ", ") + ", and " + ss[n-1] + " " + name
}
}
type commentString string
func (s commentString) String() string { return string(s) }

View File

@ -1,121 +0,0 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import "reflect"
// valueNode represents a single node within a report, which is a
// structured representation of the value tree, containing information
// regarding which nodes are equal or not.
type valueNode struct {
parent *valueNode
Type reflect.Type
ValueX reflect.Value
ValueY reflect.Value
// NumSame is the number of leaf nodes that are equal.
// All descendants are equal only if NumDiff is 0.
NumSame int
// NumDiff is the number of leaf nodes that are not equal.
NumDiff int
// NumIgnored is the number of leaf nodes that are ignored.
NumIgnored int
// NumCompared is the number of leaf nodes that were compared
// using an Equal method or Comparer function.
NumCompared int
// NumTransformed is the number of non-leaf nodes that were transformed.
NumTransformed int
// NumChildren is the number of transitive descendants of this node.
// This counts from zero; thus, leaf nodes have no descendants.
NumChildren int
// MaxDepth is the maximum depth of the tree. This counts from zero;
// thus, leaf nodes have a depth of zero.
MaxDepth int
// Records is a list of struct fields, slice elements, or map entries.
Records []reportRecord // If populated, implies Value is not populated
// Value is the result of a transformation, pointer indirect, of
// type assertion.
Value *valueNode // If populated, implies Records is not populated
// TransformerName is the name of the transformer.
TransformerName string // If non-empty, implies Value is populated
}
type reportRecord struct {
Key reflect.Value // Invalid for slice element
Value *valueNode
}
func (parent *valueNode) PushStep(ps PathStep) (child *valueNode) {
vx, vy := ps.Values()
child = &valueNode{parent: parent, Type: ps.Type(), ValueX: vx, ValueY: vy}
switch s := ps.(type) {
case StructField:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: reflect.ValueOf(s.Name()), Value: child})
case SliceIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Value: child})
case MapIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: s.Key(), Value: child})
case Indirect:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case TypeAssertion:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case Transform:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
parent.TransformerName = s.Name()
parent.NumTransformed++
default:
assert(parent == nil) // Must be the root step
}
return child
}
func (r *valueNode) Report(rs Result) {
assert(r.MaxDepth == 0) // May only be called on leaf nodes
if rs.ByIgnore() {
r.NumIgnored++
} else {
if rs.Equal() {
r.NumSame++
} else {
r.NumDiff++
}
}
assert(r.NumSame+r.NumDiff+r.NumIgnored == 1)
if rs.ByMethod() {
r.NumCompared++
}
if rs.ByFunc() {
r.NumCompared++
}
assert(r.NumCompared <= 1)
}
func (child *valueNode) PopStep() (parent *valueNode) {
if child.parent == nil {
return nil
}
parent = child.parent
parent.NumSame += child.NumSame
parent.NumDiff += child.NumDiff
parent.NumIgnored += child.NumIgnored
parent.NumCompared += child.NumCompared
parent.NumTransformed += child.NumTransformed
parent.NumChildren += child.NumChildren + 1
if parent.MaxDepth < child.MaxDepth+1 {
parent.MaxDepth = child.MaxDepth + 1
}
return parent
}

View File

@ -0,0 +1,64 @@
# GitHub Input Plugin
Gather repository information from [GitHub][] hosted repositories.
**Note:** Telegraf also contains the [webhook][] input which can be used as an
alternative method for collecting repository information.
### Configuration
```toml
[[inputs.github]]
## List of repositories to monitor
repositories = [
"influxdata/telegraf",
"influxdata/influxdb"
]
## Github API access token. Unauthenticated requests are limited to 60 per hour.
# access_token = ""
## Github API enterprise url. Github Enterprise accounts must specify their base url.
# enterprise_base_url = ""
## Timeout for HTTP requests.
# http_timeout = "5s"
```
### Metrics
- github_repository
- tags:
- name - The repository name
- owner - The owner of the repository
- language - The primary language of the repository
- license - The license set for the repository
- fields:
- forks (int)
- open_issues (int)
- networks (int)
- size (int)
- subscribers (int)
- stars (int)
- watchers (int)
When the [internal][] input is enabled:
+ internal_github
- tags:
- access_token - An obfuscated reference to the configured access token or "Unauthenticated"
- fields:
- limit - How many requests you are limited to (per hour)
- remaining - How many requests you have remaining (per hour)
- blocks - How many requests have been blocked due to rate limit
### Example Output
```
github_repository,language=Go,license=MIT\ License,name=telegraf,owner=influxdata forks=2679i,networks=2679i,open_issues=794i,size=23263i,stars=7091i,subscribers=316i,watchers=7091i 1563901372000000000
internal_github,access_token=Unauthenticated rate_limit_remaining=59i,rate_limit_limit=60i,rate_limit_blocks=0i 1552653551000000000
```
[GitHub]: https://www.github.com
[internal]: /plugins/inputs/internal
[webhook]: /plugins/inputs/webhooks/github

View File

@ -0,0 +1,200 @@
package github
import (
"context"
"fmt"
"net/http"
"strings"
"sync"
"time"
"github.com/google/go-github/v32/github"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/plugins/inputs"
"github.com/influxdata/telegraf/selfstat"
"golang.org/x/oauth2"
)
// GitHub - plugin main structure
type GitHub struct {
Repositories []string `toml:"repositories"`
AccessToken string `toml:"access_token"`
EnterpriseBaseURL string `toml:"enterprise_base_url"`
HTTPTimeout internal.Duration `toml:"http_timeout"`
githubClient *github.Client
obfuscatedToken string
RateLimit selfstat.Stat
RateLimitErrors selfstat.Stat
RateRemaining selfstat.Stat
}
const sampleConfig = `
## List of repositories to monitor.
repositories = [
"influxdata/telegraf",
"influxdata/influxdb"
]
## Github API access token. Unauthenticated requests are limited to 60 per hour.
# access_token = ""
## Github API enterprise url. Github Enterprise accounts must specify their base url.
# enterprise_base_url = ""
## Timeout for HTTP requests.
# http_timeout = "5s"
`
// SampleConfig returns sample configuration for this plugin.
func (g *GitHub) SampleConfig() string {
return sampleConfig
}
// Description returns the plugin description.
func (g *GitHub) Description() string {
return "Gather repository information from GitHub hosted repositories."
}
// Create GitHub Client
func (g *GitHub) createGitHubClient(ctx context.Context) (*github.Client, error) {
httpClient := &http.Client{
Transport: &http.Transport{
Proxy: http.ProxyFromEnvironment,
},
Timeout: g.HTTPTimeout.Duration,
}
g.obfuscatedToken = "Unauthenticated"
if g.AccessToken != "" {
tokenSource := oauth2.StaticTokenSource(
&oauth2.Token{AccessToken: g.AccessToken},
)
oauthClient := oauth2.NewClient(ctx, tokenSource)
_ = context.WithValue(ctx, oauth2.HTTPClient, oauthClient)
g.obfuscatedToken = g.AccessToken[0:4] + "..." + g.AccessToken[len(g.AccessToken)-3:]
return g.newGithubClient(oauthClient)
}
return g.newGithubClient(httpClient)
}
func (g *GitHub) newGithubClient(httpClient *http.Client) (*github.Client, error) {
if g.EnterpriseBaseURL != "" {
return github.NewEnterpriseClient(g.EnterpriseBaseURL, "", httpClient)
}
return github.NewClient(httpClient), nil
}
// Gather GitHub Metrics
func (g *GitHub) Gather(acc telegraf.Accumulator) error {
ctx := context.Background()
if g.githubClient == nil {
githubClient, err := g.createGitHubClient(ctx)
if err != nil {
return err
}
g.githubClient = githubClient
tokenTags := map[string]string{
"access_token": g.obfuscatedToken,
}
g.RateLimitErrors = selfstat.Register("github", "rate_limit_blocks", tokenTags)
g.RateLimit = selfstat.Register("github", "rate_limit_limit", tokenTags)
g.RateRemaining = selfstat.Register("github", "rate_limit_remaining", tokenTags)
}
var wg sync.WaitGroup
wg.Add(len(g.Repositories))
for _, repository := range g.Repositories {
go func(repositoryName string, acc telegraf.Accumulator) {
defer wg.Done()
owner, repository, err := splitRepositoryName(repositoryName)
if err != nil {
acc.AddError(err)
return
}
repositoryInfo, response, err := g.githubClient.Repositories.Get(ctx, owner, repository)
if _, ok := err.(*github.RateLimitError); ok {
g.RateLimitErrors.Incr(1)
}
if err != nil {
acc.AddError(err)
return
}
g.RateLimit.Set(int64(response.Rate.Limit))
g.RateRemaining.Set(int64(response.Rate.Remaining))
now := time.Now()
tags := getTags(repositoryInfo)
fields := getFields(repositoryInfo)
acc.AddFields("github_repository", fields, tags, now)
}(repository, acc)
}
wg.Wait()
return nil
}
func splitRepositoryName(repositoryName string) (string, string, error) {
splits := strings.SplitN(repositoryName, "/", 2)
if len(splits) != 2 {
return "", "", fmt.Errorf("%v is not of format 'owner/repository'", repositoryName)
}
return splits[0], splits[1], nil
}
func getLicense(rI *github.Repository) string {
if licenseName := rI.GetLicense().GetName(); licenseName != "" {
return licenseName
}
return "None"
}
func getTags(repositoryInfo *github.Repository) map[string]string {
return map[string]string{
"owner": repositoryInfo.GetOwner().GetLogin(),
"name": repositoryInfo.GetName(),
"language": repositoryInfo.GetLanguage(),
"license": getLicense(repositoryInfo),
}
}
func getFields(repositoryInfo *github.Repository) map[string]interface{} {
return map[string]interface{}{
"stars": repositoryInfo.GetStargazersCount(),
"subscribers": repositoryInfo.GetSubscribersCount(),
"watchers": repositoryInfo.GetWatchersCount(),
"networks": repositoryInfo.GetNetworkCount(),
"forks": repositoryInfo.GetForksCount(),
"open_issues": repositoryInfo.GetOpenIssuesCount(),
"size": repositoryInfo.GetSize(),
}
}
func init() {
inputs.Add("github", func() telegraf.Input {
return &GitHub{
HTTPTimeout: internal.Duration{Duration: time.Second * 5},
}
})
}

View File

@ -0,0 +1,275 @@
# MongoDB Input Plugin
### Configuration:
```toml
[[inputs.mongodb]]
## An array of URLs of the form:
## "mongodb://" [user ":" pass "@"] host [ ":" port]
## For example:
## mongodb://user:auth_key@10.10.3.30:27017,
## mongodb://10.10.3.33:18832,
servers = ["mongodb://127.0.0.1:27017"]
## When true, collect cluster status.
## Note that the query that counts jumbo chunks triggers a COLLSCAN, which
## may have an impact on performance.
# gather_cluster_status = true
## When true, collect per database stats
# gather_perdb_stats = false
## When true, collect per collection stats
# gather_col_stats = false
## List of db where collections stats are collected
## If empty, all db are concerned
# col_stats_dbs = ["local"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
```
#### Permissions:
If your MongoDB instance has access control enabled you will need to connect
as a user with sufficient rights.
With MongoDB 3.4 and higher, the `clusterMonitor` role can be used. In
version 3.2 you may also need these additional permissions:
```
> db.grantRolesToUser("user", [{role: "read", actions: "find", db: "local"}])
```
If the user is missing required privileges you may see an error in the
Telegraf logs similar to:
```
Error in input [mongodb]: not authorized on admin to execute command { serverStatus: 1, recordStats: 0 }
```
Some permission related errors are logged at debug level, you can check these
messages by setting `debug = true` in the agent section of the configuration or
by running Telegraf with the `--debug` argument.
### Metrics:
- mongodb
- tags:
- hostname
- node_type
- rs_name
- fields:
- active_reads (integer)
- active_writes (integer)
- aggregate_command_failed (integer)
- aggregate_command_total (integer)
- assert_msg (integer)
- assert_regular (integer)
- assert_rollovers (integer)
- assert_user (integer)
- assert_warning (integer)
- available_reads (integer)
- available_writes (integer)
- commands (integer)
- connections_available (integer)
- connections_current (integer)
- connections_total_created (integer)
- count_command_failed (integer)
- count_command_total (integer)
- cursor_no_timeout_count (integer)
- cursor_pinned_count (integer)
- cursor_timed_out_count (integer)
- cursor_total_count (integer)
- delete_command_failed (integer)
- delete_command_total (integer)
- deletes (integer)
- distinct_command_failed (integer)
- distinct_command_total (integer)
- document_deleted (integer)
- document_inserted (integer)
- document_returned (integer)
- document_updated (integer)
- find_and_modify_command_failed (integer)
- find_and_modify_command_total (integer)
- find_command_failed (integer)
- find_command_total (integer)
- flushes (integer)
- flushes_total_time_ns (integer)
- get_more_command_failed (integer)
- get_more_command_total (integer)
- getmores (integer)
- insert_command_failed (integer)
- insert_command_total (integer)
- inserts (integer)
- jumbo_chunks (integer)
- latency_commands_count (integer)
- latency_commands (integer)
- latency_reads_count (integer)
- latency_reads (integer)
- latency_writes_count (integer)
- latency_writes (integer)
- member_status (string)
- net_in_bytes_count (integer)
- net_out_bytes_count (integer)
- open_connections (integer)
- operation_scan_and_order (integer)
- operation_write_conflicts (integer)
- page_faults (integer)
- percent_cache_dirty (float)
- percent_cache_used (float)
- queries (integer)
- queued_reads (integer)
- queued_writes (integer)
- repl_apply_batches_num (integer)
- repl_apply_batches_total_millis (integer)
- repl_apply_ops (integer)
- repl_buffer_count (integer)
- repl_buffer_size_bytes (integer)
- repl_commands (integer)
- repl_deletes (integer)
- repl_executor_pool_in_progress_count (integer)
- repl_executor_queues_network_in_progress (integer)
- repl_executor_queues_sleepers (integer)
- repl_executor_unsignaled_events (integer)
- repl_getmores (integer)
- repl_inserts (integer)
- repl_lag (integer)
- repl_network_bytes (integer)
- repl_network_getmores_num (integer)
- repl_network_getmores_total_millis (integer)
- repl_network_ops (integer)
- repl_queries (integer)
- repl_updates (integer)
- repl_oplog_window_sec (integer)
- repl_state (integer)
- resident_megabytes (integer)
- state (string)
- storage_freelist_search_bucket_exhausted (integer)
- storage_freelist_search_requests (integer)
- storage_freelist_search_scanned (integer)
- tcmalloc_central_cache_free_bytes (integer)
- tcmalloc_current_allocated_bytes (integer)
- tcmalloc_current_total_thread_cache_bytes (integer)
- tcmalloc_heap_size (integer)
- tcmalloc_max_total_thread_cache_bytes (integer)
- tcmalloc_pageheap_commit_count (integer)
- tcmalloc_pageheap_committed_bytes (integer)
- tcmalloc_pageheap_decommit_count (integer)
- tcmalloc_pageheap_free_bytes (integer)
- tcmalloc_pageheap_reserve_count (integer)
- tcmalloc_pageheap_scavenge_count (integer)
- tcmalloc_pageheap_total_commit_bytes (integer)
- tcmalloc_pageheap_total_decommit_bytes (integer)
- tcmalloc_pageheap_total_reserve_bytes (integer)
- tcmalloc_pageheap_unmapped_bytes (integer)
- tcmalloc_spinlock_total_delay_ns (integer)
- tcmalloc_thread_cache_free_bytes (integer)
- tcmalloc_total_free_bytes (integer)
- tcmalloc_transfer_cache_free_bytes (integer)
- total_available (integer)
- total_created (integer)
- total_docs_scanned (integer)
- total_in_use (integer)
- total_keys_scanned (integer)
- total_refreshing (integer)
- total_tickets_reads (integer)
- total_tickets_writes (integer)
- ttl_deletes (integer)
- ttl_passes (integer)
- update_command_failed (integer)
- update_command_total (integer)
- updates (integer)
- uptime_ns (integer)
- version (string)
- vsize_megabytes (integer)
- wtcache_app_threads_page_read_count (integer)
- wtcache_app_threads_page_read_time (integer)
- wtcache_app_threads_page_write_count (integer)
- wtcache_bytes_read_into (integer)
- wtcache_bytes_written_from (integer)
- wtcache_pages_read_into (integer)
- wtcache_pages_requested_from (integer)
- wtcache_current_bytes (integer)
- wtcache_max_bytes_configured (integer)
- wtcache_internal_pages_evicted (integer)
- wtcache_modified_pages_evicted (integer)
- wtcache_unmodified_pages_evicted (integer)
- wtcache_pages_evicted_by_app_thread (integer)
- wtcache_pages_queued_for_eviction (integer)
- wtcache_server_evicting_pages (integer)
- wtcache_tracked_dirty_bytes (integer)
- wtcache_worker_thread_evictingpages (integer)
- commands_per_sec (integer, deprecated in 1.10; use `commands`))
- cursor_no_timeout (integer, opened/sec, deprecated in 1.10; use `cursor_no_timeout_count`))
- cursor_pinned (integer, opened/sec, deprecated in 1.10; use `cursor_pinned_count`))
- cursor_timed_out (integer, opened/sec, deprecated in 1.10; use `cursor_timed_out_count`))
- cursor_total (integer, opened/sec, deprecated in 1.10; use `cursor_total_count`))
- deletes_per_sec (integer, deprecated in 1.10; use `deletes`))
- flushes_per_sec (integer, deprecated in 1.10; use `flushes`))
- getmores_per_sec (integer, deprecated in 1.10; use `getmores`))
- inserts_per_sec (integer, deprecated in 1.10; use `inserts`))
- net_in_bytes (integer, bytes/sec, deprecated in 1.10; use `net_out_bytes_count`))
- net_out_bytes (integer, bytes/sec, deprecated in 1.10; use `net_out_bytes_count`))
- queries_per_sec (integer, deprecated in 1.10; use `queries`))
- repl_commands_per_sec (integer, deprecated in 1.10; use `repl_commands`))
- repl_deletes_per_sec (integer, deprecated in 1.10; use `repl_deletes`)
- repl_getmores_per_sec (integer, deprecated in 1.10; use `repl_getmores`)
- repl_inserts_per_sec (integer, deprecated in 1.10; use `repl_inserts`))
- repl_queries_per_sec (integer, deprecated in 1.10; use `repl_queries`))
- repl_updates_per_sec (integer, deprecated in 1.10; use `repl_updates`))
- ttl_deletes_per_sec (integer, deprecated in 1.10; use `ttl_deletes`))
- ttl_passes_per_sec (integer, deprecated in 1.10; use `ttl_passes`))
- updates_per_sec (integer, deprecated in 1.10; use `updates`))
+ mongodb_db_stats
- tags:
- db_name
- hostname
- fields:
- avg_obj_size (float)
- collections (integer)
- data_size (integer)
- index_size (integer)
- indexes (integer)
- num_extents (integer)
- objects (integer)
- ok (integer)
- storage_size (integer)
- type (string)
- mongodb_col_stats
- tags:
- hostname
- collection
- db_name
- fields:
- size (integer)
- avg_obj_size (integer)
- storage_size (integer)
- total_index_size (integer)
- ok (integer)
- count (integer)
- type (string)
- mongodb_shard_stats
- tags:
- hostname
- fields:
- in_use (integer)
- available (integer)
- created (integer)
- refreshing (integer)
### Example Output:
```
mongodb,hostname=127.0.0.1:27017 active_reads=3i,active_writes=0i,aggregate_command_failed=0i,aggregate_command_total=87210i,assert_msg=0i,assert_regular=0i,assert_rollovers=0i,assert_user=0i,assert_warning=0i,available_reads=125i,available_writes=128i,commands=218126i,commands_per_sec=1876i,connections_available=838853i,connections_current=7i,connections_total_created=8i,count_command_failed=0i,count_command_total=7i,cursor_no_timeout=0i,cursor_no_timeout_count=0i,cursor_pinned=0i,cursor_pinned_count=0i,cursor_timed_out=0i,cursor_timed_out_count=0i,cursor_total=0i,cursor_total_count=0i,delete_command_failed=0i,delete_command_total=0i,deletes=0i,deletes_per_sec=0i,distinct_command_failed=0i,distinct_command_total=87190i,document_deleted=0i,document_inserted=0i,document_returned=7i,document_updated=43595i,find_and_modify_command_failed=0i,find_and_modify_command_total=43595i,find_command_failed=0i,find_command_total=348819i,flushes=1i,flushes_per_sec=0i,flushes_total_time_ns=5000000i,get_more_command_failed=0i,get_more_command_total=0i,getmores=7i,getmores_per_sec=1i,insert_command_failed=0i,insert_command_total=0i,inserts=0i,inserts_per_sec=0i,jumbo_chunks=0i,latency_commands=44179i,latency_commands_count=122i,latency_reads=36662189i,latency_reads_count=523229i,latency_writes=6768713i,latency_writes_count=87190i,net_in_bytes=837378i,net_in_bytes_count=97692502i,net_out_bytes=690836i,net_out_bytes_count=75377383i,open_connections=7i,operation_scan_and_order=87193i,operation_write_conflicts=7i,page_faults=0i,percent_cache_dirty=0.9,percent_cache_used=1,queries=348816i,queries_per_sec=2988i,queued_reads=0i,queued_writes=0i,resident_megabytes=77i,storage_freelist_search_bucket_exhausted=0i,storage_freelist_search_requests=0i,storage_freelist_search_scanned=0i,tcmalloc_central_cache_free_bytes=280136i,tcmalloc_current_allocated_bytes=77677288i,tcmalloc_current_total_thread_cache_bytes=1222608i,tcmalloc_heap_size=142659584i,tcmalloc_max_total_thread_cache_bytes=260046848i,tcmalloc_pageheap_commit_count=1898i,tcmalloc_pageheap_committed_bytes=130084864i,tcmalloc_pageheap_decommit_count=889i,tcmalloc_pageheap_free_bytes=50610176i,tcmalloc_pageheap_reserve_count=50i,tcmalloc_pageheap_scavenge_count=884i,tcmalloc_pageheap_total_commit_bytes=13021937664i,tcmalloc_pageheap_total_decommit_bytes=12891852800i,tcmalloc_pageheap_total_reserve_bytes=142659584i,tcmalloc_pageheap_unmapped_bytes=12574720i,tcmalloc_spinlock_total_delay_ns=9767500i,tcmalloc_thread_cache_free_bytes=1222608i,tcmalloc_total_free_bytes=1797400i,tcmalloc_transfer_cache_free_bytes=294656i,total_available=0i,total_created=0i,total_docs_scanned=43595i,total_in_use=0i,total_keys_scanned=130805i,total_refreshing=0i,total_tickets_reads=128i,total_tickets_writes=128i,ttl_deletes=0i,ttl_deletes_per_sec=0i,ttl_passes=0i,ttl_passes_per_sec=0i,update_command_failed=0i,update_command_total=43595i,updates=43595i,updates_per_sec=372i,uptime_ns=60023000000i,version="3.6.17",vsize_megabytes=1048i,wtcache_app_threads_page_read_count=108i,wtcache_app_threads_page_read_time=25995i,wtcache_app_threads_page_write_count=0i,wtcache_bytes_read_into=2487250i,wtcache_bytes_written_from=74i,wtcache_current_bytes=5014530i,wtcache_internal_pages_evicted=0i,wtcache_max_bytes_configured=505413632i,wtcache_modified_pages_evicted=0i,wtcache_pages_evicted_by_app_thread=0i,wtcache_pages_queued_for_eviction=0i,wtcache_pages_read_into=139i,wtcache_pages_requested_from=699135i,wtcache_server_evicting_pages=0i,wtcache_tracked_dirty_bytes=4797426i,wtcache_unmodified_pages_evicted=0i,wtcache_worker_thread_evictingpages=0i 1586379818000000000
mongodb,hostname=127.0.0.1:27017,node_type=SEC,rs_name=rs0 active_reads=1i,active_writes=0i,aggregate_command_failed=0i,aggregate_command_total=1i,assert_msg=0i,assert_regular=0i,assert_rollovers=0i,assert_user=79i,assert_warning=0i,available_reads=127i,available_writes=128i,commands=1121855i,commands_per_sec=10i,connections_available=51183i,connections_current=17i,connections_total_created=557i,count_command_failed=0i,count_command_total=46307i,cursor_no_timeout=0i,cursor_no_timeout_count=0i,cursor_pinned=0i,cursor_pinned_count=0i,cursor_timed_out=0i,cursor_timed_out_count=28i,cursor_total=0i,cursor_total_count=0i,delete_command_failed=0i,delete_command_total=0i,deletes=0i,deletes_per_sec=0i,distinct_command_failed=0i,distinct_command_total=0i,document_deleted=0i,document_inserted=0i,document_returned=2248129i,document_updated=0i,find_and_modify_command_failed=0i,find_and_modify_command_total=0i,find_command_failed=2i,find_command_total=8764i,flushes=7850i,flushes_per_sec=0i,flushes_total_time_ns=4535446000000i,get_more_command_failed=0i,get_more_command_total=1993i,getmores=2018i,getmores_per_sec=0i,insert_command_failed=0i,insert_command_total=0i,inserts=0i,inserts_per_sec=0i,jumbo_chunks=0i,latency_commands=112011949i,latency_commands_count=1072472i,latency_reads=1877142443i,latency_reads_count=57086i,latency_writes=0i,latency_writes_count=0i,member_status="SEC",net_in_bytes=1212i,net_in_bytes_count=263928689i,net_out_bytes=41051i,net_out_bytes_count=2475389483i,open_connections=17i,operation_scan_and_order=34i,operation_write_conflicts=0i,page_faults=317i,percent_cache_dirty=1.6,percent_cache_used=73,queries=8764i,queries_per_sec=0i,queued_reads=0i,queued_writes=0i,repl_apply_batches_num=17839419i,repl_apply_batches_total_millis=399929i,repl_apply_ops=23355263i,repl_buffer_count=0i,repl_buffer_size_bytes=0i,repl_commands=11i,repl_commands_per_sec=0i,repl_deletes=440608i,repl_deletes_per_sec=0i,repl_executor_pool_in_progress_count=0i,repl_executor_queues_network_in_progress=0i,repl_executor_queues_sleepers=4i,repl_executor_unsignaled_events=0i,repl_getmores=0i,repl_getmores_per_sec=0i,repl_inserts=1875729i,repl_inserts_per_sec=0i,repl_lag=0i,repl_network_bytes=39122199371i,repl_network_getmores_num=34908797i,repl_network_getmores_total_millis=434805356i,repl_network_ops=23199086i,repl_oplog_window_sec=619292i,repl_queries=0i,repl_queries_per_sec=0i,repl_updates=21034729i,repl_updates_per_sec=38i,repl_state=2,resident_megabytes=6721i,state="SECONDARY",storage_freelist_search_bucket_exhausted=0i,storage_freelist_search_requests=0i,storage_freelist_search_scanned=0i,tcmalloc_central_cache_free_bytes=358512400i,tcmalloc_current_allocated_bytes=5427379424i,tcmalloc_current_total_thread_cache_bytes=70349552i,tcmalloc_heap_size=10199310336i,tcmalloc_max_total_thread_cache_bytes=1073741824i,tcmalloc_pageheap_commit_count=790819i,tcmalloc_pageheap_committed_bytes=7064821760i,tcmalloc_pageheap_decommit_count=533347i,tcmalloc_pageheap_free_bytes=1207816192i,tcmalloc_pageheap_reserve_count=7706i,tcmalloc_pageheap_scavenge_count=426235i,tcmalloc_pageheap_total_commit_bytes=116127649792i,tcmalloc_pageheap_total_decommit_bytes=109062828032i,tcmalloc_pageheap_total_reserve_bytes=10199310336i,tcmalloc_pageheap_unmapped_bytes=3134488576i,tcmalloc_spinlock_total_delay_ns=2518474348i,tcmalloc_thread_cache_free_bytes=70349552i,tcmalloc_total_free_bytes=429626144i,tcmalloc_transfer_cache_free_bytes=764192i,total_available=0i,total_created=0i,total_docs_scanned=735004782i,total_in_use=0i,total_keys_scanned=6188216i,total_refreshing=0i,total_tickets_reads=128i,total_tickets_writes=128i,ttl_deletes=0i,ttl_deletes_per_sec=0i,ttl_passes=7892i,ttl_passes_per_sec=0i,update_command_failed=0i,update_command_total=0i,updates=0i,updates_per_sec=0i,uptime_ns=473590288000000i,version="3.6.17",vsize_megabytes=11136i,wtcache_app_threads_page_read_count=11467625i,wtcache_app_threads_page_read_time=1700336840i,wtcache_app_threads_page_write_count=13268184i,wtcache_bytes_read_into=348022587843i,wtcache_bytes_written_from=322571702254i,wtcache_current_bytes=5509459274i,wtcache_internal_pages_evicted=109108i,wtcache_max_bytes_configured=7547650048i,wtcache_modified_pages_evicted=911196i,wtcache_pages_evicted_by_app_thread=17366i,wtcache_pages_queued_for_eviction=16572754i,wtcache_pages_read_into=11689764i,wtcache_pages_requested_from=499825861i,wtcache_server_evicting_pages=0i,wtcache_tracked_dirty_bytes=117487510i,wtcache_unmodified_pages_evicted=11058458i,wtcache_worker_thread_evictingpages=11907226i 1586379707000000000
mongodb_db_stats,db_name=admin,hostname=127.0.0.1:27017 avg_obj_size=241,collections=2i,data_size=723i,index_size=49152i,indexes=3i,num_extents=0i,objects=3i,ok=1i,storage_size=53248i,type="db_stat" 1547159491000000000
mongodb_db_stats,db_name=local,hostname=127.0.0.1:27017 avg_obj_size=813.9705882352941,collections=6i,data_size=55350i,index_size=102400i,indexes=5i,num_extents=0i,objects=68i,ok=1i,storage_size=204800i,type="db_stat" 1547159491000000000
mongodb_col_stats,collection=foo,db_name=local,hostname=127.0.0.1:27017 size=375005928i,avg_obj_size=5494,type="col_stat",storage_size=249307136i,total_index_size=2138112i,ok=1i,count=68251i 1547159491000000000
mongodb_shard_stats,hostname=127.0.0.1:27017,in_use=3i,available=3i,created=4i,refreshing=0i 1522799074000000000
```

View File

@ -0,0 +1,199 @@
package mongodb
import (
"crypto/tls"
"crypto/x509"
"fmt"
"net"
"net/url"
"strings"
"sync"
"time"
"github.com/influxdata/telegraf"
tlsint "github.com/influxdata/telegraf/plugins/common/tls"
"github.com/influxdata/telegraf/plugins/inputs"
"gopkg.in/mgo.v2"
)
type MongoDB struct {
Servers []string
Ssl Ssl
mongos map[string]*Server
GatherClusterStatus bool
GatherPerdbStats bool
GatherColStats bool
ColStatsDbs []string
tlsint.ClientConfig
Log telegraf.Logger
}
type Ssl struct {
Enabled bool
CaCerts []string `toml:"cacerts"`
}
var sampleConfig = `
## An array of URLs of the form:
## "mongodb://" [user ":" pass "@"] host [ ":" port]
## For example:
## mongodb://user:auth_key@10.10.3.30:27017,
## mongodb://10.10.3.33:18832,
servers = ["mongodb://127.0.0.1:27017"]
## When true, collect cluster status
## Note that the query that counts jumbo chunks triggers a COLLSCAN, which
## may have an impact on performance.
# gather_cluster_status = true
## When true, collect per database stats
# gather_perdb_stats = false
## When true, collect per collection stats
# gather_col_stats = false
## List of db where collections stats are collected
## If empty, all db are concerned
# col_stats_dbs = ["local"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
`
func (m *MongoDB) SampleConfig() string {
return sampleConfig
}
func (*MongoDB) Description() string {
return "Read metrics from one or many MongoDB servers"
}
var localhost = &url.URL{Host: "mongodb://127.0.0.1:27017"}
// Reads stats from all configured servers accumulates stats.
// Returns one of the errors encountered while gather stats (if any).
func (m *MongoDB) Gather(acc telegraf.Accumulator) error {
if len(m.Servers) == 0 {
m.gatherServer(m.getMongoServer(localhost), acc)
return nil
}
var wg sync.WaitGroup
for i, serv := range m.Servers {
if !strings.HasPrefix(serv, "mongodb://") {
// Preserve backwards compatibility for hostnames without a
// scheme, broken in go 1.8. Remove in Telegraf 2.0
serv = "mongodb://" + serv
m.Log.Warnf("Using %q as connection URL; please update your configuration to use an URL", serv)
m.Servers[i] = serv
}
u, err := url.Parse(serv)
if err != nil {
m.Log.Errorf("Unable to parse address %q: %s", serv, err.Error())
continue
}
if u.Host == "" {
m.Log.Errorf("Unable to parse address %q", serv)
continue
}
wg.Add(1)
go func(srv *Server) {
defer wg.Done()
err := m.gatherServer(srv, acc)
if err != nil {
m.Log.Errorf("Error in plugin: %v", err)
}
}(m.getMongoServer(u))
}
wg.Wait()
return nil
}
func (m *MongoDB) getMongoServer(url *url.URL) *Server {
if _, ok := m.mongos[url.Host]; !ok {
m.mongos[url.Host] = &Server{
Log: m.Log,
Url: url,
}
}
return m.mongos[url.Host]
}
func (m *MongoDB) gatherServer(server *Server, acc telegraf.Accumulator) error {
if server.Session == nil {
var dialAddrs []string
if server.Url.User != nil {
dialAddrs = []string{server.Url.String()}
} else {
dialAddrs = []string{server.Url.Host}
}
dialInfo, err := mgo.ParseURL(dialAddrs[0])
if err != nil {
return fmt.Errorf("unable to parse URL %q: %s", dialAddrs[0], err.Error())
}
dialInfo.Direct = true
dialInfo.Timeout = 5 * time.Second
var tlsConfig *tls.Config
if m.Ssl.Enabled {
// Deprecated TLS config
tlsConfig = &tls.Config{}
if len(m.Ssl.CaCerts) > 0 {
roots := x509.NewCertPool()
for _, caCert := range m.Ssl.CaCerts {
ok := roots.AppendCertsFromPEM([]byte(caCert))
if !ok {
return fmt.Errorf("failed to parse root certificate")
}
}
tlsConfig.RootCAs = roots
} else {
tlsConfig.InsecureSkipVerify = true
}
} else {
tlsConfig, err = m.ClientConfig.TLSConfig()
if err != nil {
return err
}
}
// If configured to use TLS, add a dial function
if tlsConfig != nil {
dialInfo.DialServer = func(addr *mgo.ServerAddr) (net.Conn, error) {
conn, err := tls.Dial("tcp", addr.String(), tlsConfig)
if err != nil {
fmt.Printf("error in Dial, %s\n", err.Error())
}
return conn, err
}
}
sess, err := mgo.DialWithInfo(dialInfo)
if err != nil {
return fmt.Errorf("unable to connect to MongoDB: %s", err.Error())
}
server.Session = sess
}
return server.gatherData(acc, m.GatherClusterStatus, m.GatherPerdbStats, m.GatherColStats, m.ColStatsDbs)
}
func init() {
inputs.Add("mongodb", func() telegraf.Input {
return &MongoDB{
mongos: make(map[string]*Server),
GatherClusterStatus: true,
GatherPerdbStats: false,
GatherColStats: false,
ColStatsDbs: []string{"local"},
}
})
}

View File

@ -0,0 +1,412 @@
package mongodb
import (
"fmt"
"reflect"
"strconv"
"github.com/influxdata/telegraf"
)
type MongodbData struct {
StatLine *StatLine
Fields map[string]interface{}
Tags map[string]string
DbData []DbData
ColData []ColData
ShardHostData []DbData
}
type DbData struct {
Name string
Fields map[string]interface{}
}
type ColData struct {
Name string
DbName string
Fields map[string]interface{}
}
func NewMongodbData(statLine *StatLine, tags map[string]string) *MongodbData {
return &MongodbData{
StatLine: statLine,
Tags: tags,
Fields: make(map[string]interface{}),
DbData: []DbData{},
}
}
var DefaultStats = map[string]string{
"uptime_ns": "UptimeNanos",
"inserts": "InsertCnt",
"inserts_per_sec": "Insert",
"queries": "QueryCnt",
"queries_per_sec": "Query",
"updates": "UpdateCnt",
"updates_per_sec": "Update",
"deletes": "DeleteCnt",
"deletes_per_sec": "Delete",
"getmores": "GetMoreCnt",
"getmores_per_sec": "GetMore",
"commands": "CommandCnt",
"commands_per_sec": "Command",
"flushes": "FlushesCnt",
"flushes_per_sec": "Flushes",
"flushes_total_time_ns": "FlushesTotalTime",
"vsize_megabytes": "Virtual",
"resident_megabytes": "Resident",
"queued_reads": "QueuedReaders",
"queued_writes": "QueuedWriters",
"active_reads": "ActiveReaders",
"active_writes": "ActiveWriters",
"available_reads": "AvailableReaders",
"available_writes": "AvailableWriters",
"total_tickets_reads": "TotalTicketsReaders",
"total_tickets_writes": "TotalTicketsWriters",
"net_in_bytes_count": "NetInCnt",
"net_in_bytes": "NetIn",
"net_out_bytes_count": "NetOutCnt",
"net_out_bytes": "NetOut",
"open_connections": "NumConnections",
"ttl_deletes": "DeletedDocumentsCnt",
"ttl_deletes_per_sec": "DeletedDocuments",
"ttl_passes": "PassesCnt",
"ttl_passes_per_sec": "Passes",
"cursor_timed_out": "TimedOutC",
"cursor_timed_out_count": "TimedOutCCnt",
"cursor_no_timeout": "NoTimeoutC",
"cursor_no_timeout_count": "NoTimeoutCCnt",
"cursor_pinned": "PinnedC",
"cursor_pinned_count": "PinnedCCnt",
"cursor_total": "TotalC",
"cursor_total_count": "TotalCCnt",
"document_deleted": "DeletedD",
"document_inserted": "InsertedD",
"document_returned": "ReturnedD",
"document_updated": "UpdatedD",
"connections_current": "CurrentC",
"connections_available": "AvailableC",
"connections_total_created": "TotalCreatedC",
"operation_scan_and_order": "ScanAndOrderOp",
"operation_write_conflicts": "WriteConflictsOp",
"total_keys_scanned": "TotalKeysScanned",
"total_docs_scanned": "TotalObjectsScanned",
}
var DefaultAssertsStats = map[string]string{
"assert_regular": "Regular",
"assert_warning": "Warning",
"assert_msg": "Msg",
"assert_user": "User",
"assert_rollovers": "Rollovers",
}
var DefaultCommandsStats = map[string]string{
"aggregate_command_total": "AggregateCommandTotal",
"aggregate_command_failed": "AggregateCommandFailed",
"count_command_total": "CountCommandTotal",
"count_command_failed": "CountCommandFailed",
"delete_command_total": "DeleteCommandTotal",
"delete_command_failed": "DeleteCommandFailed",
"distinct_command_total": "DistinctCommandTotal",
"distinct_command_failed": "DistinctCommandFailed",
"find_command_total": "FindCommandTotal",
"find_command_failed": "FindCommandFailed",
"find_and_modify_command_total": "FindAndModifyCommandTotal",
"find_and_modify_command_failed": "FindAndModifyCommandFailed",
"get_more_command_total": "GetMoreCommandTotal",
"get_more_command_failed": "GetMoreCommandFailed",
"insert_command_total": "InsertCommandTotal",
"insert_command_failed": "InsertCommandFailed",
"update_command_total": "UpdateCommandTotal",
"update_command_failed": "UpdateCommandFailed",
}
var DefaultLatencyStats = map[string]string{
"latency_writes_count": "WriteOpsCnt",
"latency_writes": "WriteLatency",
"latency_reads_count": "ReadOpsCnt",
"latency_reads": "ReadLatency",
"latency_commands_count": "CommandOpsCnt",
"latency_commands": "CommandLatency",
}
var DefaultReplStats = map[string]string{
"repl_inserts": "InsertRCnt",
"repl_inserts_per_sec": "InsertR",
"repl_queries": "QueryRCnt",
"repl_queries_per_sec": "QueryR",
"repl_updates": "UpdateRCnt",
"repl_updates_per_sec": "UpdateR",
"repl_deletes": "DeleteRCnt",
"repl_deletes_per_sec": "DeleteR",
"repl_getmores": "GetMoreRCnt",
"repl_getmores_per_sec": "GetMoreR",
"repl_commands": "CommandRCnt",
"repl_commands_per_sec": "CommandR",
"member_status": "NodeType",
"state": "NodeState",
"repl_state": "NodeStateInt",
"repl_lag": "ReplLag",
"repl_network_bytes": "ReplNetworkBytes",
"repl_network_getmores_num": "ReplNetworkGetmoresNum",
"repl_network_getmores_total_millis": "ReplNetworkGetmoresTotalMillis",
"repl_network_ops": "ReplNetworkOps",
"repl_buffer_count": "ReplBufferCount",
"repl_buffer_size_bytes": "ReplBufferSizeBytes",
"repl_apply_batches_num": "ReplApplyBatchesNum",
"repl_apply_batches_total_millis": "ReplApplyBatchesTotalMillis",
"repl_apply_ops": "ReplApplyOps",
"repl_executor_pool_in_progress_count": "ReplExecutorPoolInProgressCount",
"repl_executor_queues_network_in_progress": "ReplExecutorQueuesNetworkInProgress",
"repl_executor_queues_sleepers": "ReplExecutorQueuesSleepers",
"repl_executor_unsignaled_events": "ReplExecutorUnsignaledEvents",
}
var DefaultClusterStats = map[string]string{
"jumbo_chunks": "JumboChunksCount",
}
var DefaultShardStats = map[string]string{
"total_in_use": "TotalInUse",
"total_available": "TotalAvailable",
"total_created": "TotalCreated",
"total_refreshing": "TotalRefreshing",
}
var ShardHostStats = map[string]string{
"in_use": "InUse",
"available": "Available",
"created": "Created",
"refreshing": "Refreshing",
}
var MmapStats = map[string]string{
"mapped_megabytes": "Mapped",
"non-mapped_megabytes": "NonMapped",
"page_faults": "FaultsCnt",
"page_faults_per_sec": "Faults",
}
var WiredTigerStats = map[string]string{
"percent_cache_dirty": "CacheDirtyPercent",
"percent_cache_used": "CacheUsedPercent",
}
var WiredTigerExtStats = map[string]string{
"wtcache_tracked_dirty_bytes": "TrackedDirtyBytes",
"wtcache_current_bytes": "CurrentCachedBytes",
"wtcache_max_bytes_configured": "MaxBytesConfigured",
"wtcache_app_threads_page_read_count": "AppThreadsPageReadCount",
"wtcache_app_threads_page_read_time": "AppThreadsPageReadTime",
"wtcache_app_threads_page_write_count": "AppThreadsPageWriteCount",
"wtcache_bytes_written_from": "BytesWrittenFrom",
"wtcache_bytes_read_into": "BytesReadInto",
"wtcache_pages_evicted_by_app_thread": "PagesEvictedByAppThread",
"wtcache_pages_queued_for_eviction": "PagesQueuedForEviction",
"wtcache_pages_read_into": "PagesReadIntoCache",
"wtcache_pages_written_from": "PagesWrittenFromCache",
"wtcache_pages_requested_from": "PagesRequestedFromCache",
"wtcache_server_evicting_pages": "ServerEvictingPages",
"wtcache_worker_thread_evictingpages": "WorkerThreadEvictingPages",
"wtcache_internal_pages_evicted": "InternalPagesEvicted",
"wtcache_modified_pages_evicted": "ModifiedPagesEvicted",
"wtcache_unmodified_pages_evicted": "UnmodifiedPagesEvicted",
}
var DefaultTCMallocStats = map[string]string{
"tcmalloc_current_allocated_bytes": "TCMallocCurrentAllocatedBytes",
"tcmalloc_heap_size": "TCMallocHeapSize",
"tcmalloc_central_cache_free_bytes": "TCMallocCentralCacheFreeBytes",
"tcmalloc_current_total_thread_cache_bytes": "TCMallocCurrentTotalThreadCacheBytes",
"tcmalloc_max_total_thread_cache_bytes": "TCMallocMaxTotalThreadCacheBytes",
"tcmalloc_total_free_bytes": "TCMallocTotalFreeBytes",
"tcmalloc_transfer_cache_free_bytes": "TCMallocTransferCacheFreeBytes",
"tcmalloc_thread_cache_free_bytes": "TCMallocThreadCacheFreeBytes",
"tcmalloc_spinlock_total_delay_ns": "TCMallocSpinLockTotalDelayNanos",
"tcmalloc_pageheap_free_bytes": "TCMallocPageheapFreeBytes",
"tcmalloc_pageheap_unmapped_bytes": "TCMallocPageheapUnmappedBytes",
"tcmalloc_pageheap_committed_bytes": "TCMallocPageheapComittedBytes",
"tcmalloc_pageheap_scavenge_count": "TCMallocPageheapScavengeCount",
"tcmalloc_pageheap_commit_count": "TCMallocPageheapCommitCount",
"tcmalloc_pageheap_total_commit_bytes": "TCMallocPageheapTotalCommitBytes",
"tcmalloc_pageheap_decommit_count": "TCMallocPageheapDecommitCount",
"tcmalloc_pageheap_total_decommit_bytes": "TCMallocPageheapTotalDecommitBytes",
"tcmalloc_pageheap_reserve_count": "TCMallocPageheapReserveCount",
"tcmalloc_pageheap_total_reserve_bytes": "TCMallocPageheapTotalReserveBytes",
}
var DefaultStorageStats = map[string]string{
"storage_freelist_search_bucket_exhausted": "StorageFreelistSearchBucketExhausted",
"storage_freelist_search_requests": "StorageFreelistSearchRequests",
"storage_freelist_search_scanned": "StorageFreelistSearchScanned",
}
var DbDataStats = map[string]string{
"collections": "Collections",
"objects": "Objects",
"avg_obj_size": "AvgObjSize",
"data_size": "DataSize",
"storage_size": "StorageSize",
"num_extents": "NumExtents",
"indexes": "Indexes",
"index_size": "IndexSize",
"ok": "Ok",
}
var ColDataStats = map[string]string{
"count": "Count",
"size": "Size",
"avg_obj_size": "AvgObjSize",
"storage_size": "StorageSize",
"total_index_size": "TotalIndexSize",
"ok": "Ok",
}
func (d *MongodbData) AddDbStats() {
for _, dbstat := range d.StatLine.DbStatsLines {
dbStatLine := reflect.ValueOf(&dbstat).Elem()
newDbData := &DbData{
Name: dbstat.Name,
Fields: make(map[string]interface{}),
}
newDbData.Fields["type"] = "db_stat"
for key, value := range DbDataStats {
val := dbStatLine.FieldByName(value).Interface()
newDbData.Fields[key] = val
}
d.DbData = append(d.DbData, *newDbData)
}
}
func (d *MongodbData) AddColStats() {
for _, colstat := range d.StatLine.ColStatsLines {
colStatLine := reflect.ValueOf(&colstat).Elem()
newColData := &ColData{
Name: colstat.Name,
DbName: colstat.DbName,
Fields: make(map[string]interface{}),
}
newColData.Fields["type"] = "col_stat"
for key, value := range ColDataStats {
val := colStatLine.FieldByName(value).Interface()
newColData.Fields[key] = val
}
d.ColData = append(d.ColData, *newColData)
}
}
func (d *MongodbData) AddShardHostStats() {
for host, hostStat := range d.StatLine.ShardHostStatsLines {
hostStatLine := reflect.ValueOf(&hostStat).Elem()
newDbData := &DbData{
Name: host,
Fields: make(map[string]interface{}),
}
newDbData.Fields["type"] = "shard_host_stat"
for k, v := range ShardHostStats {
val := hostStatLine.FieldByName(v).Interface()
newDbData.Fields[k] = val
}
d.ShardHostData = append(d.ShardHostData, *newDbData)
}
}
func (d *MongodbData) AddDefaultStats() {
statLine := reflect.ValueOf(d.StatLine).Elem()
d.addStat(statLine, DefaultStats)
if d.StatLine.NodeType != "" {
d.addStat(statLine, DefaultReplStats)
d.Tags["node_type"] = d.StatLine.NodeType
}
if d.StatLine.ReadLatency > 0 {
d.addStat(statLine, DefaultLatencyStats)
}
if d.StatLine.ReplSetName != "" {
d.Tags["rs_name"] = d.StatLine.ReplSetName
}
if d.StatLine.OplogStats != nil {
d.add("repl_oplog_window_sec", d.StatLine.OplogStats.TimeDiff)
}
if d.StatLine.Version != "" {
d.add("version", d.StatLine.Version)
}
d.addStat(statLine, DefaultAssertsStats)
d.addStat(statLine, DefaultClusterStats)
d.addStat(statLine, DefaultCommandsStats)
d.addStat(statLine, DefaultShardStats)
d.addStat(statLine, DefaultStorageStats)
d.addStat(statLine, DefaultTCMallocStats)
if d.StatLine.StorageEngine == "mmapv1" || d.StatLine.StorageEngine == "rocksdb" {
d.addStat(statLine, MmapStats)
} else if d.StatLine.StorageEngine == "wiredTiger" {
for key, value := range WiredTigerStats {
val := statLine.FieldByName(value).Interface()
percentVal := fmt.Sprintf("%.1f", val.(float64)*100)
floatVal, _ := strconv.ParseFloat(percentVal, 64)
d.add(key, floatVal)
}
d.addStat(statLine, WiredTigerExtStats)
d.add("page_faults", d.StatLine.FaultsCnt)
}
}
func (d *MongodbData) addStat(statLine reflect.Value, stats map[string]string) {
for key, value := range stats {
val := statLine.FieldByName(value).Interface()
d.add(key, val)
}
}
func (d *MongodbData) add(key string, val interface{}) {
d.Fields[key] = val
}
func (d *MongodbData) flush(acc telegraf.Accumulator) {
acc.AddFields(
"mongodb",
d.Fields,
d.Tags,
d.StatLine.Time,
)
d.Fields = make(map[string]interface{})
for _, db := range d.DbData {
d.Tags["db_name"] = db.Name
acc.AddFields(
"mongodb_db_stats",
db.Fields,
d.Tags,
d.StatLine.Time,
)
db.Fields = make(map[string]interface{})
}
for _, col := range d.ColData {
d.Tags["collection"] = col.Name
d.Tags["db_name"] = col.DbName
acc.AddFields(
"mongodb_col_stats",
col.Fields,
d.Tags,
d.StatLine.Time,
)
col.Fields = make(map[string]interface{})
}
for _, host := range d.ShardHostData {
d.Tags["hostname"] = host.Name
acc.AddFields(
"mongodb_shard_stats",
host.Fields,
d.Tags,
d.StatLine.Time,
)
host.Fields = make(map[string]interface{})
}
}

View File

@ -0,0 +1,299 @@
package mongodb
import (
"fmt"
"net/url"
"strings"
"time"
"github.com/influxdata/telegraf"
"gopkg.in/mgo.v2"
"gopkg.in/mgo.v2/bson"
)
type Server struct {
Url *url.URL
Session *mgo.Session
lastResult *MongoStatus
Log telegraf.Logger
}
func (s *Server) getDefaultTags() map[string]string {
tags := make(map[string]string)
tags["hostname"] = s.Url.Host
return tags
}
type oplogEntry struct {
Timestamp bson.MongoTimestamp `bson:"ts"`
}
func IsAuthorization(err error) bool {
return strings.Contains(err.Error(), "not authorized")
}
func (s *Server) authLog(err error) {
if IsAuthorization(err) {
s.Log.Debug(err.Error())
} else {
s.Log.Error(err.Error())
}
}
func (s *Server) gatherServerStatus() (*ServerStatus, error) {
serverStatus := &ServerStatus{}
err := s.Session.DB("admin").Run(bson.D{
{
Name: "serverStatus",
Value: 1,
},
{
Name: "recordStats",
Value: 0,
},
}, serverStatus)
if err != nil {
return nil, err
}
return serverStatus, nil
}
func (s *Server) gatherReplSetStatus() (*ReplSetStatus, error) {
replSetStatus := &ReplSetStatus{}
err := s.Session.DB("admin").Run(bson.D{
{
Name: "replSetGetStatus",
Value: 1,
},
}, replSetStatus)
if err != nil {
return nil, err
}
return replSetStatus, nil
}
func (s *Server) gatherClusterStatus() (*ClusterStatus, error) {
chunkCount, err := s.Session.DB("config").C("chunks").Find(bson.M{"jumbo": true}).Count()
if err != nil {
return nil, err
}
return &ClusterStatus{
JumboChunksCount: int64(chunkCount),
}, nil
}
func (s *Server) gatherShardConnPoolStats() (*ShardStats, error) {
shardStats := &ShardStats{}
err := s.Session.DB("admin").Run(bson.D{
{
Name: "shardConnPoolStats",
Value: 1,
},
}, &shardStats)
if err != nil {
return nil, err
}
return shardStats, nil
}
func (s *Server) gatherDBStats(name string) (*Db, error) {
stats := &DbStatsData{}
err := s.Session.DB(name).Run(bson.D{
{
Name: "dbStats",
Value: 1,
},
}, stats)
if err != nil {
return nil, err
}
return &Db{
Name: name,
DbStatsData: stats,
}, nil
}
func (s *Server) getOplogReplLag(collection string) (*OplogStats, error) {
query := bson.M{"ts": bson.M{"$exists": true}}
var first oplogEntry
err := s.Session.DB("local").C(collection).Find(query).Sort("$natural").Limit(1).One(&first)
if err != nil {
return nil, err
}
var last oplogEntry
err = s.Session.DB("local").C(collection).Find(query).Sort("-$natural").Limit(1).One(&last)
if err != nil {
return nil, err
}
firstTime := time.Unix(int64(first.Timestamp>>32), 0)
lastTime := time.Unix(int64(last.Timestamp>>32), 0)
stats := &OplogStats{
TimeDiff: int64(lastTime.Sub(firstTime).Seconds()),
}
return stats, nil
}
// The "oplog.rs" collection is stored on all replica set members.
//
// The "oplog.$main" collection is created on the master node of a
// master-slave replicated deployment. As of MongoDB 3.2, master-slave
// replication has been deprecated.
func (s *Server) gatherOplogStats() (*OplogStats, error) {
stats, err := s.getOplogReplLag("oplog.rs")
if err == nil {
return stats, nil
}
return s.getOplogReplLag("oplog.$main")
}
func (s *Server) gatherCollectionStats(colStatsDbs []string) (*ColStats, error) {
names, err := s.Session.DatabaseNames()
if err != nil {
return nil, err
}
results := &ColStats{}
for _, dbName := range names {
if stringInSlice(dbName, colStatsDbs) || len(colStatsDbs) == 0 {
var colls []string
colls, err = s.Session.DB(dbName).CollectionNames()
if err != nil {
s.Log.Errorf("Error getting collection names: %s", err.Error())
continue
}
for _, colName := range colls {
colStatLine := &ColStatsData{}
err = s.Session.DB(dbName).Run(bson.D{
{
Name: "collStats",
Value: colName,
},
}, colStatLine)
if err != nil {
s.authLog(fmt.Errorf("error getting col stats from %q: %v", colName, err))
continue
}
collection := &Collection{
Name: colName,
DbName: dbName,
ColStatsData: colStatLine,
}
results.Collections = append(results.Collections, *collection)
}
}
}
return results, nil
}
func (s *Server) gatherData(acc telegraf.Accumulator, gatherClusterStatus bool, gatherDbStats bool, gatherColStats bool, colStatsDbs []string) error {
s.Session.SetMode(mgo.Eventual, true)
s.Session.SetSocketTimeout(0)
serverStatus, err := s.gatherServerStatus()
if err != nil {
return err
}
// Get replica set status, an error indicates that the server is not a
// member of a replica set.
replSetStatus, err := s.gatherReplSetStatus()
if err != nil {
s.Log.Debugf("Unable to gather replica set status: %s", err.Error())
}
// Gather the oplog if we are a member of a replica set. Non-replica set
// members do not have the oplog collections.
var oplogStats *OplogStats
if replSetStatus != nil {
oplogStats, err = s.gatherOplogStats()
if err != nil {
s.authLog(fmt.Errorf("Unable to get oplog stats: %v", err))
}
}
var clusterStatus *ClusterStatus
if gatherClusterStatus {
status, err := s.gatherClusterStatus()
if err != nil {
s.Log.Debugf("Unable to gather cluster status: %s", err.Error())
}
clusterStatus = status
}
shardStats, err := s.gatherShardConnPoolStats()
if err != nil {
s.authLog(fmt.Errorf("unable to gather shard connection pool stats: %s", err.Error()))
}
var collectionStats *ColStats
if gatherColStats {
stats, err := s.gatherCollectionStats(colStatsDbs)
if err != nil {
return err
}
collectionStats = stats
}
dbStats := &DbStats{}
if gatherDbStats {
names, err := s.Session.DatabaseNames()
if err != nil {
return err
}
for _, name := range names {
db, err := s.gatherDBStats(name)
if err != nil {
s.Log.Debugf("Error getting db stats from %q: %s", name, err.Error())
}
dbStats.Dbs = append(dbStats.Dbs, *db)
}
}
result := &MongoStatus{
ServerStatus: serverStatus,
ReplSetStatus: replSetStatus,
ClusterStatus: clusterStatus,
DbStats: dbStats,
ColStats: collectionStats,
ShardStats: shardStats,
OplogStats: oplogStats,
}
result.SampleTime = time.Now()
if s.lastResult != nil && result != nil {
duration := result.SampleTime.Sub(s.lastResult.SampleTime)
durationInSeconds := int64(duration.Seconds())
if durationInSeconds == 0 {
durationInSeconds = 1
}
data := NewMongodbData(
NewStatLine(*s.lastResult, *result, s.Url.Host, true, durationInSeconds),
s.getDefaultTags(),
)
data.AddDefaultStats()
data.AddDbStats()
data.AddColStats()
data.AddShardHostStats()
data.flush(acc)
}
s.lastResult = result
return nil
}
func stringInSlice(a string, list []string) bool {
for _, b := range list {
if b == a {
return true
}
}
return false
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,171 @@
# Prometheus Input Plugin
The prometheus input plugin gathers metrics from HTTP servers exposing metrics
in Prometheus format.
### Configuration:
```toml
# Read metrics from one or many prometheus clients
[[inputs.prometheus]]
## An array of urls to scrape metrics from.
urls = ["http://localhost:9100/metrics"]
## Metric version controls the mapping from Prometheus metrics into
## Telegraf metrics. When using the prometheus_client output, use the same
## value in both plugins to ensure metrics are round-tripped without
## modification.
##
## example: metric_version = 1; deprecated in 1.13
## metric_version = 2; recommended version
# metric_version = 1
## An array of Kubernetes services to scrape metrics from.
# kubernetes_services = ["http://my-service-dns.my-namespace:9100/metrics"]
## Kubernetes config file to create client from.
# kube_config = "/path/to/kubernetes.config"
## Scrape Kubernetes pods for the following prometheus annotations:
## - prometheus.io/scrape: Enable scraping for this pod
## - prometheus.io/scheme: If the metrics endpoint is secured then you will need to
## set this to `https` & most likely set the tls config.
## - prometheus.io/path: If the metrics path is not /metrics, define it with this annotation.
## - prometheus.io/port: If port is not 9102 use this annotation
# monitor_kubernetes_pods = true
## Restricts Kubernetes monitoring to a single namespace
## ex: monitor_kubernetes_pods_namespace = "default"
# monitor_kubernetes_pods_namespace = ""
# label selector to target pods which have the label
# kubernetes_label_selector = "env=dev,app=nginx"
# field selector to target pods
# eg. To scrape pods on a specific node
# kubernetes_field_selector = "spec.nodeName=$HOSTNAME"
## Use bearer token for authorization. ('bearer_token' takes priority)
# bearer_token = "/path/to/bearer/token"
## OR
# bearer_token_string = "abc_123"
## HTTP Basic Authentication username and password. ('bearer_token' and
## 'bearer_token_string' take priority)
# username = ""
# password = ""
## Specify timeout duration for slower prometheus clients (default is 3s)
# response_timeout = "3s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
```
`urls` can contain a unix socket as well. If a different path is required (default is `/metrics` for both http[s] and unix) for a unix socket, add `path` as a query parameter as follows: `unix:///var/run/prometheus.sock?path=/custom/metrics`
#### Kubernetes Service Discovery
URLs listed in the `kubernetes_services` parameter will be expanded
by looking up all A records assigned to the hostname as described in
[Kubernetes DNS service discovery](https://kubernetes.io/docs/concepts/services-networking/service/#dns).
This method can be used to locate all
[Kubernetes headless services](https://kubernetes.io/docs/concepts/services-networking/service/#headless-services).
#### Kubernetes scraping
Enabling this option will allow the plugin to scrape for prometheus annotation on Kubernetes
pods. Currently, you can run this plugin in your kubernetes cluster, or we use the kubeconfig
file to determine where to monitor.
Currently the following annotation are supported:
* `prometheus.io/scrape` Enable scraping for this pod.
* `prometheus.io/scheme` If the metrics endpoint is secured then you will need to set this to `https` & most likely set the tls config. (default 'http')
* `prometheus.io/path` Override the path for the metrics endpoint on the service. (default '/metrics')
* `prometheus.io/port` Used to override the port. (default 9102)
Using the `monitor_kubernetes_pods_namespace` option allows you to limit which pods you are scraping.
#### Bearer Token
If set, the file specified by the `bearer_token` parameter will be read on
each interval and its contents will be appended to the Bearer string in the
Authorization header.
### Usage for Caddy HTTP server
If you want to monitor Caddy, you need to use Caddy with its Prometheus plugin:
* Download Caddy+Prometheus plugin [here](https://caddyserver.com/download/linux/amd64?plugins=http.prometheus)
* Add the `prometheus` directive in your `CaddyFile`
* Restart Caddy
* Configure Telegraf to fetch metrics on it:
```toml
[[inputs.prometheus]]
# ## An array of urls to scrape metrics from.
urls = ["http://localhost:9180/metrics"]
```
> This is the default URL where Caddy Prometheus plugin will send data.
> For more details, please read the [Caddy Prometheus documentation](https://github.com/miekg/caddy-prometheus/blob/master/README.md).
### Metrics:
Measurement names are based on the Metric Family and tags are created for each
label. The value is added to a field named based on the metric type.
All metrics receive the `url` tag indicating the related URL specified in the
Telegraf configuration. If using Kubernetes service discovery the `address`
tag is also added indicating the discovered ip address.
### Example Output:
**Source**
```
# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 7.4545e-05
go_gc_duration_seconds{quantile="0.25"} 7.6999e-05
go_gc_duration_seconds{quantile="0.5"} 0.000277935
go_gc_duration_seconds{quantile="0.75"} 0.000706591
go_gc_duration_seconds{quantile="1"} 0.000706591
go_gc_duration_seconds_sum 0.00113607
go_gc_duration_seconds_count 4
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 15
# HELP cpu_usage_user Telegraf collected metric
# TYPE cpu_usage_user gauge
cpu_usage_user{cpu="cpu0"} 1.4112903225816156
cpu_usage_user{cpu="cpu1"} 0.702106318955865
cpu_usage_user{cpu="cpu2"} 2.0161290322588776
cpu_usage_user{cpu="cpu3"} 1.5045135406226022
```
**Output**
```
go_gc_duration_seconds,url=http://example.org:9273/metrics 1=0.001336611,count=14,sum=0.004527551,0=0.000057965,0.25=0.000083812,0.5=0.000286537,0.75=0.000365303 1505776733000000000
go_goroutines,url=http://example.org:9273/metrics gauge=21 1505776695000000000
cpu_usage_user,cpu=cpu0,url=http://example.org:9273/metrics gauge=1.513622603430151 1505776751000000000
cpu_usage_user,cpu=cpu1,url=http://example.org:9273/metrics gauge=5.829145728641773 1505776751000000000
cpu_usage_user,cpu=cpu2,url=http://example.org:9273/metrics gauge=2.119071644805144 1505776751000000000
cpu_usage_user,cpu=cpu3,url=http://example.org:9273/metrics gauge=1.5228426395944945 1505776751000000000
```
**Output (when metric_version = 2)**
```
prometheus,quantile=1,url=http://example.org:9273/metrics go_gc_duration_seconds=0.005574303 1556075100000000000
prometheus,quantile=0.75,url=http://example.org:9273/metrics go_gc_duration_seconds=0.0001046 1556075100000000000
prometheus,quantile=0.5,url=http://example.org:9273/metrics go_gc_duration_seconds=0.0000719 1556075100000000000
prometheus,quantile=0.25,url=http://example.org:9273/metrics go_gc_duration_seconds=0.0000579 1556075100000000000
prometheus,quantile=0,url=http://example.org:9273/metrics go_gc_duration_seconds=0.0000349 1556075100000000000
prometheus,url=http://example.org:9273/metrics go_gc_duration_seconds_count=324,go_gc_duration_seconds_sum=0.091340353 1556075100000000000
prometheus,url=http://example.org:9273/metrics go_goroutines=15 1556075100000000000
prometheus,cpu=cpu0,url=http://example.org:9273/metrics cpu_usage_user=1.513622603430151 1505776751000000000
prometheus,cpu=cpu1,url=http://example.org:9273/metrics cpu_usage_user=5.829145728641773 1505776751000000000
prometheus,cpu=cpu2,url=http://example.org:9273/metrics cpu_usage_user=2.119071644805144 1505776751000000000
prometheus,cpu=cpu3,url=http://example.org:9273/metrics cpu_usage_user=1.5228426395944945 1505776751000000000
```

View File

@ -0,0 +1,241 @@
package prometheus
import (
"context"
"fmt"
"io/ioutil"
"log"
"net"
"net/url"
"os/user"
"path/filepath"
"sync"
"time"
"github.com/ericchiang/k8s"
corev1 "github.com/ericchiang/k8s/apis/core/v1"
"github.com/ghodss/yaml"
)
type payload struct {
eventype string
pod *corev1.Pod
}
// loadClient parses a kubeconfig from a file and returns a Kubernetes
// client. It does not support extensions or client auth providers.
func loadClient(kubeconfigPath string) (*k8s.Client, error) {
data, err := ioutil.ReadFile(kubeconfigPath)
if err != nil {
return nil, fmt.Errorf("failed reading '%s': %v", kubeconfigPath, err)
}
// Unmarshal YAML into a Kubernetes config object.
var config k8s.Config
if err := yaml.Unmarshal(data, &config); err != nil {
return nil, err
}
return k8s.NewClient(&config)
}
func (p *Prometheus) start(ctx context.Context) error {
client, err := k8s.NewInClusterClient()
if err != nil {
u, err := user.Current()
if err != nil {
return fmt.Errorf("Failed to get current user - %v", err)
}
configLocation := filepath.Join(u.HomeDir, ".kube/config")
if p.KubeConfig != "" {
configLocation = p.KubeConfig
}
client, err = loadClient(configLocation)
if err != nil {
return err
}
}
p.wg = sync.WaitGroup{}
p.wg.Add(1)
go func() {
defer p.wg.Done()
for {
select {
case <-ctx.Done():
return
case <-time.After(time.Second):
err := p.watch(ctx, client)
if err != nil {
p.Log.Errorf("Unable to watch resources: %s", err.Error())
}
}
}
}()
return nil
}
// An edge case exists if a pod goes offline at the same time a new pod is created
// (without the scrape annotations). K8s may re-assign the old pod ip to the non-scrape
// pod, causing errors in the logs. This is only true if the pod going offline is not
// directed to do so by K8s.
func (p *Prometheus) watch(ctx context.Context, client *k8s.Client) error {
selectors := podSelector(p)
pod := &corev1.Pod{}
watcher, err := client.Watch(ctx, p.PodNamespace, &corev1.Pod{}, selectors...)
if err != nil {
return err
}
defer watcher.Close()
for {
select {
case <-ctx.Done():
return nil
default:
pod = &corev1.Pod{}
// An error here means we need to reconnect the watcher.
eventType, err := watcher.Next(pod)
if err != nil {
return err
}
// If the pod is not "ready", there will be no ip associated with it.
if pod.GetMetadata().GetAnnotations()["prometheus.io/scrape"] != "true" ||
!podReady(pod.Status.GetContainerStatuses()) {
continue
}
switch eventType {
case k8s.EventAdded:
registerPod(pod, p)
case k8s.EventModified:
// To avoid multiple actions for each event, unregister on the first event
// in the delete sequence, when the containers are still "ready".
if pod.Metadata.GetDeletionTimestamp() != nil {
unregisterPod(pod, p)
} else {
registerPod(pod, p)
}
}
}
}
}
func podReady(statuss []*corev1.ContainerStatus) bool {
if len(statuss) == 0 {
return false
}
for _, cs := range statuss {
if !cs.GetReady() {
return false
}
}
return true
}
func podSelector(p *Prometheus) []k8s.Option {
options := []k8s.Option{}
if len(p.KubernetesLabelSelector) > 0 {
options = append(options, k8s.QueryParam("labelSelector", p.KubernetesLabelSelector))
}
if len(p.KubernetesFieldSelector) > 0 {
options = append(options, k8s.QueryParam("fieldSelector", p.KubernetesFieldSelector))
}
return options
}
func registerPod(pod *corev1.Pod, p *Prometheus) {
if p.kubernetesPods == nil {
p.kubernetesPods = map[string]URLAndAddress{}
}
targetURL := getScrapeURL(pod)
if targetURL == nil {
return
}
log.Printf("D! [inputs.prometheus] will scrape metrics from %q", *targetURL)
// add annotation as metrics tags
tags := pod.GetMetadata().GetAnnotations()
if tags == nil {
tags = map[string]string{}
}
tags["pod_name"] = pod.GetMetadata().GetName()
tags["namespace"] = pod.GetMetadata().GetNamespace()
// add labels as metrics tags
for k, v := range pod.GetMetadata().GetLabels() {
tags[k] = v
}
URL, err := url.Parse(*targetURL)
if err != nil {
log.Printf("E! [inputs.prometheus] could not parse URL %q: %s", *targetURL, err.Error())
return
}
podURL := p.AddressToURL(URL, URL.Hostname())
p.lock.Lock()
p.kubernetesPods[podURL.String()] = URLAndAddress{
URL: podURL,
Address: URL.Hostname(),
OriginalURL: URL,
Tags: tags,
}
p.lock.Unlock()
}
func getScrapeURL(pod *corev1.Pod) *string {
ip := pod.Status.GetPodIP()
if ip == "" {
// return as if scrape was disabled, we will be notified again once the pod
// has an IP
return nil
}
scheme := pod.GetMetadata().GetAnnotations()["prometheus.io/scheme"]
path := pod.GetMetadata().GetAnnotations()["prometheus.io/path"]
port := pod.GetMetadata().GetAnnotations()["prometheus.io/port"]
if scheme == "" {
scheme = "http"
}
if port == "" {
port = "9102"
}
if path == "" {
path = "/metrics"
}
u := &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(ip, port),
Path: path,
}
x := u.String()
return &x
}
func unregisterPod(pod *corev1.Pod, p *Prometheus) {
url := getScrapeURL(pod)
if url == nil {
return
}
log.Printf("D! [inputs.prometheus] registered a delete request for %q in namespace %q",
pod.GetMetadata().GetName(), pod.GetMetadata().GetNamespace())
p.lock.Lock()
defer p.lock.Unlock()
if _, ok := p.kubernetesPods[*url]; ok {
delete(p.kubernetesPods, *url)
log.Printf("D! [inputs.prometheus] will stop scraping for %q", *url)
}
}

View File

@ -0,0 +1,320 @@
package prometheus
// Parser inspired from
// https://github.com/prometheus/prom2json/blob/master/main.go
import (
"bufio"
"bytes"
"fmt"
"io"
"math"
"mime"
"net/http"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
"github.com/matttproud/golang_protobuf_extensions/pbutil"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/common/expfmt"
)
// Parse returns a slice of Metrics from a text representation of a
// metrics
func ParseV2(buf []byte, header http.Header) ([]telegraf.Metric, error) {
var metrics []telegraf.Metric
var parser expfmt.TextParser
// parse even if the buffer begins with a newline
buf = bytes.TrimPrefix(buf, []byte("\n"))
// Read raw data
buffer := bytes.NewBuffer(buf)
reader := bufio.NewReader(buffer)
mediatype, params, err := mime.ParseMediaType(header.Get("Content-Type"))
// Prepare output
metricFamilies := make(map[string]*dto.MetricFamily)
if err == nil && mediatype == "application/vnd.google.protobuf" &&
params["encoding"] == "delimited" &&
params["proto"] == "io.prometheus.client.MetricFamily" {
for {
mf := &dto.MetricFamily{}
if _, ierr := pbutil.ReadDelimited(reader, mf); ierr != nil {
if ierr == io.EOF {
break
}
return nil, fmt.Errorf("reading metric family protocol buffer failed: %s", ierr)
}
metricFamilies[mf.GetName()] = mf
}
} else {
metricFamilies, err = parser.TextToMetricFamilies(reader)
if err != nil {
return nil, fmt.Errorf("reading text format failed: %s", err)
}
}
// make sure all metrics have a consistent timestamp so that metrics don't straddle two different seconds
now := time.Now()
// read metrics
for metricName, mf := range metricFamilies {
for _, m := range mf.Metric {
// reading tags
tags := makeLabels(m)
if mf.GetType() == dto.MetricType_SUMMARY {
// summary metric
telegrafMetrics := makeQuantilesV2(m, tags, metricName, mf.GetType(), now)
metrics = append(metrics, telegrafMetrics...)
} else if mf.GetType() == dto.MetricType_HISTOGRAM {
// histogram metric
telegrafMetrics := makeBucketsV2(m, tags, metricName, mf.GetType(), now)
metrics = append(metrics, telegrafMetrics...)
} else {
// standard metric
// reading fields
fields := getNameAndValueV2(m, metricName)
// converting to telegraf metric
if len(fields) > 0 {
var t time.Time
if m.TimestampMs != nil && *m.TimestampMs > 0 {
t = time.Unix(0, *m.TimestampMs*1000000)
} else {
t = now
}
metric, err := metric.New("prometheus", tags, fields, t, valueType(mf.GetType()))
if err == nil {
metrics = append(metrics, metric)
}
}
}
}
}
return metrics, err
}
// Get Quantiles for summary metric & Buckets for histogram
func makeQuantilesV2(m *dto.Metric, tags map[string]string, metricName string, metricType dto.MetricType, now time.Time) []telegraf.Metric {
var metrics []telegraf.Metric
fields := make(map[string]interface{})
var t time.Time
if m.TimestampMs != nil && *m.TimestampMs > 0 {
t = time.Unix(0, *m.TimestampMs*1000000)
} else {
t = now
}
fields[metricName+"_count"] = float64(m.GetSummary().GetSampleCount())
fields[metricName+"_sum"] = float64(m.GetSummary().GetSampleSum())
met, err := metric.New("prometheus", tags, fields, t, valueType(metricType))
if err == nil {
metrics = append(metrics, met)
}
for _, q := range m.GetSummary().Quantile {
newTags := tags
fields = make(map[string]interface{})
newTags["quantile"] = fmt.Sprint(q.GetQuantile())
fields[metricName] = float64(q.GetValue())
quantileMetric, err := metric.New("prometheus", newTags, fields, t, valueType(metricType))
if err == nil {
metrics = append(metrics, quantileMetric)
}
}
return metrics
}
// Get Buckets from histogram metric
func makeBucketsV2(m *dto.Metric, tags map[string]string, metricName string, metricType dto.MetricType, now time.Time) []telegraf.Metric {
var metrics []telegraf.Metric
fields := make(map[string]interface{})
var t time.Time
if m.TimestampMs != nil && *m.TimestampMs > 0 {
t = time.Unix(0, *m.TimestampMs*1000000)
} else {
t = now
}
fields[metricName+"_count"] = float64(m.GetHistogram().GetSampleCount())
fields[metricName+"_sum"] = float64(m.GetHistogram().GetSampleSum())
met, err := metric.New("prometheus", tags, fields, t, valueType(metricType))
if err == nil {
metrics = append(metrics, met)
}
for _, b := range m.GetHistogram().Bucket {
newTags := tags
fields = make(map[string]interface{})
newTags["le"] = fmt.Sprint(b.GetUpperBound())
fields[metricName+"_bucket"] = float64(b.GetCumulativeCount())
histogramMetric, err := metric.New("prometheus", newTags, fields, t, valueType(metricType))
if err == nil {
metrics = append(metrics, histogramMetric)
}
}
return metrics
}
// Parse returns a slice of Metrics from a text representation of a
// metrics
func Parse(buf []byte, header http.Header) ([]telegraf.Metric, error) {
var metrics []telegraf.Metric
var parser expfmt.TextParser
// parse even if the buffer begins with a newline
buf = bytes.TrimPrefix(buf, []byte("\n"))
// Read raw data
buffer := bytes.NewBuffer(buf)
reader := bufio.NewReader(buffer)
mediatype, params, err := mime.ParseMediaType(header.Get("Content-Type"))
// Prepare output
metricFamilies := make(map[string]*dto.MetricFamily)
if err == nil && mediatype == "application/vnd.google.protobuf" &&
params["encoding"] == "delimited" &&
params["proto"] == "io.prometheus.client.MetricFamily" {
for {
mf := &dto.MetricFamily{}
if _, ierr := pbutil.ReadDelimited(reader, mf); ierr != nil {
if ierr == io.EOF {
break
}
return nil, fmt.Errorf("reading metric family protocol buffer failed: %s", ierr)
}
metricFamilies[mf.GetName()] = mf
}
} else {
metricFamilies, err = parser.TextToMetricFamilies(reader)
if err != nil {
return nil, fmt.Errorf("reading text format failed: %s", err)
}
}
// make sure all metrics have a consistent timestamp so that metrics don't straddle two different seconds
now := time.Now()
// read metrics
for metricName, mf := range metricFamilies {
for _, m := range mf.Metric {
// reading tags
tags := makeLabels(m)
// reading fields
var fields map[string]interface{}
if mf.GetType() == dto.MetricType_SUMMARY {
// summary metric
fields = makeQuantiles(m)
fields["count"] = float64(m.GetSummary().GetSampleCount())
fields["sum"] = float64(m.GetSummary().GetSampleSum())
} else if mf.GetType() == dto.MetricType_HISTOGRAM {
// histogram metric
fields = makeBuckets(m)
fields["count"] = float64(m.GetHistogram().GetSampleCount())
fields["sum"] = float64(m.GetHistogram().GetSampleSum())
} else {
// standard metric
fields = getNameAndValue(m)
}
// converting to telegraf metric
if len(fields) > 0 {
var t time.Time
if m.TimestampMs != nil && *m.TimestampMs > 0 {
t = time.Unix(0, *m.TimestampMs*1000000)
} else {
t = now
}
metric, err := metric.New(metricName, tags, fields, t, valueType(mf.GetType()))
if err == nil {
metrics = append(metrics, metric)
}
}
}
}
return metrics, err
}
func valueType(mt dto.MetricType) telegraf.ValueType {
switch mt {
case dto.MetricType_COUNTER:
return telegraf.Counter
case dto.MetricType_GAUGE:
return telegraf.Gauge
case dto.MetricType_SUMMARY:
return telegraf.Summary
case dto.MetricType_HISTOGRAM:
return telegraf.Histogram
default:
return telegraf.Untyped
}
}
// Get Quantiles from summary metric
func makeQuantiles(m *dto.Metric) map[string]interface{} {
fields := make(map[string]interface{})
for _, q := range m.GetSummary().Quantile {
if !math.IsNaN(q.GetValue()) {
fields[fmt.Sprint(q.GetQuantile())] = float64(q.GetValue())
}
}
return fields
}
// Get Buckets from histogram metric
func makeBuckets(m *dto.Metric) map[string]interface{} {
fields := make(map[string]interface{})
for _, b := range m.GetHistogram().Bucket {
fields[fmt.Sprint(b.GetUpperBound())] = float64(b.GetCumulativeCount())
}
return fields
}
// Get labels from metric
func makeLabels(m *dto.Metric) map[string]string {
result := map[string]string{}
for _, lp := range m.Label {
result[lp.GetName()] = lp.GetValue()
}
return result
}
// Get name and value from metric
func getNameAndValue(m *dto.Metric) map[string]interface{} {
fields := make(map[string]interface{})
if m.Gauge != nil {
if !math.IsNaN(m.GetGauge().GetValue()) {
fields["gauge"] = float64(m.GetGauge().GetValue())
}
} else if m.Counter != nil {
if !math.IsNaN(m.GetCounter().GetValue()) {
fields["counter"] = float64(m.GetCounter().GetValue())
}
} else if m.Untyped != nil {
if !math.IsNaN(m.GetUntyped().GetValue()) {
fields["value"] = float64(m.GetUntyped().GetValue())
}
}
return fields
}
// Get name and value from metric
func getNameAndValueV2(m *dto.Metric, metricName string) map[string]interface{} {
fields := make(map[string]interface{})
if m.Gauge != nil {
if !math.IsNaN(m.GetGauge().GetValue()) {
fields[metricName] = float64(m.GetGauge().GetValue())
}
} else if m.Counter != nil {
if !math.IsNaN(m.GetCounter().GetValue()) {
fields[metricName] = float64(m.GetCounter().GetValue())
}
} else if m.Untyped != nil {
if !math.IsNaN(m.GetUntyped().GetValue()) {
fields[metricName] = float64(m.GetUntyped().GetValue())
}
}
return fields
}

View File

@ -0,0 +1,398 @@
package prometheus
import (
"context"
"errors"
"fmt"
"io/ioutil"
"net"
"net/http"
"net/url"
"sync"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/plugins/common/tls"
"github.com/influxdata/telegraf/plugins/inputs"
)
const acceptHeader = `application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.7,text/plain;version=0.0.4;q=0.3,*/*;q=0.1`
type Prometheus struct {
// An array of urls to scrape metrics from.
URLs []string `toml:"urls"`
// An array of Kubernetes services to scrape metrics from.
KubernetesServices []string
// Location of kubernetes config file
KubeConfig string
// Label Selector/s for Kubernetes
KubernetesLabelSelector string `toml:"kubernetes_label_selector"`
// Field Selector/s for Kubernetes
KubernetesFieldSelector string `toml:"kubernetes_field_selector"`
// Bearer Token authorization file path
BearerToken string `toml:"bearer_token"`
BearerTokenString string `toml:"bearer_token_string"`
// Basic authentication credentials
Username string `toml:"username"`
Password string `toml:"password"`
ResponseTimeout internal.Duration `toml:"response_timeout"`
MetricVersion int `toml:"metric_version"`
URLTag string `toml:"url_tag"`
tls.ClientConfig
Log telegraf.Logger
client *http.Client
// Should we scrape Kubernetes services for prometheus annotations
MonitorPods bool `toml:"monitor_kubernetes_pods"`
PodNamespace string `toml:"monitor_kubernetes_pods_namespace"`
lock sync.Mutex
kubernetesPods map[string]URLAndAddress
cancel context.CancelFunc
wg sync.WaitGroup
}
var sampleConfig = `
## An array of urls to scrape metrics from.
urls = ["http://localhost:9100/metrics"]
## Metric version controls the mapping from Prometheus metrics into
## Telegraf metrics. When using the prometheus_client output, use the same
## value in both plugins to ensure metrics are round-tripped without
## modification.
##
## example: metric_version = 1; deprecated in 1.13
## metric_version = 2; recommended version
# metric_version = 1
## Url tag name (tag containing scrapped url. optional, default is "url")
# url_tag = "scrapeUrl"
## An array of Kubernetes services to scrape metrics from.
# kubernetes_services = ["http://my-service-dns.my-namespace:9100/metrics"]
## Kubernetes config file to create client from.
# kube_config = "/path/to/kubernetes.config"
## Scrape Kubernetes pods for the following prometheus annotations:
## - prometheus.io/scrape: Enable scraping for this pod
## - prometheus.io/scheme: If the metrics endpoint is secured then you will need to
## set this to 'https' & most likely set the tls config.
## - prometheus.io/path: If the metrics path is not /metrics, define it with this annotation.
## - prometheus.io/port: If port is not 9102 use this annotation
# monitor_kubernetes_pods = true
## Restricts Kubernetes monitoring to a single namespace
## ex: monitor_kubernetes_pods_namespace = "default"
# monitor_kubernetes_pods_namespace = ""
# label selector to target pods which have the label
# kubernetes_label_selector = "env=dev,app=nginx"
# field selector to target pods
# eg. To scrape pods on a specific node
# kubernetes_field_selector = "spec.nodeName=$HOSTNAME"
## Use bearer token for authorization. ('bearer_token' takes priority)
# bearer_token = "/path/to/bearer/token"
## OR
# bearer_token_string = "abc_123"
## HTTP Basic Authentication username and password. ('bearer_token' and
## 'bearer_token_string' take priority)
# username = ""
# password = ""
## Specify timeout duration for slower prometheus clients (default is 3s)
# response_timeout = "3s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
`
func (p *Prometheus) SampleConfig() string {
return sampleConfig
}
func (p *Prometheus) Description() string {
return "Read metrics from one or many prometheus clients"
}
func (p *Prometheus) Init() error {
if p.MetricVersion != 2 {
p.Log.Warnf("Use of deprecated configuration: 'metric_version = 1'; please update to 'metric_version = 2'")
}
return nil
}
var ErrProtocolError = errors.New("prometheus protocol error")
func (p *Prometheus) AddressToURL(u *url.URL, address string) *url.URL {
host := address
if u.Port() != "" {
host = address + ":" + u.Port()
}
reconstructedURL := &url.URL{
Scheme: u.Scheme,
Opaque: u.Opaque,
User: u.User,
Path: u.Path,
RawPath: u.RawPath,
ForceQuery: u.ForceQuery,
RawQuery: u.RawQuery,
Fragment: u.Fragment,
Host: host,
}
return reconstructedURL
}
type URLAndAddress struct {
OriginalURL *url.URL
URL *url.URL
Address string
Tags map[string]string
}
func (p *Prometheus) GetAllURLs() (map[string]URLAndAddress, error) {
allURLs := make(map[string]URLAndAddress, 0)
for _, u := range p.URLs {
URL, err := url.Parse(u)
if err != nil {
p.Log.Errorf("Could not parse %q, skipping it. Error: %s", u, err.Error())
continue
}
allURLs[URL.String()] = URLAndAddress{URL: URL, OriginalURL: URL}
}
p.lock.Lock()
defer p.lock.Unlock()
// loop through all pods scraped via the prometheus annotation on the pods
for k, v := range p.kubernetesPods {
allURLs[k] = v
}
for _, service := range p.KubernetesServices {
URL, err := url.Parse(service)
if err != nil {
return nil, err
}
resolvedAddresses, err := net.LookupHost(URL.Hostname())
if err != nil {
p.Log.Errorf("Could not resolve %q, skipping it. Error: %s", URL.Host, err.Error())
continue
}
for _, resolved := range resolvedAddresses {
serviceURL := p.AddressToURL(URL, resolved)
allURLs[serviceURL.String()] = URLAndAddress{
URL: serviceURL,
Address: resolved,
OriginalURL: URL,
}
}
}
return allURLs, nil
}
// Reads stats from all configured servers accumulates stats.
// Returns one of the errors encountered while gather stats (if any).
func (p *Prometheus) Gather(acc telegraf.Accumulator) error {
if p.client == nil {
client, err := p.createHTTPClient()
if err != nil {
return err
}
p.client = client
}
var wg sync.WaitGroup
allURLs, err := p.GetAllURLs()
if err != nil {
return err
}
for _, URL := range allURLs {
wg.Add(1)
go func(serviceURL URLAndAddress) {
defer wg.Done()
acc.AddError(p.gatherURL(serviceURL, acc))
}(URL)
}
wg.Wait()
return nil
}
func (p *Prometheus) createHTTPClient() (*http.Client, error) {
tlsCfg, err := p.ClientConfig.TLSConfig()
if err != nil {
return nil, err
}
client := &http.Client{
Transport: &http.Transport{
TLSClientConfig: tlsCfg,
DisableKeepAlives: true,
},
Timeout: p.ResponseTimeout.Duration,
}
return client, nil
}
func (p *Prometheus) gatherURL(u URLAndAddress, acc telegraf.Accumulator) error {
var req *http.Request
var err error
var uClient *http.Client
var metrics []telegraf.Metric
if u.URL.Scheme == "unix" {
path := u.URL.Query().Get("path")
if path == "" {
path = "/metrics"
}
addr := "http://localhost" + path
req, err = http.NewRequest("GET", addr, nil)
if err != nil {
return fmt.Errorf("unable to create new request '%s': %s", addr, err)
}
// ignore error because it's been handled before getting here
tlsCfg, _ := p.ClientConfig.TLSConfig()
uClient = &http.Client{
Transport: &http.Transport{
TLSClientConfig: tlsCfg,
DisableKeepAlives: true,
Dial: func(network, addr string) (net.Conn, error) {
c, err := net.Dial("unix", u.URL.Path)
return c, err
},
},
Timeout: p.ResponseTimeout.Duration,
}
} else {
if u.URL.Path == "" {
u.URL.Path = "/metrics"
}
req, err = http.NewRequest("GET", u.URL.String(), nil)
if err != nil {
return fmt.Errorf("unable to create new request '%s': %s", u.URL.String(), err)
}
}
req.Header.Add("Accept", acceptHeader)
if p.BearerToken != "" {
token, err := ioutil.ReadFile(p.BearerToken)
if err != nil {
return err
}
req.Header.Set("Authorization", "Bearer "+string(token))
} else if p.BearerTokenString != "" {
req.Header.Set("Authorization", "Bearer "+p.BearerTokenString)
} else if p.Username != "" || p.Password != "" {
req.SetBasicAuth(p.Username, p.Password)
}
var resp *http.Response
if u.URL.Scheme != "unix" {
resp, err = p.client.Do(req)
} else {
resp, err = uClient.Do(req)
}
if err != nil {
return fmt.Errorf("error making HTTP request to %s: %s", u.URL, err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("%s returned HTTP status %s", u.URL, resp.Status)
}
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("error reading body: %s", err)
}
if p.MetricVersion == 2 {
metrics, err = ParseV2(body, resp.Header)
} else {
metrics, err = Parse(body, resp.Header)
}
if err != nil {
return fmt.Errorf("error reading metrics for %s: %s",
u.URL, err)
}
for _, metric := range metrics {
tags := metric.Tags()
// strip user and password from URL
u.OriginalURL.User = nil
if p.URLTag != "" {
tags[p.URLTag] = u.OriginalURL.String()
}
if u.Address != "" {
tags["address"] = u.Address
}
for k, v := range u.Tags {
tags[k] = v
}
switch metric.Type() {
case telegraf.Counter:
acc.AddCounter(metric.Name(), metric.Fields(), tags, metric.Time())
case telegraf.Gauge:
acc.AddGauge(metric.Name(), metric.Fields(), tags, metric.Time())
case telegraf.Summary:
acc.AddSummary(metric.Name(), metric.Fields(), tags, metric.Time())
case telegraf.Histogram:
acc.AddHistogram(metric.Name(), metric.Fields(), tags, metric.Time())
default:
acc.AddFields(metric.Name(), metric.Fields(), tags, metric.Time())
}
}
return nil
}
// Start will start the Kubernetes scraping if enabled in the configuration
func (p *Prometheus) Start(a telegraf.Accumulator) error {
if p.MonitorPods {
var ctx context.Context
ctx, p.cancel = context.WithCancel(context.Background())
return p.start(ctx)
}
return nil
}
func (p *Prometheus) Stop() {
if p.MonitorPods {
p.cancel()
}
p.wg.Wait()
}
func init() {
inputs.Add("prometheus", func() telegraf.Input {
return &Prometheus{
ResponseTimeout: internal.Duration{Duration: time.Second * 3},
kubernetesPods: map[string]URLAndAddress{},
URLTag: "url",
}
})
}

View File

@ -1,744 +0,0 @@
package testutil
import (
"encoding/json"
"fmt"
"reflect"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/influxdata/telegraf"
"github.com/stretchr/testify/assert"
)
var (
lastID uint64
)
func newTrackingID() telegraf.TrackingID {
id := atomic.AddUint64(&lastID, 1)
return telegraf.TrackingID(id)
}
// Metric defines a single point measurement
type Metric struct {
Measurement string
Tags map[string]string
Fields map[string]interface{}
Time time.Time
Type telegraf.ValueType
}
func (p *Metric) String() string {
return fmt.Sprintf("%s %v %v", p.Measurement, p.Tags, p.Fields)
}
// Accumulator defines a mocked out accumulator
type Accumulator struct {
sync.Mutex
*sync.Cond
Metrics []*Metric
nMetrics uint64
Discard bool
Errors []error
debug bool
delivered chan telegraf.DeliveryInfo
TimeFunc func() time.Time
}
func (a *Accumulator) NMetrics() uint64 {
return atomic.LoadUint64(&a.nMetrics)
}
func (a *Accumulator) GetTelegrafMetrics() []telegraf.Metric {
metrics := []telegraf.Metric{}
for _, m := range a.Metrics {
metrics = append(metrics, FromTestMetric(m))
}
return metrics
}
func (a *Accumulator) FirstError() error {
if len(a.Errors) == 0 {
return nil
}
return a.Errors[0]
}
func (a *Accumulator) ClearMetrics() {
a.Lock()
defer a.Unlock()
atomic.StoreUint64(&a.nMetrics, 0)
a.Metrics = make([]*Metric, 0)
}
func (a *Accumulator) addFields(
measurement string,
tags map[string]string,
fields map[string]interface{},
tp telegraf.ValueType,
timestamp ...time.Time,
) {
a.Lock()
defer a.Unlock()
atomic.AddUint64(&a.nMetrics, 1)
if a.Cond != nil {
a.Cond.Broadcast()
}
if a.Discard {
return
}
if len(fields) == 0 {
return
}
tagsCopy := map[string]string{}
for k, v := range tags {
tagsCopy[k] = v
}
fieldsCopy := map[string]interface{}{}
for k, v := range fields {
fieldsCopy[k] = v
}
var t time.Time
if len(timestamp) > 0 {
t = timestamp[0]
} else {
t = time.Now()
if a.TimeFunc == nil {
t = time.Now()
} else {
t = a.TimeFunc()
}
}
if a.debug {
pretty, _ := json.MarshalIndent(fields, "", " ")
prettyTags, _ := json.MarshalIndent(tags, "", " ")
msg := fmt.Sprintf("Adding Measurement [%s]\nFields:%s\nTags:%s\n",
measurement, string(pretty), string(prettyTags))
fmt.Print(msg)
}
p := &Metric{
Measurement: measurement,
Fields: fieldsCopy,
Tags: tagsCopy,
Time: t,
Type: tp,
}
a.Metrics = append(a.Metrics, p)
}
// AddFields adds a measurement point with a specified timestamp.
func (a *Accumulator) AddFields(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Untyped, timestamp...)
}
func (a *Accumulator) AddCounter(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Counter, timestamp...)
}
func (a *Accumulator) AddGauge(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Gauge, timestamp...)
}
func (a *Accumulator) AddMetrics(metrics []telegraf.Metric) {
for _, m := range metrics {
a.addFields(m.Name(), m.Tags(), m.Fields(), m.Type(), m.Time())
}
}
func (a *Accumulator) AddSummary(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Summary, timestamp...)
}
func (a *Accumulator) AddHistogram(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Histogram, timestamp...)
}
func (a *Accumulator) AddMetric(m telegraf.Metric) {
a.addFields(m.Name(), m.Tags(), m.Fields(), m.Type(), m.Time())
}
func (a *Accumulator) WithTracking(maxTracked int) telegraf.TrackingAccumulator {
return a
}
func (a *Accumulator) AddTrackingMetric(m telegraf.Metric) telegraf.TrackingID {
a.AddMetric(m)
return newTrackingID()
}
func (a *Accumulator) AddTrackingMetricGroup(group []telegraf.Metric) telegraf.TrackingID {
for _, m := range group {
a.AddMetric(m)
}
return newTrackingID()
}
func (a *Accumulator) Delivered() <-chan telegraf.DeliveryInfo {
a.Lock()
if a.delivered == nil {
a.delivered = make(chan telegraf.DeliveryInfo)
}
a.Unlock()
return a.delivered
}
// AddError appends the given error to Accumulator.Errors.
func (a *Accumulator) AddError(err error) {
if err == nil {
return
}
a.Lock()
a.Errors = append(a.Errors, err)
if a.Cond != nil {
a.Cond.Broadcast()
}
a.Unlock()
}
func (a *Accumulator) SetPrecision(precision time.Duration) {
return
}
func (a *Accumulator) DisablePrecision() {
return
}
func (a *Accumulator) Debug() bool {
// stub for implementing Accumulator interface.
return a.debug
}
func (a *Accumulator) SetDebug(debug bool) {
// stub for implementing Accumulator interface.
a.debug = debug
}
// Get gets the specified measurement point from the accumulator
func (a *Accumulator) Get(measurement string) (*Metric, bool) {
for _, p := range a.Metrics {
if p.Measurement == measurement {
return p, true
}
}
return nil, false
}
func (a *Accumulator) HasTag(measurement string, key string) bool {
for _, p := range a.Metrics {
if p.Measurement == measurement {
_, ok := p.Tags[key]
return ok
}
}
return false
}
func (a *Accumulator) TagSetValue(measurement string, key string) string {
for _, p := range a.Metrics {
if p.Measurement == measurement {
v, ok := p.Tags[key]
if ok {
return v
}
}
}
return ""
}
func (a *Accumulator) TagValue(measurement string, key string) string {
for _, p := range a.Metrics {
if p.Measurement == measurement {
v, ok := p.Tags[key]
if !ok {
return ""
}
return v
}
}
return ""
}
// Calls the given Gather function and returns the first error found.
func (a *Accumulator) GatherError(gf func(telegraf.Accumulator) error) error {
if err := gf(a); err != nil {
return err
}
if len(a.Errors) > 0 {
return a.Errors[0]
}
return nil
}
// NFields returns the total number of fields in the accumulator, across all
// measurements
func (a *Accumulator) NFields() int {
a.Lock()
defer a.Unlock()
counter := 0
for _, pt := range a.Metrics {
for range pt.Fields {
counter++
}
}
return counter
}
// Wait waits for the given number of metrics to be added to the accumulator.
func (a *Accumulator) Wait(n int) {
a.Lock()
defer a.Unlock()
if a.Cond == nil {
a.Cond = sync.NewCond(&a.Mutex)
}
for int(a.NMetrics()) < n {
a.Cond.Wait()
}
}
// WaitError waits for the given number of errors to be added to the accumulator.
func (a *Accumulator) WaitError(n int) {
a.Lock()
if a.Cond == nil {
a.Cond = sync.NewCond(&a.Mutex)
}
for len(a.Errors) < n {
a.Cond.Wait()
}
a.Unlock()
}
func (a *Accumulator) AssertContainsTaggedFields(
t *testing.T,
measurement string,
fields map[string]interface{},
tags map[string]string,
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
if p.Measurement == measurement && reflect.DeepEqual(fields, p.Fields) {
return
}
}
// We've failed. spit out some debug logging
for _, p := range a.Metrics {
if p.Measurement == measurement {
t.Log("measurement", p.Measurement, "tags", p.Tags, "fields", p.Fields)
}
}
msg := fmt.Sprintf("unknown measurement %q with tags %v", measurement, tags)
assert.Fail(t, msg)
}
func (a *Accumulator) AssertDoesNotContainsTaggedFields(
t *testing.T,
measurement string,
fields map[string]interface{},
tags map[string]string,
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
if p.Measurement == measurement && reflect.DeepEqual(fields, p.Fields) {
msg := fmt.Sprintf(
"found measurement %s with tagged fields (tags %v) which should not be there",
measurement, tags)
assert.Fail(t, msg)
}
}
return
}
func (a *Accumulator) AssertContainsFields(
t *testing.T,
measurement string,
fields map[string]interface{},
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
assert.Equal(t, fields, p.Fields)
return
}
}
msg := fmt.Sprintf("unknown measurement %q", measurement)
assert.Fail(t, msg)
}
func (a *Accumulator) HasPoint(
measurement string,
tags map[string]string,
fieldKey string,
fieldValue interface{},
) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement != measurement {
continue
}
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
v, ok := p.Fields[fieldKey]
if ok && reflect.DeepEqual(v, fieldValue) {
return true
}
}
return false
}
func (a *Accumulator) AssertDoesNotContainMeasurement(t *testing.T, measurement string) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
msg := fmt.Sprintf("found unexpected measurement %s", measurement)
assert.Fail(t, msg)
}
}
}
// HasTimestamp returns true if the measurement has a matching Time value
func (a *Accumulator) HasTimestamp(measurement string, timestamp time.Time) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
return timestamp.Equal(p.Time)
}
}
return false
}
// HasField returns true if the given measurement has a field with the given
// name
func (a *Accumulator) HasField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
if _, ok := p.Fields[field]; ok {
return true
}
}
}
return false
}
// HasIntField returns true if the measurement has an Int value
func (a *Accumulator) HasIntField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int)
return ok
}
}
}
}
return false
}
// HasInt64Field returns true if the measurement has an Int64 value
func (a *Accumulator) HasInt64Field(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int64)
return ok
}
}
}
}
return false
}
// HasInt32Field returns true if the measurement has an Int value
func (a *Accumulator) HasInt32Field(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int32)
return ok
}
}
}
}
return false
}
// HasStringField returns true if the measurement has an String value
func (a *Accumulator) HasStringField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(string)
return ok
}
}
}
}
return false
}
// HasUIntField returns true if the measurement has a UInt value
func (a *Accumulator) HasUIntField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(uint64)
return ok
}
}
}
}
return false
}
// HasFloatField returns true if the given measurement has a float value
func (a *Accumulator) HasFloatField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(float64)
return ok
}
}
}
}
return false
}
// HasMeasurement returns true if the accumulator has a measurement with the
// given name
func (a *Accumulator) HasMeasurement(measurement string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
return true
}
}
return false
}
// IntField returns the int value of the given measurement and field or false.
func (a *Accumulator) IntField(measurement string, field string) (int, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int)
return v, ok
}
}
}
}
return 0, false
}
// Int64Field returns the int64 value of the given measurement and field or false.
func (a *Accumulator) Int64Field(measurement string, field string) (int64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int64)
return v, ok
}
}
}
}
return 0, false
}
// Uint64Field returns the int64 value of the given measurement and field or false.
func (a *Accumulator) Uint64Field(measurement string, field string) (uint64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(uint64)
return v, ok
}
}
}
}
return 0, false
}
// Int32Field returns the int32 value of the given measurement and field or false.
func (a *Accumulator) Int32Field(measurement string, field string) (int32, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int32)
return v, ok
}
}
}
}
return 0, false
}
// FloatField returns the float64 value of the given measurement and field or false.
func (a *Accumulator) FloatField(measurement string, field string) (float64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(float64)
return v, ok
}
}
}
}
return 0.0, false
}
// StringField returns the string value of the given measurement and field or false.
func (a *Accumulator) StringField(measurement string, field string) (string, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(string)
return v, ok
}
}
}
}
return "", false
}
// BoolField returns the bool value of the given measurement and field or false.
func (a *Accumulator) BoolField(measurement string, field string) (bool, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(bool)
return v, ok
}
}
}
}
return false, false
}
// NopAccumulator is used for benchmarking to isolate the plugin from the internal
// telegraf accumulator machinery.
type NopAccumulator struct{}
func (n *NopAccumulator) AddFields(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddGauge(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddCounter(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddSummary(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddHistogram(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddMetric(telegraf.Metric) {}
func (n *NopAccumulator) SetPrecision(precision time.Duration) {}
func (n *NopAccumulator) AddError(err error) {}
func (n *NopAccumulator) WithTracking(maxTracked int) telegraf.TrackingAccumulator { return nil }

View File

@ -1,54 +0,0 @@
package testutil
import (
"log"
"github.com/influxdata/telegraf"
)
var _ telegraf.Logger = &Logger{}
// Logger defines a logging structure for plugins.
type Logger struct {
Name string // Name is the plugin name, will be printed in the `[]`.
}
// Errorf logs an error message, patterned after log.Printf.
func (l Logger) Errorf(format string, args ...interface{}) {
log.Printf("E! ["+l.Name+"] "+format, args...)
}
// Error logs an error message, patterned after log.Print.
func (l Logger) Error(args ...interface{}) {
log.Print(append([]interface{}{"E! [" + l.Name + "] "}, args...)...)
}
// Debugf logs a debug message, patterned after log.Printf.
func (l Logger) Debugf(format string, args ...interface{}) {
log.Printf("D! ["+l.Name+"] "+format, args...)
}
// Debug logs a debug message, patterned after log.Print.
func (l Logger) Debug(args ...interface{}) {
log.Print(append([]interface{}{"D! [" + l.Name + "] "}, args...)...)
}
// Warnf logs a warning message, patterned after log.Printf.
func (l Logger) Warnf(format string, args ...interface{}) {
log.Printf("W! ["+l.Name+"] "+format, args...)
}
// Warn logs a warning message, patterned after log.Print.
func (l Logger) Warn(args ...interface{}) {
log.Print(append([]interface{}{"W! [" + l.Name + "] "}, args...)...)
}
// Infof logs an information message, patterned after log.Printf.
func (l Logger) Infof(format string, args ...interface{}) {
log.Printf("I! ["+l.Name+"] "+format, args...)
}
// Info logs an information message, patterned after log.Print.
func (l Logger) Info(args ...interface{}) {
log.Print(append([]interface{}{"I! [" + l.Name + "] "}, args...)...)
}

View File

@ -1,205 +0,0 @@
package testutil
import (
"reflect"
"sort"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
)
type metricDiff struct {
Measurement string
Tags []*telegraf.Tag
Fields []*telegraf.Field
Type telegraf.ValueType
Time time.Time
}
func lessFunc(lhs, rhs *metricDiff) bool {
if lhs.Measurement != rhs.Measurement {
return lhs.Measurement < rhs.Measurement
}
for i := 0; ; i++ {
if i >= len(lhs.Tags) && i >= len(rhs.Tags) {
break
} else if i >= len(lhs.Tags) {
return true
} else if i >= len(rhs.Tags) {
return false
}
if lhs.Tags[i].Key != rhs.Tags[i].Key {
return lhs.Tags[i].Key < rhs.Tags[i].Key
}
if lhs.Tags[i].Value != rhs.Tags[i].Value {
return lhs.Tags[i].Value < rhs.Tags[i].Value
}
}
for i := 0; ; i++ {
if i >= len(lhs.Fields) && i >= len(rhs.Fields) {
break
} else if i >= len(lhs.Fields) {
return true
} else if i >= len(rhs.Fields) {
return false
}
if lhs.Fields[i].Key != rhs.Fields[i].Key {
return lhs.Fields[i].Key < rhs.Fields[i].Key
}
if lhs.Fields[i].Value != rhs.Fields[i].Value {
ltype := reflect.TypeOf(lhs.Fields[i].Value)
rtype := reflect.TypeOf(lhs.Fields[i].Value)
if ltype.Kind() != rtype.Kind() {
return ltype.Kind() < rtype.Kind()
}
switch v := lhs.Fields[i].Value.(type) {
case int64:
return v < lhs.Fields[i].Value.(int64)
case uint64:
return v < lhs.Fields[i].Value.(uint64)
case float64:
return v < lhs.Fields[i].Value.(float64)
case string:
return v < lhs.Fields[i].Value.(string)
case bool:
return !v
default:
panic("unknown type")
}
}
}
if lhs.Type != rhs.Type {
return lhs.Type < rhs.Type
}
if lhs.Time.UnixNano() != rhs.Time.UnixNano() {
return lhs.Time.UnixNano() < rhs.Time.UnixNano()
}
return false
}
func newMetricDiff(metric telegraf.Metric) *metricDiff {
if metric == nil {
return nil
}
m := &metricDiff{}
m.Measurement = metric.Name()
for _, tag := range metric.TagList() {
m.Tags = append(m.Tags, tag)
}
sort.Slice(m.Tags, func(i, j int) bool {
return m.Tags[i].Key < m.Tags[j].Key
})
for _, field := range metric.FieldList() {
m.Fields = append(m.Fields, field)
}
sort.Slice(m.Fields, func(i, j int) bool {
return m.Fields[i].Key < m.Fields[j].Key
})
m.Type = metric.Type()
m.Time = metric.Time()
return m
}
// SortMetrics enables sorting metrics before comparison.
func SortMetrics() cmp.Option {
return cmpopts.SortSlices(lessFunc)
}
// IgnoreTime disables comparison of timestamp.
func IgnoreTime() cmp.Option {
return cmpopts.IgnoreFields(metricDiff{}, "Time")
}
// MetricEqual returns true if the metrics are equal.
func MetricEqual(expected, actual telegraf.Metric, opts ...cmp.Option) bool {
var lhs, rhs *metricDiff
if expected != nil {
lhs = newMetricDiff(expected)
}
if actual != nil {
rhs = newMetricDiff(actual)
}
opts = append(opts, cmpopts.EquateNaNs())
return cmp.Equal(lhs, rhs, opts...)
}
// RequireMetricEqual halts the test with an error if the metrics are not
// equal.
func RequireMetricEqual(t *testing.T, expected, actual telegraf.Metric, opts ...cmp.Option) {
t.Helper()
var lhs, rhs *metricDiff
if expected != nil {
lhs = newMetricDiff(expected)
}
if actual != nil {
rhs = newMetricDiff(actual)
}
opts = append(opts, cmpopts.EquateNaNs())
if diff := cmp.Diff(lhs, rhs, opts...); diff != "" {
t.Fatalf("telegraf.Metric\n--- expected\n+++ actual\n%s", diff)
}
}
// RequireMetricsEqual halts the test with an error if the array of metrics
// are not equal.
func RequireMetricsEqual(t *testing.T, expected, actual []telegraf.Metric, opts ...cmp.Option) {
t.Helper()
lhs := make([]*metricDiff, 0, len(expected))
for _, m := range expected {
lhs = append(lhs, newMetricDiff(m))
}
rhs := make([]*metricDiff, 0, len(actual))
for _, m := range actual {
rhs = append(rhs, newMetricDiff(m))
}
opts = append(opts, cmpopts.EquateNaNs())
if diff := cmp.Diff(lhs, rhs, opts...); diff != "" {
t.Fatalf("[]telegraf.Metric\n--- expected\n+++ actual\n%s", diff)
}
}
// Metric creates a new metric or panics on error.
func MustMetric(
name string,
tags map[string]string,
fields map[string]interface{},
tm time.Time,
tp ...telegraf.ValueType,
) telegraf.Metric {
m, err := metric.New(name, tags, fields, tm, tp...)
if err != nil {
panic("MustMetric")
}
return m
}
func FromTestMetric(met *Metric) telegraf.Metric {
m, err := metric.New(met.Measurement, met.Tags, met.Fields, met.Time, met.Type)
if err != nil {
panic("MustMetric")
}
return m
}

View File

@ -1,65 +0,0 @@
package testutil
import (
"net"
"net/url"
"os"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
)
var localhost = "localhost"
// GetLocalHost returns the DOCKER_HOST environment variable, parsing
// out any scheme or ports so that only the IP address is returned.
func GetLocalHost() string {
if dockerHostVar := os.Getenv("DOCKER_HOST"); dockerHostVar != "" {
u, err := url.Parse(dockerHostVar)
if err != nil {
return dockerHostVar
}
// split out the ip addr from the port
host, _, err := net.SplitHostPort(u.Host)
if err != nil {
return dockerHostVar
}
return host
}
return localhost
}
// MockMetrics returns a mock []telegraf.Metric object for using in unit tests
// of telegraf output sinks.
func MockMetrics() []telegraf.Metric {
metrics := make([]telegraf.Metric, 0)
// Create a new point batch
metrics = append(metrics, TestMetric(1.0))
return metrics
}
// TestMetric Returns a simple test point:
// measurement -> "test1" or name
// tags -> "tag1":"value1"
// value -> value
// time -> time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)
func TestMetric(value interface{}, name ...string) telegraf.Metric {
if value == nil {
panic("Cannot use a nil value")
}
measurement := "test1"
if len(name) > 0 {
measurement = name[0]
}
tags := map[string]string{"tag1": "value1"}
pt, _ := metric.New(
measurement,
tags,
map[string]interface{}{"value": value},
time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC),
)
return pt
}

View File

@ -1,101 +0,0 @@
package testutil
import (
"fmt"
"io/ioutil"
"os"
"path"
"github.com/influxdata/telegraf/plugins/common/tls"
)
type pki struct {
path string
}
func NewPKI(path string) *pki {
return &pki{path: path}
}
func (p *pki) TLSClientConfig() *tls.ClientConfig {
return &tls.ClientConfig{
TLSCA: p.CACertPath(),
TLSCert: p.ClientCertPath(),
TLSKey: p.ClientKeyPath(),
}
}
func (p *pki) TLSServerConfig() *tls.ServerConfig {
return &tls.ServerConfig{
TLSAllowedCACerts: []string{p.CACertPath()},
TLSCert: p.ServerCertPath(),
TLSKey: p.ServerKeyPath(),
TLSCipherSuites: []string{p.CipherSuite()},
TLSMinVersion: p.TLSMinVersion(),
TLSMaxVersion: p.TLSMaxVersion(),
}
}
func (p *pki) ReadCACert() string {
return readCertificate(p.CACertPath())
}
func (p *pki) CACertPath() string {
return path.Join(p.path, "cacert.pem")
}
func (p *pki) CipherSuite() string {
return "TLS_RSA_WITH_3DES_EDE_CBC_SHA"
}
func (p *pki) TLSMinVersion() string {
return "TLS11"
}
func (p *pki) TLSMaxVersion() string {
return "TLS12"
}
func (p *pki) ReadClientCert() string {
return readCertificate(p.ClientCertPath())
}
func (p *pki) ClientCertPath() string {
return path.Join(p.path, "clientcert.pem")
}
func (p *pki) ReadClientKey() string {
return readCertificate(p.ClientKeyPath())
}
func (p *pki) ClientKeyPath() string {
return path.Join(p.path, "clientkey.pem")
}
func (p *pki) ReadServerCert() string {
return readCertificate(p.ServerCertPath())
}
func (p *pki) ServerCertPath() string {
return path.Join(p.path, "servercert.pem")
}
func (p *pki) ReadServerKey() string {
return readCertificate(p.ServerKeyPath())
}
func (p *pki) ServerKeyPath() string {
return path.Join(p.path, "serverkey.pem")
}
func readCertificate(filename string) string {
file, err := os.Open(filename)
if err != nil {
panic(fmt.Sprintf("opening %q: %v", filename, err))
}
octets, err := ioutil.ReadAll(file)
if err != nil {
panic(fmt.Sprintf("reading %q: %v", filename, err))
}
return string(octets)
}

11
vendor/modules.txt vendored
View File

@ -116,13 +116,6 @@ github.com/golang/protobuf/ptypes/timestamp
github.com/golang/protobuf/ptypes/wrappers github.com/golang/protobuf/ptypes/wrappers
# github.com/golang/snappy v0.0.1 # github.com/golang/snappy v0.0.1
github.com/golang/snappy github.com/golang/snappy
# github.com/google/go-cmp v0.5.2
github.com/google/go-cmp/cmp
github.com/google/go-cmp/cmp/cmpopts
github.com/google/go-cmp/cmp/internal/diff
github.com/google/go-cmp/cmp/internal/flags
github.com/google/go-cmp/cmp/internal/function
github.com/google/go-cmp/cmp/internal/value
# github.com/google/go-github/v32 v32.1.0 # github.com/google/go-github/v32 v32.1.0
github.com/google/go-github/v32/github github.com/google/go-github/v32/github
# github.com/google/go-querystring v1.0.0 # github.com/google/go-querystring v1.0.0
@ -167,14 +160,16 @@ github.com/influxdata/telegraf/metric
github.com/influxdata/telegraf/plugins/common/tls github.com/influxdata/telegraf/plugins/common/tls
github.com/influxdata/telegraf/plugins/inputs github.com/influxdata/telegraf/plugins/inputs
github.com/influxdata/telegraf/plugins/inputs/elasticsearch github.com/influxdata/telegraf/plugins/inputs/elasticsearch
github.com/influxdata/telegraf/plugins/inputs/github
github.com/influxdata/telegraf/plugins/inputs/mongodb
github.com/influxdata/telegraf/plugins/inputs/mysql github.com/influxdata/telegraf/plugins/inputs/mysql
github.com/influxdata/telegraf/plugins/inputs/mysql/v1 github.com/influxdata/telegraf/plugins/inputs/mysql/v1
github.com/influxdata/telegraf/plugins/inputs/mysql/v2 github.com/influxdata/telegraf/plugins/inputs/mysql/v2
github.com/influxdata/telegraf/plugins/inputs/nginx github.com/influxdata/telegraf/plugins/inputs/nginx
github.com/influxdata/telegraf/plugins/inputs/prometheus
github.com/influxdata/telegraf/plugins/inputs/redis github.com/influxdata/telegraf/plugins/inputs/redis
github.com/influxdata/telegraf/plugins/parsers/json github.com/influxdata/telegraf/plugins/parsers/json
github.com/influxdata/telegraf/selfstat github.com/influxdata/telegraf/selfstat
github.com/influxdata/telegraf/testutil
# github.com/jcmturner/gofork v1.0.0 # github.com/jcmturner/gofork v1.0.0
github.com/jcmturner/gofork/encoding/asn1 github.com/jcmturner/gofork/encoding/asn1
github.com/jcmturner/gofork/x/crypto/pbkdf2 github.com/jcmturner/gofork/x/crypto/pbkdf2