upgrade go mod

This commit is contained in:
UlricQin 2021-01-26 20:45:50 +08:00
parent d37c8f5387
commit 366d44959e
212 changed files with 23888 additions and 19653 deletions

2
go.mod
View File

@ -26,7 +26,7 @@ require (
github.com/open-falcon/rrdlite v0.0.0-20200214140804-bf5829f786ad github.com/open-falcon/rrdlite v0.0.0-20200214140804-bf5829f786ad
github.com/pquerna/cachecontrol v0.0.0-20200819021114-67c6ae64274f // indirect github.com/pquerna/cachecontrol v0.0.0-20200819021114-67c6ae64274f // indirect
github.com/robfig/go-cache v0.0.0-20130306151617-9fc39e0dbf62 // indirect github.com/robfig/go-cache v0.0.0-20130306151617-9fc39e0dbf62 // indirect
github.com/shirou/gopsutil v3.20.11+incompatible github.com/shirou/gopsutil v3.20.11+incompatible // indirect
github.com/spaolacci/murmur3 v1.1.0 github.com/spaolacci/murmur3 v1.1.0
github.com/spf13/viper v1.7.1 github.com/spf13/viper v1.7.1
github.com/streadway/amqp v1.0.0 github.com/streadway/amqp v1.0.0

View File

@ -1,20 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 Stack Exchange
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,6 +0,0 @@
wmi
===
Package wmi provides a WQL interface to Windows WMI.
Note: It interfaces with WMI on the local machine, therefore it only runs on Windows.

View File

@ -1,260 +0,0 @@
// +build windows
package wmi
import (
"fmt"
"reflect"
"runtime"
"sync"
"github.com/go-ole/go-ole"
"github.com/go-ole/go-ole/oleutil"
)
// SWbemServices is used to access wmi. See https://msdn.microsoft.com/en-us/library/aa393719(v=vs.85).aspx
type SWbemServices struct {
//TODO: track namespace. Not sure if we can re connect to a different namespace using the same instance
cWMIClient *Client //This could also be an embedded struct, but then we would need to branch on Client vs SWbemServices in the Query method
sWbemLocatorIUnknown *ole.IUnknown
sWbemLocatorIDispatch *ole.IDispatch
queries chan *queryRequest
closeError chan error
lQueryorClose sync.Mutex
}
type queryRequest struct {
query string
dst interface{}
args []interface{}
finished chan error
}
// InitializeSWbemServices will return a new SWbemServices object that can be used to query WMI
func InitializeSWbemServices(c *Client, connectServerArgs ...interface{}) (*SWbemServices, error) {
//fmt.Println("InitializeSWbemServices: Starting")
//TODO: implement connectServerArgs as optional argument for init with connectServer call
s := new(SWbemServices)
s.cWMIClient = c
s.queries = make(chan *queryRequest)
initError := make(chan error)
go s.process(initError)
err, ok := <-initError
if ok {
return nil, err //Send error to caller
}
//fmt.Println("InitializeSWbemServices: Finished")
return s, nil
}
// Close will clear and release all of the SWbemServices resources
func (s *SWbemServices) Close() error {
s.lQueryorClose.Lock()
if s == nil || s.sWbemLocatorIDispatch == nil {
s.lQueryorClose.Unlock()
return fmt.Errorf("SWbemServices is not Initialized")
}
if s.queries == nil {
s.lQueryorClose.Unlock()
return fmt.Errorf("SWbemServices has been closed")
}
//fmt.Println("Close: sending close request")
var result error
ce := make(chan error)
s.closeError = ce //Race condition if multiple callers to close. May need to lock here
close(s.queries) //Tell background to shut things down
s.lQueryorClose.Unlock()
err, ok := <-ce
if ok {
result = err
}
//fmt.Println("Close: finished")
return result
}
func (s *SWbemServices) process(initError chan error) {
//fmt.Println("process: starting background thread initialization")
//All OLE/WMI calls must happen on the same initialized thead, so lock this goroutine
runtime.LockOSThread()
defer runtime.UnlockOSThread()
err := ole.CoInitializeEx(0, ole.COINIT_MULTITHREADED)
if err != nil {
oleCode := err.(*ole.OleError).Code()
if oleCode != ole.S_OK && oleCode != S_FALSE {
initError <- fmt.Errorf("ole.CoInitializeEx error: %v", err)
return
}
}
defer ole.CoUninitialize()
unknown, err := oleutil.CreateObject("WbemScripting.SWbemLocator")
if err != nil {
initError <- fmt.Errorf("CreateObject SWbemLocator error: %v", err)
return
} else if unknown == nil {
initError <- ErrNilCreateObject
return
}
defer unknown.Release()
s.sWbemLocatorIUnknown = unknown
dispatch, err := s.sWbemLocatorIUnknown.QueryInterface(ole.IID_IDispatch)
if err != nil {
initError <- fmt.Errorf("SWbemLocator QueryInterface error: %v", err)
return
}
defer dispatch.Release()
s.sWbemLocatorIDispatch = dispatch
// we can't do the ConnectServer call outside the loop unless we find a way to track and re-init the connectServerArgs
//fmt.Println("process: initialized. closing initError")
close(initError)
//fmt.Println("process: waiting for queries")
for q := range s.queries {
//fmt.Printf("process: new query: len(query)=%d\n", len(q.query))
errQuery := s.queryBackground(q)
//fmt.Println("process: s.queryBackground finished")
if errQuery != nil {
q.finished <- errQuery
}
close(q.finished)
}
//fmt.Println("process: queries channel closed")
s.queries = nil //set channel to nil so we know it is closed
//TODO: I think the Release/Clear calls can panic if things are in a bad state.
//TODO: May need to recover from panics and send error to method caller instead.
close(s.closeError)
}
// Query runs the WQL query using a SWbemServices instance and appends the values to dst.
//
// dst must have type *[]S or *[]*S, for some struct type S. Fields selected in
// the query must have the same name in dst. Supported types are all signed and
// unsigned integers, time.Time, string, bool, or a pointer to one of those.
// Array types are not supported.
//
// By default, the local machine and default namespace are used. These can be
// changed using connectServerArgs. See
// http://msdn.microsoft.com/en-us/library/aa393720.aspx for details.
func (s *SWbemServices) Query(query string, dst interface{}, connectServerArgs ...interface{}) error {
s.lQueryorClose.Lock()
if s == nil || s.sWbemLocatorIDispatch == nil {
s.lQueryorClose.Unlock()
return fmt.Errorf("SWbemServices is not Initialized")
}
if s.queries == nil {
s.lQueryorClose.Unlock()
return fmt.Errorf("SWbemServices has been closed")
}
//fmt.Println("Query: Sending query request")
qr := queryRequest{
query: query,
dst: dst,
args: connectServerArgs,
finished: make(chan error),
}
s.queries <- &qr
s.lQueryorClose.Unlock()
err, ok := <-qr.finished
if ok {
//fmt.Println("Query: Finished with error")
return err //Send error to caller
}
//fmt.Println("Query: Finished")
return nil
}
func (s *SWbemServices) queryBackground(q *queryRequest) error {
if s == nil || s.sWbemLocatorIDispatch == nil {
return fmt.Errorf("SWbemServices is not Initialized")
}
wmi := s.sWbemLocatorIDispatch //Should just rename in the code, but this will help as we break things apart
//fmt.Println("queryBackground: Starting")
dv := reflect.ValueOf(q.dst)
if dv.Kind() != reflect.Ptr || dv.IsNil() {
return ErrInvalidEntityType
}
dv = dv.Elem()
mat, elemType := checkMultiArg(dv)
if mat == multiArgTypeInvalid {
return ErrInvalidEntityType
}
// service is a SWbemServices
serviceRaw, err := oleutil.CallMethod(wmi, "ConnectServer", q.args...)
if err != nil {
return err
}
service := serviceRaw.ToIDispatch()
defer serviceRaw.Clear()
// result is a SWBemObjectSet
resultRaw, err := oleutil.CallMethod(service, "ExecQuery", q.query)
if err != nil {
return err
}
result := resultRaw.ToIDispatch()
defer resultRaw.Clear()
count, err := oleInt64(result, "Count")
if err != nil {
return err
}
enumProperty, err := result.GetProperty("_NewEnum")
if err != nil {
return err
}
defer enumProperty.Clear()
enum, err := enumProperty.ToIUnknown().IEnumVARIANT(ole.IID_IEnumVariant)
if err != nil {
return err
}
if enum == nil {
return fmt.Errorf("can't get IEnumVARIANT, enum is nil")
}
defer enum.Release()
// Initialize a slice with Count capacity
dv.Set(reflect.MakeSlice(dv.Type(), 0, int(count)))
var errFieldMismatch error
for itemRaw, length, err := enum.Next(1); length > 0; itemRaw, length, err = enum.Next(1) {
if err != nil {
return err
}
err := func() error {
// item is a SWbemObject, but really a Win32_Process
item := itemRaw.ToIDispatch()
defer item.Release()
ev := reflect.New(elemType)
if err = s.cWMIClient.loadEntity(ev.Interface(), item); err != nil {
if _, ok := err.(*ErrFieldMismatch); ok {
// We continue loading entities even in the face of field mismatch errors.
// If we encounter any other error, that other error is returned. Otherwise,
// an ErrFieldMismatch is returned.
errFieldMismatch = err
} else {
return err
}
}
if mat != multiArgTypeStructPtr {
ev = ev.Elem()
}
dv.Set(reflect.Append(dv, ev))
return nil
}()
if err != nil {
return err
}
}
//fmt.Println("queryBackground: Finished")
return errFieldMismatch
}

View File

@ -1,501 +0,0 @@
// +build windows
/*
Package wmi provides a WQL interface for WMI on Windows.
Example code to print names of running processes:
type Win32_Process struct {
Name string
}
func main() {
var dst []Win32_Process
q := wmi.CreateQuery(&dst, "")
err := wmi.Query(q, &dst)
if err != nil {
log.Fatal(err)
}
for i, v := range dst {
println(i, v.Name)
}
}
*/
package wmi
import (
"bytes"
"errors"
"fmt"
"log"
"os"
"reflect"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/go-ole/go-ole"
"github.com/go-ole/go-ole/oleutil"
)
var l = log.New(os.Stdout, "", log.LstdFlags)
var (
ErrInvalidEntityType = errors.New("wmi: invalid entity type")
// ErrNilCreateObject is the error returned if CreateObject returns nil even
// if the error was nil.
ErrNilCreateObject = errors.New("wmi: create object returned nil")
lock sync.Mutex
)
// S_FALSE is returned by CoInitializeEx if it was already called on this thread.
const S_FALSE = 0x00000001
// QueryNamespace invokes Query with the given namespace on the local machine.
func QueryNamespace(query string, dst interface{}, namespace string) error {
return Query(query, dst, nil, namespace)
}
// Query runs the WQL query and appends the values to dst.
//
// dst must have type *[]S or *[]*S, for some struct type S. Fields selected in
// the query must have the same name in dst. Supported types are all signed and
// unsigned integers, time.Time, string, bool, or a pointer to one of those.
// Array types are not supported.
//
// By default, the local machine and default namespace are used. These can be
// changed using connectServerArgs. See
// http://msdn.microsoft.com/en-us/library/aa393720.aspx for details.
//
// Query is a wrapper around DefaultClient.Query.
func Query(query string, dst interface{}, connectServerArgs ...interface{}) error {
if DefaultClient.SWbemServicesClient == nil {
return DefaultClient.Query(query, dst, connectServerArgs...)
}
return DefaultClient.SWbemServicesClient.Query(query, dst, connectServerArgs...)
}
// A Client is an WMI query client.
//
// Its zero value (DefaultClient) is a usable client.
type Client struct {
// NonePtrZero specifies if nil values for fields which aren't pointers
// should be returned as the field types zero value.
//
// Setting this to true allows stucts without pointer fields to be used
// without the risk failure should a nil value returned from WMI.
NonePtrZero bool
// PtrNil specifies if nil values for pointer fields should be returned
// as nil.
//
// Setting this to true will set pointer fields to nil where WMI
// returned nil, otherwise the types zero value will be returned.
PtrNil bool
// AllowMissingFields specifies that struct fields not present in the
// query result should not result in an error.
//
// Setting this to true allows custom queries to be used with full
// struct definitions instead of having to define multiple structs.
AllowMissingFields bool
// SWbemServiceClient is an optional SWbemServices object that can be
// initialized and then reused across multiple queries. If it is null
// then the method will initialize a new temporary client each time.
SWbemServicesClient *SWbemServices
}
// DefaultClient is the default Client and is used by Query, QueryNamespace
var DefaultClient = &Client{}
// Query runs the WQL query and appends the values to dst.
//
// dst must have type *[]S or *[]*S, for some struct type S. Fields selected in
// the query must have the same name in dst. Supported types are all signed and
// unsigned integers, time.Time, string, bool, or a pointer to one of those.
// Array types are not supported.
//
// By default, the local machine and default namespace are used. These can be
// changed using connectServerArgs. See
// http://msdn.microsoft.com/en-us/library/aa393720.aspx for details.
func (c *Client) Query(query string, dst interface{}, connectServerArgs ...interface{}) error {
dv := reflect.ValueOf(dst)
if dv.Kind() != reflect.Ptr || dv.IsNil() {
return ErrInvalidEntityType
}
dv = dv.Elem()
mat, elemType := checkMultiArg(dv)
if mat == multiArgTypeInvalid {
return ErrInvalidEntityType
}
lock.Lock()
defer lock.Unlock()
runtime.LockOSThread()
defer runtime.UnlockOSThread()
err := ole.CoInitializeEx(0, ole.COINIT_MULTITHREADED)
if err != nil {
oleCode := err.(*ole.OleError).Code()
if oleCode != ole.S_OK && oleCode != S_FALSE {
return err
}
}
defer ole.CoUninitialize()
unknown, err := oleutil.CreateObject("WbemScripting.SWbemLocator")
if err != nil {
return err
} else if unknown == nil {
return ErrNilCreateObject
}
defer unknown.Release()
wmi, err := unknown.QueryInterface(ole.IID_IDispatch)
if err != nil {
return err
}
defer wmi.Release()
// service is a SWbemServices
serviceRaw, err := oleutil.CallMethod(wmi, "ConnectServer", connectServerArgs...)
if err != nil {
return err
}
service := serviceRaw.ToIDispatch()
defer serviceRaw.Clear()
// result is a SWBemObjectSet
resultRaw, err := oleutil.CallMethod(service, "ExecQuery", query)
if err != nil {
return err
}
result := resultRaw.ToIDispatch()
defer resultRaw.Clear()
count, err := oleInt64(result, "Count")
if err != nil {
return err
}
enumProperty, err := result.GetProperty("_NewEnum")
if err != nil {
return err
}
defer enumProperty.Clear()
enum, err := enumProperty.ToIUnknown().IEnumVARIANT(ole.IID_IEnumVariant)
if err != nil {
return err
}
if enum == nil {
return fmt.Errorf("can't get IEnumVARIANT, enum is nil")
}
defer enum.Release()
// Initialize a slice with Count capacity
dv.Set(reflect.MakeSlice(dv.Type(), 0, int(count)))
var errFieldMismatch error
for itemRaw, length, err := enum.Next(1); length > 0; itemRaw, length, err = enum.Next(1) {
if err != nil {
return err
}
err := func() error {
// item is a SWbemObject, but really a Win32_Process
item := itemRaw.ToIDispatch()
defer item.Release()
ev := reflect.New(elemType)
if err = c.loadEntity(ev.Interface(), item); err != nil {
if _, ok := err.(*ErrFieldMismatch); ok {
// We continue loading entities even in the face of field mismatch errors.
// If we encounter any other error, that other error is returned. Otherwise,
// an ErrFieldMismatch is returned.
errFieldMismatch = err
} else {
return err
}
}
if mat != multiArgTypeStructPtr {
ev = ev.Elem()
}
dv.Set(reflect.Append(dv, ev))
return nil
}()
if err != nil {
return err
}
}
return errFieldMismatch
}
// ErrFieldMismatch is returned when a field is to be loaded into a different
// type than the one it was stored from, or when a field is missing or
// unexported in the destination struct.
// StructType is the type of the struct pointed to by the destination argument.
type ErrFieldMismatch struct {
StructType reflect.Type
FieldName string
Reason string
}
func (e *ErrFieldMismatch) Error() string {
return fmt.Sprintf("wmi: cannot load field %q into a %q: %s",
e.FieldName, e.StructType, e.Reason)
}
var timeType = reflect.TypeOf(time.Time{})
// loadEntity loads a SWbemObject into a struct pointer.
func (c *Client) loadEntity(dst interface{}, src *ole.IDispatch) (errFieldMismatch error) {
v := reflect.ValueOf(dst).Elem()
for i := 0; i < v.NumField(); i++ {
f := v.Field(i)
of := f
isPtr := f.Kind() == reflect.Ptr
if isPtr {
ptr := reflect.New(f.Type().Elem())
f.Set(ptr)
f = f.Elem()
}
n := v.Type().Field(i).Name
if !f.CanSet() {
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "CanSet() is false",
}
}
prop, err := oleutil.GetProperty(src, n)
if err != nil {
if !c.AllowMissingFields {
errFieldMismatch = &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "no such struct field",
}
}
continue
}
defer prop.Clear()
if prop.VT == 0x1 { //VT_NULL
continue
}
switch val := prop.Value().(type) {
case int8, int16, int32, int64, int:
v := reflect.ValueOf(val).Int()
switch f.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
f.SetInt(v)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
f.SetUint(uint64(v))
default:
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "not an integer class",
}
}
case uint8, uint16, uint32, uint64:
v := reflect.ValueOf(val).Uint()
switch f.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
f.SetInt(int64(v))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
f.SetUint(v)
default:
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "not an integer class",
}
}
case string:
switch f.Kind() {
case reflect.String:
f.SetString(val)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
iv, err := strconv.ParseInt(val, 10, 64)
if err != nil {
return err
}
f.SetInt(iv)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
uv, err := strconv.ParseUint(val, 10, 64)
if err != nil {
return err
}
f.SetUint(uv)
case reflect.Struct:
switch f.Type() {
case timeType:
if len(val) == 25 {
mins, err := strconv.Atoi(val[22:])
if err != nil {
return err
}
val = val[:22] + fmt.Sprintf("%02d%02d", mins/60, mins%60)
}
t, err := time.Parse("20060102150405.000000-0700", val)
if err != nil {
return err
}
f.Set(reflect.ValueOf(t))
}
}
case bool:
switch f.Kind() {
case reflect.Bool:
f.SetBool(val)
default:
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "not a bool",
}
}
case float32:
switch f.Kind() {
case reflect.Float32:
f.SetFloat(float64(val))
default:
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: "not a Float32",
}
}
default:
if f.Kind() == reflect.Slice {
switch f.Type().Elem().Kind() {
case reflect.String:
safeArray := prop.ToArray()
if safeArray != nil {
arr := safeArray.ToValueArray()
fArr := reflect.MakeSlice(f.Type(), len(arr), len(arr))
for i, v := range arr {
s := fArr.Index(i)
s.SetString(v.(string))
}
f.Set(fArr)
}
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
safeArray := prop.ToArray()
if safeArray != nil {
arr := safeArray.ToValueArray()
fArr := reflect.MakeSlice(f.Type(), len(arr), len(arr))
for i, v := range arr {
s := fArr.Index(i)
s.SetUint(reflect.ValueOf(v).Uint())
}
f.Set(fArr)
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
safeArray := prop.ToArray()
if safeArray != nil {
arr := safeArray.ToValueArray()
fArr := reflect.MakeSlice(f.Type(), len(arr), len(arr))
for i, v := range arr {
s := fArr.Index(i)
s.SetInt(reflect.ValueOf(v).Int())
}
f.Set(fArr)
}
default:
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: fmt.Sprintf("unsupported slice type (%T)", val),
}
}
} else {
typeof := reflect.TypeOf(val)
if typeof == nil && (isPtr || c.NonePtrZero) {
if (isPtr && c.PtrNil) || (!isPtr && c.NonePtrZero) {
of.Set(reflect.Zero(of.Type()))
}
break
}
return &ErrFieldMismatch{
StructType: of.Type(),
FieldName: n,
Reason: fmt.Sprintf("unsupported type (%T)", val),
}
}
}
}
return errFieldMismatch
}
type multiArgType int
const (
multiArgTypeInvalid multiArgType = iota
multiArgTypeStruct
multiArgTypeStructPtr
)
// checkMultiArg checks that v has type []S, []*S for some struct type S.
//
// It returns what category the slice's elements are, and the reflect.Type
// that represents S.
func checkMultiArg(v reflect.Value) (m multiArgType, elemType reflect.Type) {
if v.Kind() != reflect.Slice {
return multiArgTypeInvalid, nil
}
elemType = v.Type().Elem()
switch elemType.Kind() {
case reflect.Struct:
return multiArgTypeStruct, elemType
case reflect.Ptr:
elemType = elemType.Elem()
if elemType.Kind() == reflect.Struct {
return multiArgTypeStructPtr, elemType
}
}
return multiArgTypeInvalid, nil
}
func oleInt64(item *ole.IDispatch, prop string) (int64, error) {
v, err := oleutil.GetProperty(item, prop)
if err != nil {
return 0, err
}
defer v.Clear()
i := int64(v.Val)
return i, nil
}
// CreateQuery returns a WQL query string that queries all columns of src. where
// is an optional string that is appended to the query, to be used with WHERE
// clauses. In such a case, the "WHERE" string should appear at the beginning.
func CreateQuery(src interface{}, where string) string {
var b bytes.Buffer
b.WriteString("SELECT ")
s := reflect.Indirect(reflect.ValueOf(src))
t := s.Type()
if s.Kind() == reflect.Slice {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return ""
}
var fields []string
for i := 0; i < t.NumField(); i++ {
fields = append(fields, t.Field(i).Name)
}
b.WriteString(strings.Join(fields, ", "))
b.WriteString(" FROM ")
b.WriteString(t.Name())
b.WriteString(" " + where)
return b.String()
}

View File

@ -1,8 +0,0 @@
language: go
sudo: false
go:
- 1.9.x
- 1.10.x
- 1.11.x
- tip

View File

@ -1,49 +0,0 @@
# Version 1.x.x
* **Add more test cases and reference new test COM server project.** (Placeholder for future additions)
# Version 1.2.0-alphaX
**Minimum supported version is now Go 1.4. Go 1.1 support is deprecated, but should still build.**
* Added CI configuration for Travis-CI and AppVeyor.
* Added test InterfaceID and ClassID for the COM Test Server project.
* Added more inline documentation (#83).
* Added IEnumVARIANT implementation (#88).
* Added IEnumVARIANT test cases (#99, #100, #101).
* Added support for retrieving `time.Time` from VARIANT (#92).
* Added test case for IUnknown (#64).
* Added test case for IDispatch (#64).
* Added test cases for scalar variants (#64, #76).
# Version 1.1.1
* Fixes for Linux build.
* Fixes for Windows build.
# Version 1.1.0
The change to provide building on all platforms is a new feature. The increase in minor version reflects that and allows those who wish to stay on 1.0.x to continue to do so. Support for 1.0.x will be limited to bug fixes.
* Move GUID out of variables.go into its own file to make new documentation available.
* Move OleError out of ole.go into its own file to make new documentation available.
* Add documentation to utility functions.
* Add documentation to variant receiver functions.
* Add documentation to ole structures.
* Make variant available to other systems outside of Windows.
* Make OLE structures available to other systems outside of Windows.
## New Features
* Library should now be built on all platforms supported by Go. Library will NOOP on any platform that is not Windows.
* More functions are now documented and available on godoc.org.
# Version 1.0.1
1. Fix package references from repository location change.
# Version 1.0.0
This version is stable enough for use. The COM API is still incomplete, but provides enough functionality for accessing COM servers using IDispatch interface.
There is no changelog for this version. Check commits for history.

View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright © 2013-2017 Yasuhiro Matsumoto, <mattn.jp@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,46 +0,0 @@
# Go OLE
[![Build status](https://ci.appveyor.com/api/projects/status/qr0u2sf7q43us9fj?svg=true)](https://ci.appveyor.com/project/jacobsantos/go-ole-jgs28)
[![Build Status](https://travis-ci.org/go-ole/go-ole.svg?branch=master)](https://travis-ci.org/go-ole/go-ole)
[![GoDoc](https://godoc.org/github.com/go-ole/go-ole?status.svg)](https://godoc.org/github.com/go-ole/go-ole)
Go bindings for Windows COM using shared libraries instead of cgo.
By Yasuhiro Matsumoto.
## Install
To experiment with go-ole, you can just compile and run the example program:
```
go get github.com/go-ole/go-ole
cd /path/to/go-ole/
go test
cd /path/to/go-ole/example/excel
go run excel.go
```
## Continuous Integration
Continuous integration configuration has been added for both Travis-CI and AppVeyor. You will have to add these to your own account for your fork in order for it to run.
**Travis-CI**
Travis-CI was added to check builds on Linux to ensure that `go get` works when cross building. Currently, Travis-CI is not used to test cross-building, but this may be changed in the future. It is also not currently possible to test the library on Linux, since COM API is specific to Windows and it is not currently possible to run a COM server on Linux or even connect to a remote COM server.
**AppVeyor**
AppVeyor is used to build on Windows using the (in-development) test COM server. It is currently only used to test the build and ensure that the code works on Windows. It will be used to register a COM server and then run the test cases based on the test COM server.
The tests currently do run and do pass and this should be maintained with commits.
## Versioning
Go OLE uses [semantic versioning](http://semver.org) for version numbers, which is similar to the version contract of the Go language. Which means that the major version will always maintain backwards compatibility with minor versions. Minor versions will only add new additions and changes. Fixes will always be in patch.
This contract should allow you to upgrade to new minor and patch versions without breakage or modifications to your existing code. Leave a ticket, if there is breakage, so that it could be fixed.
## LICENSE
Under the MIT License: http://mattn.mit-license.org/2013

View File

@ -1,54 +0,0 @@
# Notes:
# - Minimal appveyor.yml file is an empty file. All sections are optional.
# - Indent each level of configuration with 2 spaces. Do not use tabs!
# - All section names are case-sensitive.
# - Section names should be unique on each level.
version: "1.3.0.{build}-alpha-{branch}"
os: Windows Server 2012 R2
branches:
only:
- master
- v1.2
- v1.1
- v1.0
skip_tags: true
clone_folder: c:\gopath\src\github.com\go-ole\go-ole
environment:
GOPATH: c:\gopath
matrix:
- GOARCH: amd64
GOVERSION: 1.5
GOROOT: c:\go
DOWNLOADPLATFORM: "x64"
install:
- choco install mingw
- SET PATH=c:\tools\mingw64\bin;%PATH%
# - Download COM Server
- ps: Start-FileDownload "https://github.com/go-ole/test-com-server/releases/download/v1.0.2/test-com-server-${env:DOWNLOADPLATFORM}.zip"
- 7z e test-com-server-%DOWNLOADPLATFORM%.zip -oc:\gopath\src\github.com\go-ole\go-ole > NUL
- c:\gopath\src\github.com\go-ole\go-ole\build\register-assembly.bat
# - set
- go version
- go env
- go get -u golang.org/x/tools/cmd/cover
- go get -u golang.org/x/tools/cmd/godoc
- go get -u golang.org/x/tools/cmd/stringer
build_script:
- cd c:\gopath\src\github.com\go-ole\go-ole
- go get -v -t ./...
- go build
- go test -v -cover ./...
# disable automatic tests
test: off
# disable deployment
deploy: off

View File

@ -1,344 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unicode/utf16"
"unsafe"
)
var (
procCoInitialize, _ = modole32.FindProc("CoInitialize")
procCoInitializeEx, _ = modole32.FindProc("CoInitializeEx")
procCoUninitialize, _ = modole32.FindProc("CoUninitialize")
procCoCreateInstance, _ = modole32.FindProc("CoCreateInstance")
procCoTaskMemFree, _ = modole32.FindProc("CoTaskMemFree")
procCLSIDFromProgID, _ = modole32.FindProc("CLSIDFromProgID")
procCLSIDFromString, _ = modole32.FindProc("CLSIDFromString")
procStringFromCLSID, _ = modole32.FindProc("StringFromCLSID")
procStringFromIID, _ = modole32.FindProc("StringFromIID")
procIIDFromString, _ = modole32.FindProc("IIDFromString")
procCoGetObject, _ = modole32.FindProc("CoGetObject")
procGetUserDefaultLCID, _ = modkernel32.FindProc("GetUserDefaultLCID")
procCopyMemory, _ = modkernel32.FindProc("RtlMoveMemory")
procVariantInit, _ = modoleaut32.FindProc("VariantInit")
procVariantClear, _ = modoleaut32.FindProc("VariantClear")
procVariantTimeToSystemTime, _ = modoleaut32.FindProc("VariantTimeToSystemTime")
procSysAllocString, _ = modoleaut32.FindProc("SysAllocString")
procSysAllocStringLen, _ = modoleaut32.FindProc("SysAllocStringLen")
procSysFreeString, _ = modoleaut32.FindProc("SysFreeString")
procSysStringLen, _ = modoleaut32.FindProc("SysStringLen")
procCreateDispTypeInfo, _ = modoleaut32.FindProc("CreateDispTypeInfo")
procCreateStdDispatch, _ = modoleaut32.FindProc("CreateStdDispatch")
procGetActiveObject, _ = modoleaut32.FindProc("GetActiveObject")
procGetMessageW, _ = moduser32.FindProc("GetMessageW")
procDispatchMessageW, _ = moduser32.FindProc("DispatchMessageW")
)
// coInitialize initializes COM library on current thread.
//
// MSDN documentation suggests that this function should not be called. Call
// CoInitializeEx() instead. The reason has to do with threading and this
// function is only for single-threaded apartments.
//
// That said, most users of the library have gotten away with just this
// function. If you are experiencing threading issues, then use
// CoInitializeEx().
func coInitialize() (err error) {
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms678543(v=vs.85).aspx
// Suggests that no value should be passed to CoInitialized.
// Could just be Call() since the parameter is optional. <-- Needs testing to be sure.
hr, _, _ := procCoInitialize.Call(uintptr(0))
if hr != 0 {
err = NewError(hr)
}
return
}
// coInitializeEx initializes COM library with concurrency model.
func coInitializeEx(coinit uint32) (err error) {
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms695279(v=vs.85).aspx
// Suggests that the first parameter is not only optional but should always be NULL.
hr, _, _ := procCoInitializeEx.Call(uintptr(0), uintptr(coinit))
if hr != 0 {
err = NewError(hr)
}
return
}
// CoInitialize initializes COM library on current thread.
//
// MSDN documentation suggests that this function should not be called. Call
// CoInitializeEx() instead. The reason has to do with threading and this
// function is only for single-threaded apartments.
//
// That said, most users of the library have gotten away with just this
// function. If you are experiencing threading issues, then use
// CoInitializeEx().
func CoInitialize(p uintptr) (err error) {
// p is ignored and won't be used.
// Avoid any variable not used errors.
p = uintptr(0)
return coInitialize()
}
// CoInitializeEx initializes COM library with concurrency model.
func CoInitializeEx(p uintptr, coinit uint32) (err error) {
// Avoid any variable not used errors.
p = uintptr(0)
return coInitializeEx(coinit)
}
// CoUninitialize uninitializes COM Library.
func CoUninitialize() {
procCoUninitialize.Call()
}
// CoTaskMemFree frees memory pointer.
func CoTaskMemFree(memptr uintptr) {
procCoTaskMemFree.Call(memptr)
}
// CLSIDFromProgID retrieves Class Identifier with the given Program Identifier.
//
// The Programmatic Identifier must be registered, because it will be looked up
// in the Windows Registry. The registry entry has the following keys: CLSID,
// Insertable, Protocol and Shell
// (https://msdn.microsoft.com/en-us/library/dd542719(v=vs.85).aspx).
//
// programID identifies the class id with less precision and is not guaranteed
// to be unique. These are usually found in the registry under
// HKEY_LOCAL_MACHINE\SOFTWARE\Classes, usually with the format of
// "Program.Component.Version" with version being optional.
//
// CLSIDFromProgID in Windows API.
func CLSIDFromProgID(progId string) (clsid *GUID, err error) {
var guid GUID
lpszProgID := uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(progId)))
hr, _, _ := procCLSIDFromProgID.Call(lpszProgID, uintptr(unsafe.Pointer(&guid)))
if hr != 0 {
err = NewError(hr)
}
clsid = &guid
return
}
// CLSIDFromString retrieves Class ID from string representation.
//
// This is technically the string version of the GUID and will convert the
// string to object.
//
// CLSIDFromString in Windows API.
func CLSIDFromString(str string) (clsid *GUID, err error) {
var guid GUID
lpsz := uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(str)))
hr, _, _ := procCLSIDFromString.Call(lpsz, uintptr(unsafe.Pointer(&guid)))
if hr != 0 {
err = NewError(hr)
}
clsid = &guid
return
}
// StringFromCLSID returns GUID formated string from GUID object.
func StringFromCLSID(clsid *GUID) (str string, err error) {
var p *uint16
hr, _, _ := procStringFromCLSID.Call(uintptr(unsafe.Pointer(clsid)), uintptr(unsafe.Pointer(&p)))
if hr != 0 {
err = NewError(hr)
}
str = LpOleStrToString(p)
return
}
// IIDFromString returns GUID from program ID.
func IIDFromString(progId string) (clsid *GUID, err error) {
var guid GUID
lpsz := uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(progId)))
hr, _, _ := procIIDFromString.Call(lpsz, uintptr(unsafe.Pointer(&guid)))
if hr != 0 {
err = NewError(hr)
}
clsid = &guid
return
}
// StringFromIID returns GUID formatted string from GUID object.
func StringFromIID(iid *GUID) (str string, err error) {
var p *uint16
hr, _, _ := procStringFromIID.Call(uintptr(unsafe.Pointer(iid)), uintptr(unsafe.Pointer(&p)))
if hr != 0 {
err = NewError(hr)
}
str = LpOleStrToString(p)
return
}
// CreateInstance of single uninitialized object with GUID.
func CreateInstance(clsid *GUID, iid *GUID) (unk *IUnknown, err error) {
if iid == nil {
iid = IID_IUnknown
}
hr, _, _ := procCoCreateInstance.Call(
uintptr(unsafe.Pointer(clsid)),
0,
CLSCTX_SERVER,
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(&unk)))
if hr != 0 {
err = NewError(hr)
}
return
}
// GetActiveObject retrieves pointer to active object.
func GetActiveObject(clsid *GUID, iid *GUID) (unk *IUnknown, err error) {
if iid == nil {
iid = IID_IUnknown
}
hr, _, _ := procGetActiveObject.Call(
uintptr(unsafe.Pointer(clsid)),
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(&unk)))
if hr != 0 {
err = NewError(hr)
}
return
}
type BindOpts struct {
CbStruct uint32
GrfFlags uint32
GrfMode uint32
TickCountDeadline uint32
}
// GetObject retrieves pointer to active object.
func GetObject(programID string, bindOpts *BindOpts, iid *GUID) (unk *IUnknown, err error) {
if bindOpts != nil {
bindOpts.CbStruct = uint32(unsafe.Sizeof(BindOpts{}))
}
if iid == nil {
iid = IID_IUnknown
}
hr, _, _ := procCoGetObject.Call(
uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(programID))),
uintptr(unsafe.Pointer(bindOpts)),
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(&unk)))
if hr != 0 {
err = NewError(hr)
}
return
}
// VariantInit initializes variant.
func VariantInit(v *VARIANT) (err error) {
hr, _, _ := procVariantInit.Call(uintptr(unsafe.Pointer(v)))
if hr != 0 {
err = NewError(hr)
}
return
}
// VariantClear clears value in Variant settings to VT_EMPTY.
func VariantClear(v *VARIANT) (err error) {
hr, _, _ := procVariantClear.Call(uintptr(unsafe.Pointer(v)))
if hr != 0 {
err = NewError(hr)
}
return
}
// SysAllocString allocates memory for string and copies string into memory.
func SysAllocString(v string) (ss *int16) {
pss, _, _ := procSysAllocString.Call(uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(v))))
ss = (*int16)(unsafe.Pointer(pss))
return
}
// SysAllocStringLen copies up to length of given string returning pointer.
func SysAllocStringLen(v string) (ss *int16) {
utf16 := utf16.Encode([]rune(v + "\x00"))
ptr := &utf16[0]
pss, _, _ := procSysAllocStringLen.Call(uintptr(unsafe.Pointer(ptr)), uintptr(len(utf16)-1))
ss = (*int16)(unsafe.Pointer(pss))
return
}
// SysFreeString frees string system memory. This must be called with SysAllocString.
func SysFreeString(v *int16) (err error) {
hr, _, _ := procSysFreeString.Call(uintptr(unsafe.Pointer(v)))
if hr != 0 {
err = NewError(hr)
}
return
}
// SysStringLen is the length of the system allocated string.
func SysStringLen(v *int16) uint32 {
l, _, _ := procSysStringLen.Call(uintptr(unsafe.Pointer(v)))
return uint32(l)
}
// CreateStdDispatch provides default IDispatch implementation for IUnknown.
//
// This handles default IDispatch implementation for objects. It haves a few
// limitations with only supporting one language. It will also only return
// default exception codes.
func CreateStdDispatch(unk *IUnknown, v uintptr, ptinfo *IUnknown) (disp *IDispatch, err error) {
hr, _, _ := procCreateStdDispatch.Call(
uintptr(unsafe.Pointer(unk)),
v,
uintptr(unsafe.Pointer(ptinfo)),
uintptr(unsafe.Pointer(&disp)))
if hr != 0 {
err = NewError(hr)
}
return
}
// CreateDispTypeInfo provides default ITypeInfo implementation for IDispatch.
//
// This will not handle the full implementation of the interface.
func CreateDispTypeInfo(idata *INTERFACEDATA) (pptinfo *IUnknown, err error) {
hr, _, _ := procCreateDispTypeInfo.Call(
uintptr(unsafe.Pointer(idata)),
uintptr(GetUserDefaultLCID()),
uintptr(unsafe.Pointer(&pptinfo)))
if hr != 0 {
err = NewError(hr)
}
return
}
// copyMemory moves location of a block of memory.
func copyMemory(dest unsafe.Pointer, src unsafe.Pointer, length uint32) {
procCopyMemory.Call(uintptr(dest), uintptr(src), uintptr(length))
}
// GetUserDefaultLCID retrieves current user default locale.
func GetUserDefaultLCID() (lcid uint32) {
ret, _, _ := procGetUserDefaultLCID.Call()
lcid = uint32(ret)
return
}
// GetMessage in message queue from runtime.
//
// This function appears to block. PeekMessage does not block.
func GetMessage(msg *Msg, hwnd uint32, MsgFilterMin uint32, MsgFilterMax uint32) (ret int32, err error) {
r0, _, err := procGetMessageW.Call(uintptr(unsafe.Pointer(msg)), uintptr(hwnd), uintptr(MsgFilterMin), uintptr(MsgFilterMax))
ret = int32(r0)
return
}
// DispatchMessage to window procedure.
func DispatchMessage(msg *Msg) (ret int32) {
r0, _, _ := procDispatchMessageW.Call(uintptr(unsafe.Pointer(msg)))
ret = int32(r0)
return
}

View File

@ -1,174 +0,0 @@
// +build !windows
package ole
import (
"time"
"unsafe"
)
// coInitialize initializes COM library on current thread.
//
// MSDN documentation suggests that this function should not be called. Call
// CoInitializeEx() instead. The reason has to do with threading and this
// function is only for single-threaded apartments.
//
// That said, most users of the library have gotten away with just this
// function. If you are experiencing threading issues, then use
// CoInitializeEx().
func coInitialize() error {
return NewError(E_NOTIMPL)
}
// coInitializeEx initializes COM library with concurrency model.
func coInitializeEx(coinit uint32) error {
return NewError(E_NOTIMPL)
}
// CoInitialize initializes COM library on current thread.
//
// MSDN documentation suggests that this function should not be called. Call
// CoInitializeEx() instead. The reason has to do with threading and this
// function is only for single-threaded apartments.
//
// That said, most users of the library have gotten away with just this
// function. If you are experiencing threading issues, then use
// CoInitializeEx().
func CoInitialize(p uintptr) error {
return NewError(E_NOTIMPL)
}
// CoInitializeEx initializes COM library with concurrency model.
func CoInitializeEx(p uintptr, coinit uint32) error {
return NewError(E_NOTIMPL)
}
// CoUninitialize uninitializes COM Library.
func CoUninitialize() {}
// CoTaskMemFree frees memory pointer.
func CoTaskMemFree(memptr uintptr) {}
// CLSIDFromProgID retrieves Class Identifier with the given Program Identifier.
//
// The Programmatic Identifier must be registered, because it will be looked up
// in the Windows Registry. The registry entry has the following keys: CLSID,
// Insertable, Protocol and Shell
// (https://msdn.microsoft.com/en-us/library/dd542719(v=vs.85).aspx).
//
// programID identifies the class id with less precision and is not guaranteed
// to be unique. These are usually found in the registry under
// HKEY_LOCAL_MACHINE\SOFTWARE\Classes, usually with the format of
// "Program.Component.Version" with version being optional.
//
// CLSIDFromProgID in Windows API.
func CLSIDFromProgID(progId string) (*GUID, error) {
return nil, NewError(E_NOTIMPL)
}
// CLSIDFromString retrieves Class ID from string representation.
//
// This is technically the string version of the GUID and will convert the
// string to object.
//
// CLSIDFromString in Windows API.
func CLSIDFromString(str string) (*GUID, error) {
return nil, NewError(E_NOTIMPL)
}
// StringFromCLSID returns GUID formated string from GUID object.
func StringFromCLSID(clsid *GUID) (string, error) {
return "", NewError(E_NOTIMPL)
}
// IIDFromString returns GUID from program ID.
func IIDFromString(progId string) (*GUID, error) {
return nil, NewError(E_NOTIMPL)
}
// StringFromIID returns GUID formatted string from GUID object.
func StringFromIID(iid *GUID) (string, error) {
return "", NewError(E_NOTIMPL)
}
// CreateInstance of single uninitialized object with GUID.
func CreateInstance(clsid *GUID, iid *GUID) (*IUnknown, error) {
return nil, NewError(E_NOTIMPL)
}
// GetActiveObject retrieves pointer to active object.
func GetActiveObject(clsid *GUID, iid *GUID) (*IUnknown, error) {
return nil, NewError(E_NOTIMPL)
}
// VariantInit initializes variant.
func VariantInit(v *VARIANT) error {
return NewError(E_NOTIMPL)
}
// VariantClear clears value in Variant settings to VT_EMPTY.
func VariantClear(v *VARIANT) error {
return NewError(E_NOTIMPL)
}
// SysAllocString allocates memory for string and copies string into memory.
func SysAllocString(v string) *int16 {
u := int16(0)
return &u
}
// SysAllocStringLen copies up to length of given string returning pointer.
func SysAllocStringLen(v string) *int16 {
u := int16(0)
return &u
}
// SysFreeString frees string system memory. This must be called with SysAllocString.
func SysFreeString(v *int16) error {
return NewError(E_NOTIMPL)
}
// SysStringLen is the length of the system allocated string.
func SysStringLen(v *int16) uint32 {
return uint32(0)
}
// CreateStdDispatch provides default IDispatch implementation for IUnknown.
//
// This handles default IDispatch implementation for objects. It haves a few
// limitations with only supporting one language. It will also only return
// default exception codes.
func CreateStdDispatch(unk *IUnknown, v uintptr, ptinfo *IUnknown) (*IDispatch, error) {
return nil, NewError(E_NOTIMPL)
}
// CreateDispTypeInfo provides default ITypeInfo implementation for IDispatch.
//
// This will not handle the full implementation of the interface.
func CreateDispTypeInfo(idata *INTERFACEDATA) (*IUnknown, error) {
return nil, NewError(E_NOTIMPL)
}
// copyMemory moves location of a block of memory.
func copyMemory(dest unsafe.Pointer, src unsafe.Pointer, length uint32) {}
// GetUserDefaultLCID retrieves current user default locale.
func GetUserDefaultLCID() uint32 {
return uint32(0)
}
// GetMessage in message queue from runtime.
//
// This function appears to block. PeekMessage does not block.
func GetMessage(msg *Msg, hwnd uint32, MsgFilterMin uint32, MsgFilterMax uint32) (int32, error) {
return int32(0), NewError(E_NOTIMPL)
}
// DispatchMessage to window procedure.
func DispatchMessage(msg *Msg) int32 {
return int32(0)
}
func GetVariantDate(value uint64) (time.Time, error) {
return time.Now(), NewError(E_NOTIMPL)
}

View File

@ -1,192 +0,0 @@
package ole
// Connection contains IUnknown for fluent interface interaction.
//
// Deprecated. Use oleutil package instead.
type Connection struct {
Object *IUnknown // Access COM
}
// Initialize COM.
func (*Connection) Initialize() (err error) {
return coInitialize()
}
// Uninitialize COM.
func (*Connection) Uninitialize() {
CoUninitialize()
}
// Create IUnknown object based first on ProgId and then from String.
func (c *Connection) Create(progId string) (err error) {
var clsid *GUID
clsid, err = CLSIDFromProgID(progId)
if err != nil {
clsid, err = CLSIDFromString(progId)
if err != nil {
return
}
}
unknown, err := CreateInstance(clsid, IID_IUnknown)
if err != nil {
return
}
c.Object = unknown
return
}
// Release IUnknown object.
func (c *Connection) Release() {
c.Object.Release()
}
// Load COM object from list of programIDs or strings.
func (c *Connection) Load(names ...string) (errors []error) {
var tempErrors []error = make([]error, len(names))
var numErrors int = 0
for _, name := range names {
err := c.Create(name)
if err != nil {
tempErrors = append(tempErrors, err)
numErrors += 1
continue
}
break
}
copy(errors, tempErrors[0:numErrors])
return
}
// Dispatch returns Dispatch object.
func (c *Connection) Dispatch() (object *Dispatch, err error) {
dispatch, err := c.Object.QueryInterface(IID_IDispatch)
if err != nil {
return
}
object = &Dispatch{dispatch}
return
}
// Dispatch stores IDispatch object.
type Dispatch struct {
Object *IDispatch // Dispatch object.
}
// Call method on IDispatch with parameters.
func (d *Dispatch) Call(method string, params ...interface{}) (result *VARIANT, err error) {
id, err := d.GetId(method)
if err != nil {
return
}
result, err = d.Invoke(id, DISPATCH_METHOD, params)
return
}
// MustCall method on IDispatch with parameters.
func (d *Dispatch) MustCall(method string, params ...interface{}) (result *VARIANT) {
id, err := d.GetId(method)
if err != nil {
panic(err)
}
result, err = d.Invoke(id, DISPATCH_METHOD, params)
if err != nil {
panic(err)
}
return
}
// Get property on IDispatch with parameters.
func (d *Dispatch) Get(name string, params ...interface{}) (result *VARIANT, err error) {
id, err := d.GetId(name)
if err != nil {
return
}
result, err = d.Invoke(id, DISPATCH_PROPERTYGET, params)
return
}
// MustGet property on IDispatch with parameters.
func (d *Dispatch) MustGet(name string, params ...interface{}) (result *VARIANT) {
id, err := d.GetId(name)
if err != nil {
panic(err)
}
result, err = d.Invoke(id, DISPATCH_PROPERTYGET, params)
if err != nil {
panic(err)
}
return
}
// Set property on IDispatch with parameters.
func (d *Dispatch) Set(name string, params ...interface{}) (result *VARIANT, err error) {
id, err := d.GetId(name)
if err != nil {
return
}
result, err = d.Invoke(id, DISPATCH_PROPERTYPUT, params)
return
}
// MustSet property on IDispatch with parameters.
func (d *Dispatch) MustSet(name string, params ...interface{}) (result *VARIANT) {
id, err := d.GetId(name)
if err != nil {
panic(err)
}
result, err = d.Invoke(id, DISPATCH_PROPERTYPUT, params)
if err != nil {
panic(err)
}
return
}
// GetId retrieves ID of name on IDispatch.
func (d *Dispatch) GetId(name string) (id int32, err error) {
var dispid []int32
dispid, err = d.Object.GetIDsOfName([]string{name})
if err != nil {
return
}
id = dispid[0]
return
}
// GetIds retrieves all IDs of names on IDispatch.
func (d *Dispatch) GetIds(names ...string) (dispid []int32, err error) {
dispid, err = d.Object.GetIDsOfName(names)
return
}
// Invoke IDispatch on DisplayID of dispatch type with parameters.
//
// There have been problems where if send cascading params..., it would error
// out because the parameters would be empty.
func (d *Dispatch) Invoke(id int32, dispatch int16, params []interface{}) (result *VARIANT, err error) {
if len(params) < 1 {
result, err = d.Object.Invoke(id, dispatch)
} else {
result, err = d.Object.Invoke(id, dispatch, params...)
}
return
}
// Release IDispatch object.
func (d *Dispatch) Release() {
d.Object.Release()
}
// Connect initializes COM and attempts to load IUnknown based on given names.
func Connect(names ...string) (connection *Connection) {
connection.Initialize()
connection.Load(names...)
return
}

View File

@ -1,153 +0,0 @@
package ole
const (
CLSCTX_INPROC_SERVER = 1
CLSCTX_INPROC_HANDLER = 2
CLSCTX_LOCAL_SERVER = 4
CLSCTX_INPROC_SERVER16 = 8
CLSCTX_REMOTE_SERVER = 16
CLSCTX_ALL = CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER
CLSCTX_INPROC = CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER
CLSCTX_SERVER = CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER
)
const (
COINIT_APARTMENTTHREADED = 0x2
COINIT_MULTITHREADED = 0x0
COINIT_DISABLE_OLE1DDE = 0x4
COINIT_SPEED_OVER_MEMORY = 0x8
)
const (
DISPATCH_METHOD = 1
DISPATCH_PROPERTYGET = 2
DISPATCH_PROPERTYPUT = 4
DISPATCH_PROPERTYPUTREF = 8
)
const (
S_OK = 0x00000000
E_UNEXPECTED = 0x8000FFFF
E_NOTIMPL = 0x80004001
E_OUTOFMEMORY = 0x8007000E
E_INVALIDARG = 0x80070057
E_NOINTERFACE = 0x80004002
E_POINTER = 0x80004003
E_HANDLE = 0x80070006
E_ABORT = 0x80004004
E_FAIL = 0x80004005
E_ACCESSDENIED = 0x80070005
E_PENDING = 0x8000000A
CO_E_CLASSSTRING = 0x800401F3
)
const (
CC_FASTCALL = iota
CC_CDECL
CC_MSCPASCAL
CC_PASCAL = CC_MSCPASCAL
CC_MACPASCAL
CC_STDCALL
CC_FPFASTCALL
CC_SYSCALL
CC_MPWCDECL
CC_MPWPASCAL
CC_MAX = CC_MPWPASCAL
)
type VT uint16
const (
VT_EMPTY VT = 0x0
VT_NULL VT = 0x1
VT_I2 VT = 0x2
VT_I4 VT = 0x3
VT_R4 VT = 0x4
VT_R8 VT = 0x5
VT_CY VT = 0x6
VT_DATE VT = 0x7
VT_BSTR VT = 0x8
VT_DISPATCH VT = 0x9
VT_ERROR VT = 0xa
VT_BOOL VT = 0xb
VT_VARIANT VT = 0xc
VT_UNKNOWN VT = 0xd
VT_DECIMAL VT = 0xe
VT_I1 VT = 0x10
VT_UI1 VT = 0x11
VT_UI2 VT = 0x12
VT_UI4 VT = 0x13
VT_I8 VT = 0x14
VT_UI8 VT = 0x15
VT_INT VT = 0x16
VT_UINT VT = 0x17
VT_VOID VT = 0x18
VT_HRESULT VT = 0x19
VT_PTR VT = 0x1a
VT_SAFEARRAY VT = 0x1b
VT_CARRAY VT = 0x1c
VT_USERDEFINED VT = 0x1d
VT_LPSTR VT = 0x1e
VT_LPWSTR VT = 0x1f
VT_RECORD VT = 0x24
VT_INT_PTR VT = 0x25
VT_UINT_PTR VT = 0x26
VT_FILETIME VT = 0x40
VT_BLOB VT = 0x41
VT_STREAM VT = 0x42
VT_STORAGE VT = 0x43
VT_STREAMED_OBJECT VT = 0x44
VT_STORED_OBJECT VT = 0x45
VT_BLOB_OBJECT VT = 0x46
VT_CF VT = 0x47
VT_CLSID VT = 0x48
VT_BSTR_BLOB VT = 0xfff
VT_VECTOR VT = 0x1000
VT_ARRAY VT = 0x2000
VT_BYREF VT = 0x4000
VT_RESERVED VT = 0x8000
VT_ILLEGAL VT = 0xffff
VT_ILLEGALMASKED VT = 0xfff
VT_TYPEMASK VT = 0xfff
)
const (
DISPID_UNKNOWN = -1
DISPID_VALUE = 0
DISPID_PROPERTYPUT = -3
DISPID_NEWENUM = -4
DISPID_EVALUATE = -5
DISPID_CONSTRUCTOR = -6
DISPID_DESTRUCTOR = -7
DISPID_COLLECT = -8
)
const (
TKIND_ENUM = 1
TKIND_RECORD = 2
TKIND_MODULE = 3
TKIND_INTERFACE = 4
TKIND_DISPATCH = 5
TKIND_COCLASS = 6
TKIND_ALIAS = 7
TKIND_UNION = 8
TKIND_MAX = 9
)
// Safe Array Feature Flags
const (
FADF_AUTO = 0x0001
FADF_STATIC = 0x0002
FADF_EMBEDDED = 0x0004
FADF_FIXEDSIZE = 0x0010
FADF_RECORD = 0x0020
FADF_HAVEIID = 0x0040
FADF_HAVEVARTYPE = 0x0080
FADF_BSTR = 0x0100
FADF_UNKNOWN = 0x0200
FADF_DISPATCH = 0x0400
FADF_VARIANT = 0x0800
FADF_RESERVED = 0xF008
)

View File

@ -1,51 +0,0 @@
package ole
// OleError stores COM errors.
type OleError struct {
hr uintptr
description string
subError error
}
// NewError creates new error with HResult.
func NewError(hr uintptr) *OleError {
return &OleError{hr: hr}
}
// NewErrorWithDescription creates new COM error with HResult and description.
func NewErrorWithDescription(hr uintptr, description string) *OleError {
return &OleError{hr: hr, description: description}
}
// NewErrorWithSubError creates new COM error with parent error.
func NewErrorWithSubError(hr uintptr, description string, err error) *OleError {
return &OleError{hr: hr, description: description, subError: err}
}
// Code is the HResult.
func (v *OleError) Code() uintptr {
return uintptr(v.hr)
}
// String description, either manually set or format message with error code.
func (v *OleError) String() string {
if v.description != "" {
return errstr(int(v.hr)) + " (" + v.description + ")"
}
return errstr(int(v.hr))
}
// Error implements error interface.
func (v *OleError) Error() string {
return v.String()
}
// Description retrieves error summary, if there is one.
func (v *OleError) Description() string {
return v.description
}
// SubError returns parent error, if there is one.
func (v *OleError) SubError() error {
return v.subError
}

View File

@ -1,8 +0,0 @@
// +build !windows
package ole
// errstr converts error code to string.
func errstr(errno int) string {
return ""
}

View File

@ -1,24 +0,0 @@
// +build windows
package ole
import (
"fmt"
"syscall"
"unicode/utf16"
)
// errstr converts error code to string.
func errstr(errno int) string {
// ask windows for the remaining errors
var flags uint32 = syscall.FORMAT_MESSAGE_FROM_SYSTEM | syscall.FORMAT_MESSAGE_ARGUMENT_ARRAY | syscall.FORMAT_MESSAGE_IGNORE_INSERTS
b := make([]uint16, 300)
n, err := syscall.FormatMessage(flags, 0, uint32(errno), 0, b, nil)
if err != nil {
return fmt.Sprintf("error %d (FormatMessage failed with: %v)", errno, err)
}
// trim terminating \r and \n
for ; n > 0 && (b[n-1] == '\n' || b[n-1] == '\r'); n-- {
}
return string(utf16.Decode(b[:n]))
}

View File

@ -1,3 +0,0 @@
module github.com/go-ole/go-ole
go 1.12

View File

@ -1,284 +0,0 @@
package ole
var (
// IID_NULL is null Interface ID, used when no other Interface ID is known.
IID_NULL = NewGUID("{00000000-0000-0000-0000-000000000000}")
// IID_IUnknown is for IUnknown interfaces.
IID_IUnknown = NewGUID("{00000000-0000-0000-C000-000000000046}")
// IID_IDispatch is for IDispatch interfaces.
IID_IDispatch = NewGUID("{00020400-0000-0000-C000-000000000046}")
// IID_IEnumVariant is for IEnumVariant interfaces
IID_IEnumVariant = NewGUID("{00020404-0000-0000-C000-000000000046}")
// IID_IConnectionPointContainer is for IConnectionPointContainer interfaces.
IID_IConnectionPointContainer = NewGUID("{B196B284-BAB4-101A-B69C-00AA00341D07}")
// IID_IConnectionPoint is for IConnectionPoint interfaces.
IID_IConnectionPoint = NewGUID("{B196B286-BAB4-101A-B69C-00AA00341D07}")
// IID_IInspectable is for IInspectable interfaces.
IID_IInspectable = NewGUID("{AF86E2E0-B12D-4C6A-9C5A-D7AA65101E90}")
// IID_IProvideClassInfo is for IProvideClassInfo interfaces.
IID_IProvideClassInfo = NewGUID("{B196B283-BAB4-101A-B69C-00AA00341D07}")
)
// These are for testing and not part of any library.
var (
// IID_ICOMTestString is for ICOMTestString interfaces.
//
// {E0133EB4-C36F-469A-9D3D-C66B84BE19ED}
IID_ICOMTestString = NewGUID("{E0133EB4-C36F-469A-9D3D-C66B84BE19ED}")
// IID_ICOMTestInt8 is for ICOMTestInt8 interfaces.
//
// {BEB06610-EB84-4155-AF58-E2BFF53680B4}
IID_ICOMTestInt8 = NewGUID("{BEB06610-EB84-4155-AF58-E2BFF53680B4}")
// IID_ICOMTestInt16 is for ICOMTestInt16 interfaces.
//
// {DAA3F9FA-761E-4976-A860-8364CE55F6FC}
IID_ICOMTestInt16 = NewGUID("{DAA3F9FA-761E-4976-A860-8364CE55F6FC}")
// IID_ICOMTestInt32 is for ICOMTestInt32 interfaces.
//
// {E3DEDEE7-38A2-4540-91D1-2EEF1D8891B0}
IID_ICOMTestInt32 = NewGUID("{E3DEDEE7-38A2-4540-91D1-2EEF1D8891B0}")
// IID_ICOMTestInt64 is for ICOMTestInt64 interfaces.
//
// {8D437CBC-B3ED-485C-BC32-C336432A1623}
IID_ICOMTestInt64 = NewGUID("{8D437CBC-B3ED-485C-BC32-C336432A1623}")
// IID_ICOMTestFloat is for ICOMTestFloat interfaces.
//
// {BF1ED004-EA02-456A-AA55-2AC8AC6B054C}
IID_ICOMTestFloat = NewGUID("{BF1ED004-EA02-456A-AA55-2AC8AC6B054C}")
// IID_ICOMTestDouble is for ICOMTestDouble interfaces.
//
// {BF908A81-8687-4E93-999F-D86FAB284BA0}
IID_ICOMTestDouble = NewGUID("{BF908A81-8687-4E93-999F-D86FAB284BA0}")
// IID_ICOMTestBoolean is for ICOMTestBoolean interfaces.
//
// {D530E7A6-4EE8-40D1-8931-3D63B8605010}
IID_ICOMTestBoolean = NewGUID("{D530E7A6-4EE8-40D1-8931-3D63B8605010}")
// IID_ICOMEchoTestObject is for ICOMEchoTestObject interfaces.
//
// {6485B1EF-D780-4834-A4FE-1EBB51746CA3}
IID_ICOMEchoTestObject = NewGUID("{6485B1EF-D780-4834-A4FE-1EBB51746CA3}")
// IID_ICOMTestTypes is for ICOMTestTypes interfaces.
//
// {CCA8D7AE-91C0-4277-A8B3-FF4EDF28D3C0}
IID_ICOMTestTypes = NewGUID("{CCA8D7AE-91C0-4277-A8B3-FF4EDF28D3C0}")
// CLSID_COMEchoTestObject is for COMEchoTestObject class.
//
// {3C24506A-AE9E-4D50-9157-EF317281F1B0}
CLSID_COMEchoTestObject = NewGUID("{3C24506A-AE9E-4D50-9157-EF317281F1B0}")
// CLSID_COMTestScalarClass is for COMTestScalarClass class.
//
// {865B85C5-0334-4AC6-9EF6-AACEC8FC5E86}
CLSID_COMTestScalarClass = NewGUID("{865B85C5-0334-4AC6-9EF6-AACEC8FC5E86}")
)
const hextable = "0123456789ABCDEF"
const emptyGUID = "{00000000-0000-0000-0000-000000000000}"
// GUID is Windows API specific GUID type.
//
// This exists to match Windows GUID type for direct passing for COM.
// Format is in xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx.
type GUID struct {
Data1 uint32
Data2 uint16
Data3 uint16
Data4 [8]byte
}
// NewGUID converts the given string into a globally unique identifier that is
// compliant with the Windows API.
//
// The supplied string may be in any of these formats:
//
// XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
// {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
//
// The conversion of the supplied string is not case-sensitive.
func NewGUID(guid string) *GUID {
d := []byte(guid)
var d1, d2, d3, d4a, d4b []byte
switch len(d) {
case 38:
if d[0] != '{' || d[37] != '}' {
return nil
}
d = d[1:37]
fallthrough
case 36:
if d[8] != '-' || d[13] != '-' || d[18] != '-' || d[23] != '-' {
return nil
}
d1 = d[0:8]
d2 = d[9:13]
d3 = d[14:18]
d4a = d[19:23]
d4b = d[24:36]
case 32:
d1 = d[0:8]
d2 = d[8:12]
d3 = d[12:16]
d4a = d[16:20]
d4b = d[20:32]
default:
return nil
}
var g GUID
var ok1, ok2, ok3, ok4 bool
g.Data1, ok1 = decodeHexUint32(d1)
g.Data2, ok2 = decodeHexUint16(d2)
g.Data3, ok3 = decodeHexUint16(d3)
g.Data4, ok4 = decodeHexByte64(d4a, d4b)
if ok1 && ok2 && ok3 && ok4 {
return &g
}
return nil
}
func decodeHexUint32(src []byte) (value uint32, ok bool) {
var b1, b2, b3, b4 byte
var ok1, ok2, ok3, ok4 bool
b1, ok1 = decodeHexByte(src[0], src[1])
b2, ok2 = decodeHexByte(src[2], src[3])
b3, ok3 = decodeHexByte(src[4], src[5])
b4, ok4 = decodeHexByte(src[6], src[7])
value = (uint32(b1) << 24) | (uint32(b2) << 16) | (uint32(b3) << 8) | uint32(b4)
ok = ok1 && ok2 && ok3 && ok4
return
}
func decodeHexUint16(src []byte) (value uint16, ok bool) {
var b1, b2 byte
var ok1, ok2 bool
b1, ok1 = decodeHexByte(src[0], src[1])
b2, ok2 = decodeHexByte(src[2], src[3])
value = (uint16(b1) << 8) | uint16(b2)
ok = ok1 && ok2
return
}
func decodeHexByte64(s1 []byte, s2 []byte) (value [8]byte, ok bool) {
var ok1, ok2, ok3, ok4, ok5, ok6, ok7, ok8 bool
value[0], ok1 = decodeHexByte(s1[0], s1[1])
value[1], ok2 = decodeHexByte(s1[2], s1[3])
value[2], ok3 = decodeHexByte(s2[0], s2[1])
value[3], ok4 = decodeHexByte(s2[2], s2[3])
value[4], ok5 = decodeHexByte(s2[4], s2[5])
value[5], ok6 = decodeHexByte(s2[6], s2[7])
value[6], ok7 = decodeHexByte(s2[8], s2[9])
value[7], ok8 = decodeHexByte(s2[10], s2[11])
ok = ok1 && ok2 && ok3 && ok4 && ok5 && ok6 && ok7 && ok8
return
}
func decodeHexByte(c1, c2 byte) (value byte, ok bool) {
var n1, n2 byte
var ok1, ok2 bool
n1, ok1 = decodeHexChar(c1)
n2, ok2 = decodeHexChar(c2)
value = (n1 << 4) | n2
ok = ok1 && ok2
return
}
func decodeHexChar(c byte) (byte, bool) {
switch {
case '0' <= c && c <= '9':
return c - '0', true
case 'a' <= c && c <= 'f':
return c - 'a' + 10, true
case 'A' <= c && c <= 'F':
return c - 'A' + 10, true
}
return 0, false
}
// String converts the GUID to string form. It will adhere to this pattern:
//
// {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
//
// If the GUID is nil, the string representation of an empty GUID is returned:
//
// {00000000-0000-0000-0000-000000000000}
func (guid *GUID) String() string {
if guid == nil {
return emptyGUID
}
var c [38]byte
c[0] = '{'
putUint32Hex(c[1:9], guid.Data1)
c[9] = '-'
putUint16Hex(c[10:14], guid.Data2)
c[14] = '-'
putUint16Hex(c[15:19], guid.Data3)
c[19] = '-'
putByteHex(c[20:24], guid.Data4[0:2])
c[24] = '-'
putByteHex(c[25:37], guid.Data4[2:8])
c[37] = '}'
return string(c[:])
}
func putUint32Hex(b []byte, v uint32) {
b[0] = hextable[byte(v>>24)>>4]
b[1] = hextable[byte(v>>24)&0x0f]
b[2] = hextable[byte(v>>16)>>4]
b[3] = hextable[byte(v>>16)&0x0f]
b[4] = hextable[byte(v>>8)>>4]
b[5] = hextable[byte(v>>8)&0x0f]
b[6] = hextable[byte(v)>>4]
b[7] = hextable[byte(v)&0x0f]
}
func putUint16Hex(b []byte, v uint16) {
b[0] = hextable[byte(v>>8)>>4]
b[1] = hextable[byte(v>>8)&0x0f]
b[2] = hextable[byte(v)>>4]
b[3] = hextable[byte(v)&0x0f]
}
func putByteHex(dst, src []byte) {
for i := 0; i < len(src); i++ {
dst[i*2] = hextable[src[i]>>4]
dst[i*2+1] = hextable[src[i]&0x0f]
}
}
// IsEqualGUID compares two GUID.
//
// Not constant time comparison.
func IsEqualGUID(guid1 *GUID, guid2 *GUID) bool {
return guid1.Data1 == guid2.Data1 &&
guid1.Data2 == guid2.Data2 &&
guid1.Data3 == guid2.Data3 &&
guid1.Data4[0] == guid2.Data4[0] &&
guid1.Data4[1] == guid2.Data4[1] &&
guid1.Data4[2] == guid2.Data4[2] &&
guid1.Data4[3] == guid2.Data4[3] &&
guid1.Data4[4] == guid2.Data4[4] &&
guid1.Data4[5] == guid2.Data4[5] &&
guid1.Data4[6] == guid2.Data4[6] &&
guid1.Data4[7] == guid2.Data4[7]
}

View File

@ -1,20 +0,0 @@
package ole
import "unsafe"
type IConnectionPoint struct {
IUnknown
}
type IConnectionPointVtbl struct {
IUnknownVtbl
GetConnectionInterface uintptr
GetConnectionPointContainer uintptr
Advise uintptr
Unadvise uintptr
EnumConnections uintptr
}
func (v *IConnectionPoint) VTable() *IConnectionPointVtbl {
return (*IConnectionPointVtbl)(unsafe.Pointer(v.RawVTable))
}

View File

@ -1,21 +0,0 @@
// +build !windows
package ole
import "unsafe"
func (v *IConnectionPoint) GetConnectionInterface(piid **GUID) int32 {
return int32(0)
}
func (v *IConnectionPoint) Advise(unknown *IUnknown) (uint32, error) {
return uint32(0), NewError(E_NOTIMPL)
}
func (v *IConnectionPoint) Unadvise(cookie uint32) error {
return NewError(E_NOTIMPL)
}
func (v *IConnectionPoint) EnumConnections(p *unsafe.Pointer) (err error) {
return NewError(E_NOTIMPL)
}

View File

@ -1,43 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unsafe"
)
func (v *IConnectionPoint) GetConnectionInterface(piid **GUID) int32 {
// XXX: This doesn't look like it does what it's supposed to
return release((*IUnknown)(unsafe.Pointer(v)))
}
func (v *IConnectionPoint) Advise(unknown *IUnknown) (cookie uint32, err error) {
hr, _, _ := syscall.Syscall(
v.VTable().Advise,
3,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(unknown)),
uintptr(unsafe.Pointer(&cookie)))
if hr != 0 {
err = NewError(hr)
}
return
}
func (v *IConnectionPoint) Unadvise(cookie uint32) (err error) {
hr, _, _ := syscall.Syscall(
v.VTable().Unadvise,
2,
uintptr(unsafe.Pointer(v)),
uintptr(cookie),
0)
if hr != 0 {
err = NewError(hr)
}
return
}
func (v *IConnectionPoint) EnumConnections(p *unsafe.Pointer) error {
return NewError(E_NOTIMPL)
}

View File

@ -1,17 +0,0 @@
package ole
import "unsafe"
type IConnectionPointContainer struct {
IUnknown
}
type IConnectionPointContainerVtbl struct {
IUnknownVtbl
EnumConnectionPoints uintptr
FindConnectionPoint uintptr
}
func (v *IConnectionPointContainer) VTable() *IConnectionPointContainerVtbl {
return (*IConnectionPointContainerVtbl)(unsafe.Pointer(v.RawVTable))
}

View File

@ -1,11 +0,0 @@
// +build !windows
package ole
func (v *IConnectionPointContainer) EnumConnectionPoints(points interface{}) error {
return NewError(E_NOTIMPL)
}
func (v *IConnectionPointContainer) FindConnectionPoint(iid *GUID, point **IConnectionPoint) error {
return NewError(E_NOTIMPL)
}

View File

@ -1,25 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unsafe"
)
func (v *IConnectionPointContainer) EnumConnectionPoints(points interface{}) error {
return NewError(E_NOTIMPL)
}
func (v *IConnectionPointContainer) FindConnectionPoint(iid *GUID, point **IConnectionPoint) (err error) {
hr, _, _ := syscall.Syscall(
v.VTable().FindConnectionPoint,
3,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(point)))
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,94 +0,0 @@
package ole
import "unsafe"
type IDispatch struct {
IUnknown
}
type IDispatchVtbl struct {
IUnknownVtbl
GetTypeInfoCount uintptr
GetTypeInfo uintptr
GetIDsOfNames uintptr
Invoke uintptr
}
func (v *IDispatch) VTable() *IDispatchVtbl {
return (*IDispatchVtbl)(unsafe.Pointer(v.RawVTable))
}
func (v *IDispatch) GetIDsOfName(names []string) (dispid []int32, err error) {
dispid, err = getIDsOfName(v, names)
return
}
func (v *IDispatch) Invoke(dispid int32, dispatch int16, params ...interface{}) (result *VARIANT, err error) {
result, err = invoke(v, dispid, dispatch, params...)
return
}
func (v *IDispatch) GetTypeInfoCount() (c uint32, err error) {
c, err = getTypeInfoCount(v)
return
}
func (v *IDispatch) GetTypeInfo() (tinfo *ITypeInfo, err error) {
tinfo, err = getTypeInfo(v)
return
}
// GetSingleIDOfName is a helper that returns single display ID for IDispatch name.
//
// This replaces the common pattern of attempting to get a single name from the list of available
// IDs. It gives the first ID, if it is available.
func (v *IDispatch) GetSingleIDOfName(name string) (displayID int32, err error) {
var displayIDs []int32
displayIDs, err = v.GetIDsOfName([]string{name})
if err != nil {
return
}
displayID = displayIDs[0]
return
}
// InvokeWithOptionalArgs accepts arguments as an array, works like Invoke.
//
// Accepts name and will attempt to retrieve Display ID to pass to Invoke.
//
// Passing params as an array is a workaround that could be fixed in later versions of Go that
// prevent passing empty params. During testing it was discovered that this is an acceptable way of
// getting around not being able to pass params normally.
func (v *IDispatch) InvokeWithOptionalArgs(name string, dispatch int16, params []interface{}) (result *VARIANT, err error) {
displayID, err := v.GetSingleIDOfName(name)
if err != nil {
return
}
if len(params) < 1 {
result, err = v.Invoke(displayID, dispatch)
} else {
result, err = v.Invoke(displayID, dispatch, params...)
}
return
}
// CallMethod invokes named function with arguments on object.
func (v *IDispatch) CallMethod(name string, params ...interface{}) (*VARIANT, error) {
return v.InvokeWithOptionalArgs(name, DISPATCH_METHOD, params)
}
// GetProperty retrieves the property with the name with the ability to pass arguments.
//
// Most of the time you will not need to pass arguments as most objects do not allow for this
// feature. Or at least, should not allow for this feature. Some servers don't follow best practices
// and this is provided for those edge cases.
func (v *IDispatch) GetProperty(name string, params ...interface{}) (*VARIANT, error) {
return v.InvokeWithOptionalArgs(name, DISPATCH_PROPERTYGET, params)
}
// PutProperty attempts to mutate a property in the object.
func (v *IDispatch) PutProperty(name string, params ...interface{}) (*VARIANT, error) {
return v.InvokeWithOptionalArgs(name, DISPATCH_PROPERTYPUT, params)
}

View File

@ -1,19 +0,0 @@
// +build !windows
package ole
func getIDsOfName(disp *IDispatch, names []string) ([]int32, error) {
return []int32{}, NewError(E_NOTIMPL)
}
func getTypeInfoCount(disp *IDispatch) (uint32, error) {
return uint32(0), NewError(E_NOTIMPL)
}
func getTypeInfo(disp *IDispatch) (*ITypeInfo, error) {
return nil, NewError(E_NOTIMPL)
}
func invoke(disp *IDispatch, dispid int32, dispatch int16, params ...interface{}) (*VARIANT, error) {
return nil, NewError(E_NOTIMPL)
}

View File

@ -1,200 +0,0 @@
// +build windows
package ole
import (
"math/big"
"syscall"
"time"
"unsafe"
)
func getIDsOfName(disp *IDispatch, names []string) (dispid []int32, err error) {
wnames := make([]*uint16, len(names))
for i := 0; i < len(names); i++ {
wnames[i] = syscall.StringToUTF16Ptr(names[i])
}
dispid = make([]int32, len(names))
namelen := uint32(len(names))
hr, _, _ := syscall.Syscall6(
disp.VTable().GetIDsOfNames,
6,
uintptr(unsafe.Pointer(disp)),
uintptr(unsafe.Pointer(IID_NULL)),
uintptr(unsafe.Pointer(&wnames[0])),
uintptr(namelen),
uintptr(GetUserDefaultLCID()),
uintptr(unsafe.Pointer(&dispid[0])))
if hr != 0 {
err = NewError(hr)
}
return
}
func getTypeInfoCount(disp *IDispatch) (c uint32, err error) {
hr, _, _ := syscall.Syscall(
disp.VTable().GetTypeInfoCount,
2,
uintptr(unsafe.Pointer(disp)),
uintptr(unsafe.Pointer(&c)),
0)
if hr != 0 {
err = NewError(hr)
}
return
}
func getTypeInfo(disp *IDispatch) (tinfo *ITypeInfo, err error) {
hr, _, _ := syscall.Syscall(
disp.VTable().GetTypeInfo,
3,
uintptr(unsafe.Pointer(disp)),
uintptr(GetUserDefaultLCID()),
uintptr(unsafe.Pointer(&tinfo)))
if hr != 0 {
err = NewError(hr)
}
return
}
func invoke(disp *IDispatch, dispid int32, dispatch int16, params ...interface{}) (result *VARIANT, err error) {
var dispparams DISPPARAMS
if dispatch&DISPATCH_PROPERTYPUT != 0 {
dispnames := [1]int32{DISPID_PROPERTYPUT}
dispparams.rgdispidNamedArgs = uintptr(unsafe.Pointer(&dispnames[0]))
dispparams.cNamedArgs = 1
} else if dispatch&DISPATCH_PROPERTYPUTREF != 0 {
dispnames := [1]int32{DISPID_PROPERTYPUT}
dispparams.rgdispidNamedArgs = uintptr(unsafe.Pointer(&dispnames[0]))
dispparams.cNamedArgs = 1
}
var vargs []VARIANT
if len(params) > 0 {
vargs = make([]VARIANT, len(params))
for i, v := range params {
//n := len(params)-i-1
n := len(params) - i - 1
VariantInit(&vargs[n])
switch vv := v.(type) {
case bool:
if vv {
vargs[n] = NewVariant(VT_BOOL, 0xffff)
} else {
vargs[n] = NewVariant(VT_BOOL, 0)
}
case *bool:
vargs[n] = NewVariant(VT_BOOL|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*bool)))))
case uint8:
vargs[n] = NewVariant(VT_I1, int64(v.(uint8)))
case *uint8:
vargs[n] = NewVariant(VT_I1|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint8)))))
case int8:
vargs[n] = NewVariant(VT_I1, int64(v.(int8)))
case *int8:
vargs[n] = NewVariant(VT_I1|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint8)))))
case int16:
vargs[n] = NewVariant(VT_I2, int64(v.(int16)))
case *int16:
vargs[n] = NewVariant(VT_I2|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*int16)))))
case uint16:
vargs[n] = NewVariant(VT_UI2, int64(v.(uint16)))
case *uint16:
vargs[n] = NewVariant(VT_UI2|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint16)))))
case int32:
vargs[n] = NewVariant(VT_I4, int64(v.(int32)))
case *int32:
vargs[n] = NewVariant(VT_I4|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*int32)))))
case uint32:
vargs[n] = NewVariant(VT_UI4, int64(v.(uint32)))
case *uint32:
vargs[n] = NewVariant(VT_UI4|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint32)))))
case int64:
vargs[n] = NewVariant(VT_I8, int64(v.(int64)))
case *int64:
vargs[n] = NewVariant(VT_I8|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*int64)))))
case uint64:
vargs[n] = NewVariant(VT_UI8, int64(uintptr(v.(uint64))))
case *uint64:
vargs[n] = NewVariant(VT_UI8|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint64)))))
case int:
vargs[n] = NewVariant(VT_I4, int64(v.(int)))
case *int:
vargs[n] = NewVariant(VT_I4|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*int)))))
case uint:
vargs[n] = NewVariant(VT_UI4, int64(v.(uint)))
case *uint:
vargs[n] = NewVariant(VT_UI4|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*uint)))))
case float32:
vargs[n] = NewVariant(VT_R4, *(*int64)(unsafe.Pointer(&vv)))
case *float32:
vargs[n] = NewVariant(VT_R4|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*float32)))))
case float64:
vargs[n] = NewVariant(VT_R8, *(*int64)(unsafe.Pointer(&vv)))
case *float64:
vargs[n] = NewVariant(VT_R8|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*float64)))))
case *big.Int:
vargs[n] = NewVariant(VT_DECIMAL, v.(*big.Int).Int64())
case string:
vargs[n] = NewVariant(VT_BSTR, int64(uintptr(unsafe.Pointer(SysAllocStringLen(v.(string))))))
case *string:
vargs[n] = NewVariant(VT_BSTR|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*string)))))
case time.Time:
s := vv.Format("2006-01-02 15:04:05")
vargs[n] = NewVariant(VT_BSTR, int64(uintptr(unsafe.Pointer(SysAllocStringLen(s)))))
case *time.Time:
s := vv.Format("2006-01-02 15:04:05")
vargs[n] = NewVariant(VT_BSTR|VT_BYREF, int64(uintptr(unsafe.Pointer(&s))))
case *IDispatch:
vargs[n] = NewVariant(VT_DISPATCH, int64(uintptr(unsafe.Pointer(v.(*IDispatch)))))
case **IDispatch:
vargs[n] = NewVariant(VT_DISPATCH|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(**IDispatch)))))
case nil:
vargs[n] = NewVariant(VT_NULL, 0)
case *VARIANT:
vargs[n] = NewVariant(VT_VARIANT|VT_BYREF, int64(uintptr(unsafe.Pointer(v.(*VARIANT)))))
case []byte:
safeByteArray := safeArrayFromByteSlice(v.([]byte))
vargs[n] = NewVariant(VT_ARRAY|VT_UI1, int64(uintptr(unsafe.Pointer(safeByteArray))))
defer VariantClear(&vargs[n])
case []string:
safeByteArray := safeArrayFromStringSlice(v.([]string))
vargs[n] = NewVariant(VT_ARRAY|VT_BSTR, int64(uintptr(unsafe.Pointer(safeByteArray))))
defer VariantClear(&vargs[n])
default:
panic("unknown type")
}
}
dispparams.rgvarg = uintptr(unsafe.Pointer(&vargs[0]))
dispparams.cArgs = uint32(len(params))
}
result = new(VARIANT)
var excepInfo EXCEPINFO
VariantInit(result)
hr, _, _ := syscall.Syscall9(
disp.VTable().Invoke,
9,
uintptr(unsafe.Pointer(disp)),
uintptr(dispid),
uintptr(unsafe.Pointer(IID_NULL)),
uintptr(GetUserDefaultLCID()),
uintptr(dispatch),
uintptr(unsafe.Pointer(&dispparams)),
uintptr(unsafe.Pointer(result)),
uintptr(unsafe.Pointer(&excepInfo)),
0)
if hr != 0 {
err = NewErrorWithSubError(hr, BstrToString(excepInfo.bstrDescription), excepInfo)
}
for i, varg := range vargs {
n := len(params) - i - 1
if varg.VT == VT_BSTR && varg.Val != 0 {
SysFreeString(((*int16)(unsafe.Pointer(uintptr(varg.Val)))))
}
if varg.VT == (VT_BSTR|VT_BYREF) && varg.Val != 0 {
*(params[n].(*string)) = LpOleStrToString(*(**uint16)(unsafe.Pointer(uintptr(varg.Val))))
}
}
return
}

View File

@ -1,19 +0,0 @@
package ole
import "unsafe"
type IEnumVARIANT struct {
IUnknown
}
type IEnumVARIANTVtbl struct {
IUnknownVtbl
Next uintptr
Skip uintptr
Reset uintptr
Clone uintptr
}
func (v *IEnumVARIANT) VTable() *IEnumVARIANTVtbl {
return (*IEnumVARIANTVtbl)(unsafe.Pointer(v.RawVTable))
}

View File

@ -1,19 +0,0 @@
// +build !windows
package ole
func (enum *IEnumVARIANT) Clone() (*IEnumVARIANT, error) {
return nil, NewError(E_NOTIMPL)
}
func (enum *IEnumVARIANT) Reset() error {
return NewError(E_NOTIMPL)
}
func (enum *IEnumVARIANT) Skip(celt uint) error {
return NewError(E_NOTIMPL)
}
func (enum *IEnumVARIANT) Next(celt uint) (VARIANT, uint, error) {
return NewVariant(VT_NULL, int64(0)), 0, NewError(E_NOTIMPL)
}

View File

@ -1,63 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unsafe"
)
func (enum *IEnumVARIANT) Clone() (cloned *IEnumVARIANT, err error) {
hr, _, _ := syscall.Syscall(
enum.VTable().Clone,
2,
uintptr(unsafe.Pointer(enum)),
uintptr(unsafe.Pointer(&cloned)),
0)
if hr != 0 {
err = NewError(hr)
}
return
}
func (enum *IEnumVARIANT) Reset() (err error) {
hr, _, _ := syscall.Syscall(
enum.VTable().Reset,
1,
uintptr(unsafe.Pointer(enum)),
0,
0)
if hr != 0 {
err = NewError(hr)
}
return
}
func (enum *IEnumVARIANT) Skip(celt uint) (err error) {
hr, _, _ := syscall.Syscall(
enum.VTable().Skip,
2,
uintptr(unsafe.Pointer(enum)),
uintptr(celt),
0)
if hr != 0 {
err = NewError(hr)
}
return
}
func (enum *IEnumVARIANT) Next(celt uint) (array VARIANT, length uint, err error) {
hr, _, _ := syscall.Syscall6(
enum.VTable().Next,
4,
uintptr(unsafe.Pointer(enum)),
uintptr(celt),
uintptr(unsafe.Pointer(&array)),
uintptr(unsafe.Pointer(&length)),
0,
0)
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,18 +0,0 @@
package ole
import "unsafe"
type IInspectable struct {
IUnknown
}
type IInspectableVtbl struct {
IUnknownVtbl
GetIIds uintptr
GetRuntimeClassName uintptr
GetTrustLevel uintptr
}
func (v *IInspectable) VTable() *IInspectableVtbl {
return (*IInspectableVtbl)(unsafe.Pointer(v.RawVTable))
}

View File

@ -1,15 +0,0 @@
// +build !windows
package ole
func (v *IInspectable) GetIids() ([]*GUID, error) {
return []*GUID{}, NewError(E_NOTIMPL)
}
func (v *IInspectable) GetRuntimeClassName() (string, error) {
return "", NewError(E_NOTIMPL)
}
func (v *IInspectable) GetTrustLevel() (uint32, error) {
return uint32(0), NewError(E_NOTIMPL)
}

View File

@ -1,72 +0,0 @@
// +build windows
package ole
import (
"bytes"
"encoding/binary"
"reflect"
"syscall"
"unsafe"
)
func (v *IInspectable) GetIids() (iids []*GUID, err error) {
var count uint32
var array uintptr
hr, _, _ := syscall.Syscall(
v.VTable().GetIIds,
3,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(&count)),
uintptr(unsafe.Pointer(&array)))
if hr != 0 {
err = NewError(hr)
return
}
defer CoTaskMemFree(array)
iids = make([]*GUID, count)
byteCount := count * uint32(unsafe.Sizeof(GUID{}))
slicehdr := reflect.SliceHeader{Data: array, Len: int(byteCount), Cap: int(byteCount)}
byteSlice := *(*[]byte)(unsafe.Pointer(&slicehdr))
reader := bytes.NewReader(byteSlice)
for i := range iids {
guid := GUID{}
err = binary.Read(reader, binary.LittleEndian, &guid)
if err != nil {
return
}
iids[i] = &guid
}
return
}
func (v *IInspectable) GetRuntimeClassName() (s string, err error) {
var hstring HString
hr, _, _ := syscall.Syscall(
v.VTable().GetRuntimeClassName,
2,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(&hstring)),
0)
if hr != 0 {
err = NewError(hr)
return
}
s = hstring.String()
DeleteHString(hstring)
return
}
func (v *IInspectable) GetTrustLevel() (level uint32, err error) {
hr, _, _ := syscall.Syscall(
v.VTable().GetTrustLevel,
2,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(&level)),
0)
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,21 +0,0 @@
package ole
import "unsafe"
type IProvideClassInfo struct {
IUnknown
}
type IProvideClassInfoVtbl struct {
IUnknownVtbl
GetClassInfo uintptr
}
func (v *IProvideClassInfo) VTable() *IProvideClassInfoVtbl {
return (*IProvideClassInfoVtbl)(unsafe.Pointer(v.RawVTable))
}
func (v *IProvideClassInfo) GetClassInfo() (cinfo *ITypeInfo, err error) {
cinfo, err = getClassInfo(v)
return
}

View File

@ -1,7 +0,0 @@
// +build !windows
package ole
func getClassInfo(disp *IProvideClassInfo) (tinfo *ITypeInfo, err error) {
return nil, NewError(E_NOTIMPL)
}

View File

@ -1,21 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unsafe"
)
func getClassInfo(disp *IProvideClassInfo) (tinfo *ITypeInfo, err error) {
hr, _, _ := syscall.Syscall(
disp.VTable().GetClassInfo,
2,
uintptr(unsafe.Pointer(disp)),
uintptr(unsafe.Pointer(&tinfo)),
0)
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,34 +0,0 @@
package ole
import "unsafe"
type ITypeInfo struct {
IUnknown
}
type ITypeInfoVtbl struct {
IUnknownVtbl
GetTypeAttr uintptr
GetTypeComp uintptr
GetFuncDesc uintptr
GetVarDesc uintptr
GetNames uintptr
GetRefTypeOfImplType uintptr
GetImplTypeFlags uintptr
GetIDsOfNames uintptr
Invoke uintptr
GetDocumentation uintptr
GetDllEntry uintptr
GetRefTypeInfo uintptr
AddressOfMember uintptr
CreateInstance uintptr
GetMops uintptr
GetContainingTypeLib uintptr
ReleaseTypeAttr uintptr
ReleaseFuncDesc uintptr
ReleaseVarDesc uintptr
}
func (v *ITypeInfo) VTable() *ITypeInfoVtbl {
return (*ITypeInfoVtbl)(unsafe.Pointer(v.RawVTable))
}

View File

@ -1,7 +0,0 @@
// +build !windows
package ole
func (v *ITypeInfo) GetTypeAttr() (*TYPEATTR, error) {
return nil, NewError(E_NOTIMPL)
}

View File

@ -1,21 +0,0 @@
// +build windows
package ole
import (
"syscall"
"unsafe"
)
func (v *ITypeInfo) GetTypeAttr() (tattr *TYPEATTR, err error) {
hr, _, _ := syscall.Syscall(
uintptr(v.VTable().GetTypeAttr),
2,
uintptr(unsafe.Pointer(v)),
uintptr(unsafe.Pointer(&tattr)),
0)
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,57 +0,0 @@
package ole
import "unsafe"
type IUnknown struct {
RawVTable *interface{}
}
type IUnknownVtbl struct {
QueryInterface uintptr
AddRef uintptr
Release uintptr
}
type UnknownLike interface {
QueryInterface(iid *GUID) (disp *IDispatch, err error)
AddRef() int32
Release() int32
}
func (v *IUnknown) VTable() *IUnknownVtbl {
return (*IUnknownVtbl)(unsafe.Pointer(v.RawVTable))
}
func (v *IUnknown) PutQueryInterface(interfaceID *GUID, obj interface{}) error {
return reflectQueryInterface(v, v.VTable().QueryInterface, interfaceID, obj)
}
func (v *IUnknown) IDispatch(interfaceID *GUID) (dispatch *IDispatch, err error) {
err = v.PutQueryInterface(interfaceID, &dispatch)
return
}
func (v *IUnknown) IEnumVARIANT(interfaceID *GUID) (enum *IEnumVARIANT, err error) {
err = v.PutQueryInterface(interfaceID, &enum)
return
}
func (v *IUnknown) QueryInterface(iid *GUID) (*IDispatch, error) {
return queryInterface(v, iid)
}
func (v *IUnknown) MustQueryInterface(iid *GUID) (disp *IDispatch) {
unk, err := queryInterface(v, iid)
if err != nil {
panic(err)
}
return unk
}
func (v *IUnknown) AddRef() int32 {
return addRef(v)
}
func (v *IUnknown) Release() int32 {
return release(v)
}

View File

@ -1,19 +0,0 @@
// +build !windows
package ole
func reflectQueryInterface(self interface{}, method uintptr, interfaceID *GUID, obj interface{}) (err error) {
return NewError(E_NOTIMPL)
}
func queryInterface(unk *IUnknown, iid *GUID) (disp *IDispatch, err error) {
return nil, NewError(E_NOTIMPL)
}
func addRef(unk *IUnknown) int32 {
return 0
}
func release(unk *IUnknown) int32 {
return 0
}

View File

@ -1,58 +0,0 @@
// +build windows
package ole
import (
"reflect"
"syscall"
"unsafe"
)
func reflectQueryInterface(self interface{}, method uintptr, interfaceID *GUID, obj interface{}) (err error) {
selfValue := reflect.ValueOf(self).Elem()
objValue := reflect.ValueOf(obj).Elem()
hr, _, _ := syscall.Syscall(
method,
3,
selfValue.UnsafeAddr(),
uintptr(unsafe.Pointer(interfaceID)),
objValue.Addr().Pointer())
if hr != 0 {
err = NewError(hr)
}
return
}
func queryInterface(unk *IUnknown, iid *GUID) (disp *IDispatch, err error) {
hr, _, _ := syscall.Syscall(
unk.VTable().QueryInterface,
3,
uintptr(unsafe.Pointer(unk)),
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(&disp)))
if hr != 0 {
err = NewError(hr)
}
return
}
func addRef(unk *IUnknown) int32 {
ret, _, _ := syscall.Syscall(
unk.VTable().AddRef,
1,
uintptr(unsafe.Pointer(unk)),
0,
0)
return int32(ret)
}
func release(unk *IUnknown) int32 {
ret, _, _ := syscall.Syscall(
unk.VTable().Release,
1,
uintptr(unsafe.Pointer(unk)),
0,
0)
return int32(ret)
}

View File

@ -1,157 +0,0 @@
package ole
import (
"fmt"
"strings"
)
// DISPPARAMS are the arguments that passed to methods or property.
type DISPPARAMS struct {
rgvarg uintptr
rgdispidNamedArgs uintptr
cArgs uint32
cNamedArgs uint32
}
// EXCEPINFO defines exception info.
type EXCEPINFO struct {
wCode uint16
wReserved uint16
bstrSource *uint16
bstrDescription *uint16
bstrHelpFile *uint16
dwHelpContext uint32
pvReserved uintptr
pfnDeferredFillIn uintptr
scode uint32
}
// WCode return wCode in EXCEPINFO.
func (e EXCEPINFO) WCode() uint16 {
return e.wCode
}
// SCODE return scode in EXCEPINFO.
func (e EXCEPINFO) SCODE() uint32 {
return e.scode
}
// String convert EXCEPINFO to string.
func (e EXCEPINFO) String() string {
var src, desc, hlp string
if e.bstrSource == nil {
src = "<nil>"
} else {
src = BstrToString(e.bstrSource)
}
if e.bstrDescription == nil {
desc = "<nil>"
} else {
desc = BstrToString(e.bstrDescription)
}
if e.bstrHelpFile == nil {
hlp = "<nil>"
} else {
hlp = BstrToString(e.bstrHelpFile)
}
return fmt.Sprintf(
"wCode: %#x, bstrSource: %v, bstrDescription: %v, bstrHelpFile: %v, dwHelpContext: %#x, scode: %#x",
e.wCode, src, desc, hlp, e.dwHelpContext, e.scode,
)
}
// Error implements error interface and returns error string.
func (e EXCEPINFO) Error() string {
if e.bstrDescription != nil {
return strings.TrimSpace(BstrToString(e.bstrDescription))
}
src := "Unknown"
if e.bstrSource != nil {
src = BstrToString(e.bstrSource)
}
code := e.scode
if e.wCode != 0 {
code = uint32(e.wCode)
}
return fmt.Sprintf("%v: %#x", src, code)
}
// PARAMDATA defines parameter data type.
type PARAMDATA struct {
Name *int16
Vt uint16
}
// METHODDATA defines method info.
type METHODDATA struct {
Name *uint16
Data *PARAMDATA
Dispid int32
Meth uint32
CC int32
CArgs uint32
Flags uint16
VtReturn uint32
}
// INTERFACEDATA defines interface info.
type INTERFACEDATA struct {
MethodData *METHODDATA
CMembers uint32
}
// Point is 2D vector type.
type Point struct {
X int32
Y int32
}
// Msg is message between processes.
type Msg struct {
Hwnd uint32
Message uint32
Wparam int32
Lparam int32
Time uint32
Pt Point
}
// TYPEDESC defines data type.
type TYPEDESC struct {
Hreftype uint32
VT uint16
}
// IDLDESC defines IDL info.
type IDLDESC struct {
DwReserved uint32
WIDLFlags uint16
}
// TYPEATTR defines type info.
type TYPEATTR struct {
Guid GUID
Lcid uint32
dwReserved uint32
MemidConstructor int32
MemidDestructor int32
LpstrSchema *uint16
CbSizeInstance uint32
Typekind int32
CFuncs uint16
CVars uint16
CImplTypes uint16
CbSizeVft uint16
CbAlignment uint16
WTypeFlags uint16
WMajorVerNum uint16
WMinorVerNum uint16
TdescAlias TYPEDESC
IdldescType IDLDESC
}

View File

@ -1,100 +0,0 @@
// +build windows
package oleutil
import (
"reflect"
"unsafe"
ole "github.com/go-ole/go-ole"
)
type stdDispatch struct {
lpVtbl *stdDispatchVtbl
ref int32
iid *ole.GUID
iface interface{}
funcMap map[string]int32
}
type stdDispatchVtbl struct {
pQueryInterface uintptr
pAddRef uintptr
pRelease uintptr
pGetTypeInfoCount uintptr
pGetTypeInfo uintptr
pGetIDsOfNames uintptr
pInvoke uintptr
}
func dispQueryInterface(this *ole.IUnknown, iid *ole.GUID, punk **ole.IUnknown) uint32 {
pthis := (*stdDispatch)(unsafe.Pointer(this))
*punk = nil
if ole.IsEqualGUID(iid, ole.IID_IUnknown) ||
ole.IsEqualGUID(iid, ole.IID_IDispatch) {
dispAddRef(this)
*punk = this
return ole.S_OK
}
if ole.IsEqualGUID(iid, pthis.iid) {
dispAddRef(this)
*punk = this
return ole.S_OK
}
return ole.E_NOINTERFACE
}
func dispAddRef(this *ole.IUnknown) int32 {
pthis := (*stdDispatch)(unsafe.Pointer(this))
pthis.ref++
return pthis.ref
}
func dispRelease(this *ole.IUnknown) int32 {
pthis := (*stdDispatch)(unsafe.Pointer(this))
pthis.ref--
return pthis.ref
}
func dispGetIDsOfNames(this *ole.IUnknown, iid *ole.GUID, wnames []*uint16, namelen int, lcid int, pdisp []int32) uintptr {
pthis := (*stdDispatch)(unsafe.Pointer(this))
names := make([]string, len(wnames))
for i := 0; i < len(names); i++ {
names[i] = ole.LpOleStrToString(wnames[i])
}
for n := 0; n < namelen; n++ {
if id, ok := pthis.funcMap[names[n]]; ok {
pdisp[n] = id
}
}
return ole.S_OK
}
func dispGetTypeInfoCount(pcount *int) uintptr {
if pcount != nil {
*pcount = 0
}
return ole.S_OK
}
func dispGetTypeInfo(ptypeif *uintptr) uintptr {
return ole.E_NOTIMPL
}
func dispInvoke(this *ole.IDispatch, dispid int32, riid *ole.GUID, lcid int, flags int16, dispparams *ole.DISPPARAMS, result *ole.VARIANT, pexcepinfo *ole.EXCEPINFO, nerr *uint) uintptr {
pthis := (*stdDispatch)(unsafe.Pointer(this))
found := ""
for name, id := range pthis.funcMap {
if id == dispid {
found = name
}
}
if found != "" {
rv := reflect.ValueOf(pthis.iface).Elem()
rm := rv.MethodByName(found)
rr := rm.Call([]reflect.Value{})
println(len(rr))
return ole.S_OK
}
return ole.E_NOTIMPL
}

View File

@ -1,10 +0,0 @@
// +build !windows
package oleutil
import ole "github.com/go-ole/go-ole"
// ConnectObject creates a connection point between two services for communication.
func ConnectObject(disp *ole.IDispatch, iid *ole.GUID, idisp interface{}) (uint32, error) {
return 0, ole.NewError(ole.E_NOTIMPL)
}

View File

@ -1,58 +0,0 @@
// +build windows
package oleutil
import (
"reflect"
"syscall"
"unsafe"
ole "github.com/go-ole/go-ole"
)
// ConnectObject creates a connection point between two services for communication.
func ConnectObject(disp *ole.IDispatch, iid *ole.GUID, idisp interface{}) (cookie uint32, err error) {
unknown, err := disp.QueryInterface(ole.IID_IConnectionPointContainer)
if err != nil {
return
}
container := (*ole.IConnectionPointContainer)(unsafe.Pointer(unknown))
var point *ole.IConnectionPoint
err = container.FindConnectionPoint(iid, &point)
if err != nil {
return
}
if edisp, ok := idisp.(*ole.IUnknown); ok {
cookie, err = point.Advise(edisp)
container.Release()
if err != nil {
return
}
}
rv := reflect.ValueOf(disp).Elem()
if rv.Type().Kind() == reflect.Struct {
dest := &stdDispatch{}
dest.lpVtbl = &stdDispatchVtbl{}
dest.lpVtbl.pQueryInterface = syscall.NewCallback(dispQueryInterface)
dest.lpVtbl.pAddRef = syscall.NewCallback(dispAddRef)
dest.lpVtbl.pRelease = syscall.NewCallback(dispRelease)
dest.lpVtbl.pGetTypeInfoCount = syscall.NewCallback(dispGetTypeInfoCount)
dest.lpVtbl.pGetTypeInfo = syscall.NewCallback(dispGetTypeInfo)
dest.lpVtbl.pGetIDsOfNames = syscall.NewCallback(dispGetIDsOfNames)
dest.lpVtbl.pInvoke = syscall.NewCallback(dispInvoke)
dest.iface = disp
dest.iid = iid
cookie, err = point.Advise((*ole.IUnknown)(unsafe.Pointer(dest)))
container.Release()
if err != nil {
point.Release()
return
}
return
}
container.Release()
return 0, ole.NewError(ole.E_INVALIDARG)
}

View File

@ -1,6 +0,0 @@
// This file is here so go get succeeds as without it errors with:
// no buildable Go source files in ...
//
// +build !windows
package oleutil

View File

@ -1,127 +0,0 @@
package oleutil
import ole "github.com/go-ole/go-ole"
// ClassIDFrom retrieves class ID whether given is program ID or application string.
func ClassIDFrom(programID string) (classID *ole.GUID, err error) {
return ole.ClassIDFrom(programID)
}
// CreateObject creates object from programID based on interface type.
//
// Only supports IUnknown.
//
// Program ID can be either program ID or application string.
func CreateObject(programID string) (unknown *ole.IUnknown, err error) {
classID, err := ole.ClassIDFrom(programID)
if err != nil {
return
}
unknown, err = ole.CreateInstance(classID, ole.IID_IUnknown)
if err != nil {
return
}
return
}
// GetActiveObject retrieves active object for program ID and interface ID based
// on interface type.
//
// Only supports IUnknown.
//
// Program ID can be either program ID or application string.
func GetActiveObject(programID string) (unknown *ole.IUnknown, err error) {
classID, err := ole.ClassIDFrom(programID)
if err != nil {
return
}
unknown, err = ole.GetActiveObject(classID, ole.IID_IUnknown)
if err != nil {
return
}
return
}
// CallMethod calls method on IDispatch with parameters.
func CallMethod(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT, err error) {
return disp.InvokeWithOptionalArgs(name, ole.DISPATCH_METHOD, params)
}
// MustCallMethod calls method on IDispatch with parameters or panics.
func MustCallMethod(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT) {
r, err := CallMethod(disp, name, params...)
if err != nil {
panic(err.Error())
}
return r
}
// GetProperty retrieves property from IDispatch.
func GetProperty(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT, err error) {
return disp.InvokeWithOptionalArgs(name, ole.DISPATCH_PROPERTYGET, params)
}
// MustGetProperty retrieves property from IDispatch or panics.
func MustGetProperty(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT) {
r, err := GetProperty(disp, name, params...)
if err != nil {
panic(err.Error())
}
return r
}
// PutProperty mutates property.
func PutProperty(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT, err error) {
return disp.InvokeWithOptionalArgs(name, ole.DISPATCH_PROPERTYPUT, params)
}
// MustPutProperty mutates property or panics.
func MustPutProperty(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT) {
r, err := PutProperty(disp, name, params...)
if err != nil {
panic(err.Error())
}
return r
}
// PutPropertyRef mutates property reference.
func PutPropertyRef(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT, err error) {
return disp.InvokeWithOptionalArgs(name, ole.DISPATCH_PROPERTYPUTREF, params)
}
// MustPutPropertyRef mutates property reference or panics.
func MustPutPropertyRef(disp *ole.IDispatch, name string, params ...interface{}) (result *ole.VARIANT) {
r, err := PutPropertyRef(disp, name, params...)
if err != nil {
panic(err.Error())
}
return r
}
func ForEach(disp *ole.IDispatch, f func(v *ole.VARIANT) error) error {
newEnum, err := disp.GetProperty("_NewEnum")
if err != nil {
return err
}
defer newEnum.Clear()
enum, err := newEnum.ToIUnknown().IEnumVARIANT(ole.IID_IEnumVariant)
if err != nil {
return err
}
defer enum.Release()
for item, length, err := enum.Next(1); length > 0; item, length, err = enum.Next(1) {
if err != nil {
return err
}
if ferr := f(&item); ferr != nil {
return ferr
}
}
return nil
}

View File

@ -1,27 +0,0 @@
// Package is meant to retrieve and process safe array data returned from COM.
package ole
// SafeArrayBound defines the SafeArray boundaries.
type SafeArrayBound struct {
Elements uint32
LowerBound int32
}
// SafeArray is how COM handles arrays.
type SafeArray struct {
Dimensions uint16
FeaturesFlag uint16
ElementsSize uint32
LocksAmount uint32
Data uint32
Bounds [16]byte
}
// SAFEARRAY is obsolete, exists for backwards compatibility.
// Use SafeArray
type SAFEARRAY SafeArray
// SAFEARRAYBOUND is obsolete, exists for backwards compatibility.
// Use SafeArrayBound
type SAFEARRAYBOUND SafeArrayBound

View File

@ -1,211 +0,0 @@
// +build !windows
package ole
import (
"unsafe"
)
// safeArrayAccessData returns raw array pointer.
//
// AKA: SafeArrayAccessData in Windows API.
func safeArrayAccessData(safearray *SafeArray) (uintptr, error) {
return uintptr(0), NewError(E_NOTIMPL)
}
// safeArrayUnaccessData releases raw array.
//
// AKA: SafeArrayUnaccessData in Windows API.
func safeArrayUnaccessData(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayAllocData allocates SafeArray.
//
// AKA: SafeArrayAllocData in Windows API.
func safeArrayAllocData(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayAllocDescriptor allocates SafeArray.
//
// AKA: SafeArrayAllocDescriptor in Windows API.
func safeArrayAllocDescriptor(dimensions uint32) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayAllocDescriptorEx allocates SafeArray.
//
// AKA: SafeArrayAllocDescriptorEx in Windows API.
func safeArrayAllocDescriptorEx(variantType VT, dimensions uint32) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayCopy returns copy of SafeArray.
//
// AKA: SafeArrayCopy in Windows API.
func safeArrayCopy(original *SafeArray) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayCopyData duplicates SafeArray into another SafeArray object.
//
// AKA: SafeArrayCopyData in Windows API.
func safeArrayCopyData(original *SafeArray, duplicate *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayCreate creates SafeArray.
//
// AKA: SafeArrayCreate in Windows API.
func safeArrayCreate(variantType VT, dimensions uint32, bounds *SafeArrayBound) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayCreateEx creates SafeArray.
//
// AKA: SafeArrayCreateEx in Windows API.
func safeArrayCreateEx(variantType VT, dimensions uint32, bounds *SafeArrayBound, extra uintptr) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayCreateVector creates SafeArray.
//
// AKA: SafeArrayCreateVector in Windows API.
func safeArrayCreateVector(variantType VT, lowerBound int32, length uint32) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayCreateVectorEx creates SafeArray.
//
// AKA: SafeArrayCreateVectorEx in Windows API.
func safeArrayCreateVectorEx(variantType VT, lowerBound int32, length uint32, extra uintptr) (*SafeArray, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayDestroy destroys SafeArray object.
//
// AKA: SafeArrayDestroy in Windows API.
func safeArrayDestroy(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayDestroyData destroys SafeArray object.
//
// AKA: SafeArrayDestroyData in Windows API.
func safeArrayDestroyData(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayDestroyDescriptor destroys SafeArray object.
//
// AKA: SafeArrayDestroyDescriptor in Windows API.
func safeArrayDestroyDescriptor(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayGetDim is the amount of dimensions in the SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetDim in Windows API.
func safeArrayGetDim(safearray *SafeArray) (*uint32, error) {
u := uint32(0)
return &u, NewError(E_NOTIMPL)
}
// safeArrayGetElementSize is the element size in bytes.
//
// AKA: SafeArrayGetElemsize in Windows API.
func safeArrayGetElementSize(safearray *SafeArray) (*uint32, error) {
u := uint32(0)
return &u, NewError(E_NOTIMPL)
}
// safeArrayGetElement retrieves element at given index.
func safeArrayGetElement(safearray *SafeArray, index int32, pv unsafe.Pointer) error {
return NewError(E_NOTIMPL)
}
// safeArrayGetElement retrieves element at given index and converts to string.
func safeArrayGetElementString(safearray *SafeArray, index int32) (string, error) {
return "", NewError(E_NOTIMPL)
}
// safeArrayGetIID is the InterfaceID of the elements in the SafeArray.
//
// AKA: SafeArrayGetIID in Windows API.
func safeArrayGetIID(safearray *SafeArray) (*GUID, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArrayGetLBound returns lower bounds of SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetLBound in Windows API.
func safeArrayGetLBound(safearray *SafeArray, dimension uint32) (int32, error) {
return int32(0), NewError(E_NOTIMPL)
}
// safeArrayGetUBound returns upper bounds of SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetUBound in Windows API.
func safeArrayGetUBound(safearray *SafeArray, dimension uint32) (int32, error) {
return int32(0), NewError(E_NOTIMPL)
}
// safeArrayGetVartype returns data type of SafeArray.
//
// AKA: SafeArrayGetVartype in Windows API.
func safeArrayGetVartype(safearray *SafeArray) (uint16, error) {
return uint16(0), NewError(E_NOTIMPL)
}
// safeArrayLock locks SafeArray for reading to modify SafeArray.
//
// This must be called during some calls to ensure that another process does not
// read or write to the SafeArray during editing.
//
// AKA: SafeArrayLock in Windows API.
func safeArrayLock(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayUnlock unlocks SafeArray for reading.
//
// AKA: SafeArrayUnlock in Windows API.
func safeArrayUnlock(safearray *SafeArray) error {
return NewError(E_NOTIMPL)
}
// safeArrayPutElement stores the data element at the specified location in the
// array.
//
// AKA: SafeArrayPutElement in Windows API.
func safeArrayPutElement(safearray *SafeArray, index int64, element uintptr) error {
return NewError(E_NOTIMPL)
}
// safeArrayGetRecordInfo accesses IRecordInfo info for custom types.
//
// AKA: SafeArrayGetRecordInfo in Windows API.
//
// XXX: Must implement IRecordInfo interface for this to return.
func safeArrayGetRecordInfo(safearray *SafeArray) (interface{}, error) {
return nil, NewError(E_NOTIMPL)
}
// safeArraySetRecordInfo mutates IRecordInfo info for custom types.
//
// AKA: SafeArraySetRecordInfo in Windows API.
//
// XXX: Must implement IRecordInfo interface for this to return.
func safeArraySetRecordInfo(safearray *SafeArray, recordInfo interface{}) error {
return NewError(E_NOTIMPL)
}

View File

@ -1,337 +0,0 @@
// +build windows
package ole
import (
"unsafe"
)
var (
procSafeArrayAccessData, _ = modoleaut32.FindProc("SafeArrayAccessData")
procSafeArrayAllocData, _ = modoleaut32.FindProc("SafeArrayAllocData")
procSafeArrayAllocDescriptor, _ = modoleaut32.FindProc("SafeArrayAllocDescriptor")
procSafeArrayAllocDescriptorEx, _ = modoleaut32.FindProc("SafeArrayAllocDescriptorEx")
procSafeArrayCopy, _ = modoleaut32.FindProc("SafeArrayCopy")
procSafeArrayCopyData, _ = modoleaut32.FindProc("SafeArrayCopyData")
procSafeArrayCreate, _ = modoleaut32.FindProc("SafeArrayCreate")
procSafeArrayCreateEx, _ = modoleaut32.FindProc("SafeArrayCreateEx")
procSafeArrayCreateVector, _ = modoleaut32.FindProc("SafeArrayCreateVector")
procSafeArrayCreateVectorEx, _ = modoleaut32.FindProc("SafeArrayCreateVectorEx")
procSafeArrayDestroy, _ = modoleaut32.FindProc("SafeArrayDestroy")
procSafeArrayDestroyData, _ = modoleaut32.FindProc("SafeArrayDestroyData")
procSafeArrayDestroyDescriptor, _ = modoleaut32.FindProc("SafeArrayDestroyDescriptor")
procSafeArrayGetDim, _ = modoleaut32.FindProc("SafeArrayGetDim")
procSafeArrayGetElement, _ = modoleaut32.FindProc("SafeArrayGetElement")
procSafeArrayGetElemsize, _ = modoleaut32.FindProc("SafeArrayGetElemsize")
procSafeArrayGetIID, _ = modoleaut32.FindProc("SafeArrayGetIID")
procSafeArrayGetLBound, _ = modoleaut32.FindProc("SafeArrayGetLBound")
procSafeArrayGetUBound, _ = modoleaut32.FindProc("SafeArrayGetUBound")
procSafeArrayGetVartype, _ = modoleaut32.FindProc("SafeArrayGetVartype")
procSafeArrayLock, _ = modoleaut32.FindProc("SafeArrayLock")
procSafeArrayPtrOfIndex, _ = modoleaut32.FindProc("SafeArrayPtrOfIndex")
procSafeArrayUnaccessData, _ = modoleaut32.FindProc("SafeArrayUnaccessData")
procSafeArrayUnlock, _ = modoleaut32.FindProc("SafeArrayUnlock")
procSafeArrayPutElement, _ = modoleaut32.FindProc("SafeArrayPutElement")
//procSafeArrayRedim, _ = modoleaut32.FindProc("SafeArrayRedim") // TODO
//procSafeArraySetIID, _ = modoleaut32.FindProc("SafeArraySetIID") // TODO
procSafeArrayGetRecordInfo, _ = modoleaut32.FindProc("SafeArrayGetRecordInfo")
procSafeArraySetRecordInfo, _ = modoleaut32.FindProc("SafeArraySetRecordInfo")
)
// safeArrayAccessData returns raw array pointer.
//
// AKA: SafeArrayAccessData in Windows API.
// Todo: Test
func safeArrayAccessData(safearray *SafeArray) (element uintptr, err error) {
err = convertHresultToError(
procSafeArrayAccessData.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&element))))
return
}
// safeArrayUnaccessData releases raw array.
//
// AKA: SafeArrayUnaccessData in Windows API.
func safeArrayUnaccessData(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayUnaccessData.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayAllocData allocates SafeArray.
//
// AKA: SafeArrayAllocData in Windows API.
func safeArrayAllocData(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayAllocData.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayAllocDescriptor allocates SafeArray.
//
// AKA: SafeArrayAllocDescriptor in Windows API.
func safeArrayAllocDescriptor(dimensions uint32) (safearray *SafeArray, err error) {
err = convertHresultToError(
procSafeArrayAllocDescriptor.Call(uintptr(dimensions), uintptr(unsafe.Pointer(&safearray))))
return
}
// safeArrayAllocDescriptorEx allocates SafeArray.
//
// AKA: SafeArrayAllocDescriptorEx in Windows API.
func safeArrayAllocDescriptorEx(variantType VT, dimensions uint32) (safearray *SafeArray, err error) {
err = convertHresultToError(
procSafeArrayAllocDescriptorEx.Call(
uintptr(variantType),
uintptr(dimensions),
uintptr(unsafe.Pointer(&safearray))))
return
}
// safeArrayCopy returns copy of SafeArray.
//
// AKA: SafeArrayCopy in Windows API.
func safeArrayCopy(original *SafeArray) (safearray *SafeArray, err error) {
err = convertHresultToError(
procSafeArrayCopy.Call(
uintptr(unsafe.Pointer(original)),
uintptr(unsafe.Pointer(&safearray))))
return
}
// safeArrayCopyData duplicates SafeArray into another SafeArray object.
//
// AKA: SafeArrayCopyData in Windows API.
func safeArrayCopyData(original *SafeArray, duplicate *SafeArray) (err error) {
err = convertHresultToError(
procSafeArrayCopyData.Call(
uintptr(unsafe.Pointer(original)),
uintptr(unsafe.Pointer(duplicate))))
return
}
// safeArrayCreate creates SafeArray.
//
// AKA: SafeArrayCreate in Windows API.
func safeArrayCreate(variantType VT, dimensions uint32, bounds *SafeArrayBound) (safearray *SafeArray, err error) {
sa, _, err := procSafeArrayCreate.Call(
uintptr(variantType),
uintptr(dimensions),
uintptr(unsafe.Pointer(bounds)))
safearray = (*SafeArray)(unsafe.Pointer(&sa))
return
}
// safeArrayCreateEx creates SafeArray.
//
// AKA: SafeArrayCreateEx in Windows API.
func safeArrayCreateEx(variantType VT, dimensions uint32, bounds *SafeArrayBound, extra uintptr) (safearray *SafeArray, err error) {
sa, _, err := procSafeArrayCreateEx.Call(
uintptr(variantType),
uintptr(dimensions),
uintptr(unsafe.Pointer(bounds)),
extra)
safearray = (*SafeArray)(unsafe.Pointer(sa))
return
}
// safeArrayCreateVector creates SafeArray.
//
// AKA: SafeArrayCreateVector in Windows API.
func safeArrayCreateVector(variantType VT, lowerBound int32, length uint32) (safearray *SafeArray, err error) {
sa, _, err := procSafeArrayCreateVector.Call(
uintptr(variantType),
uintptr(lowerBound),
uintptr(length))
safearray = (*SafeArray)(unsafe.Pointer(sa))
return
}
// safeArrayCreateVectorEx creates SafeArray.
//
// AKA: SafeArrayCreateVectorEx in Windows API.
func safeArrayCreateVectorEx(variantType VT, lowerBound int32, length uint32, extra uintptr) (safearray *SafeArray, err error) {
sa, _, err := procSafeArrayCreateVectorEx.Call(
uintptr(variantType),
uintptr(lowerBound),
uintptr(length),
extra)
safearray = (*SafeArray)(unsafe.Pointer(sa))
return
}
// safeArrayDestroy destroys SafeArray object.
//
// AKA: SafeArrayDestroy in Windows API.
func safeArrayDestroy(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayDestroy.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayDestroyData destroys SafeArray object.
//
// AKA: SafeArrayDestroyData in Windows API.
func safeArrayDestroyData(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayDestroyData.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayDestroyDescriptor destroys SafeArray object.
//
// AKA: SafeArrayDestroyDescriptor in Windows API.
func safeArrayDestroyDescriptor(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayDestroyDescriptor.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayGetDim is the amount of dimensions in the SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetDim in Windows API.
func safeArrayGetDim(safearray *SafeArray) (dimensions *uint32, err error) {
l, _, err := procSafeArrayGetDim.Call(uintptr(unsafe.Pointer(safearray)))
dimensions = (*uint32)(unsafe.Pointer(l))
return
}
// safeArrayGetElementSize is the element size in bytes.
//
// AKA: SafeArrayGetElemsize in Windows API.
func safeArrayGetElementSize(safearray *SafeArray) (length *uint32, err error) {
l, _, err := procSafeArrayGetElemsize.Call(uintptr(unsafe.Pointer(safearray)))
length = (*uint32)(unsafe.Pointer(l))
return
}
// safeArrayGetElement retrieves element at given index.
func safeArrayGetElement(safearray *SafeArray, index int32, pv unsafe.Pointer) error {
return convertHresultToError(
procSafeArrayGetElement.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&index)),
uintptr(pv)))
}
// safeArrayGetElementString retrieves element at given index and converts to string.
func safeArrayGetElementString(safearray *SafeArray, index int32) (str string, err error) {
var element *int16
err = convertHresultToError(
procSafeArrayGetElement.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&index)),
uintptr(unsafe.Pointer(&element))))
str = BstrToString(*(**uint16)(unsafe.Pointer(&element)))
SysFreeString(element)
return
}
// safeArrayGetIID is the InterfaceID of the elements in the SafeArray.
//
// AKA: SafeArrayGetIID in Windows API.
func safeArrayGetIID(safearray *SafeArray) (guid *GUID, err error) {
err = convertHresultToError(
procSafeArrayGetIID.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&guid))))
return
}
// safeArrayGetLBound returns lower bounds of SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetLBound in Windows API.
func safeArrayGetLBound(safearray *SafeArray, dimension uint32) (lowerBound int32, err error) {
err = convertHresultToError(
procSafeArrayGetLBound.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(dimension),
uintptr(unsafe.Pointer(&lowerBound))))
return
}
// safeArrayGetUBound returns upper bounds of SafeArray.
//
// SafeArrays may have multiple dimensions. Meaning, it could be
// multidimensional array.
//
// AKA: SafeArrayGetUBound in Windows API.
func safeArrayGetUBound(safearray *SafeArray, dimension uint32) (upperBound int32, err error) {
err = convertHresultToError(
procSafeArrayGetUBound.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(dimension),
uintptr(unsafe.Pointer(&upperBound))))
return
}
// safeArrayGetVartype returns data type of SafeArray.
//
// AKA: SafeArrayGetVartype in Windows API.
func safeArrayGetVartype(safearray *SafeArray) (varType uint16, err error) {
err = convertHresultToError(
procSafeArrayGetVartype.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&varType))))
return
}
// safeArrayLock locks SafeArray for reading to modify SafeArray.
//
// This must be called during some calls to ensure that another process does not
// read or write to the SafeArray during editing.
//
// AKA: SafeArrayLock in Windows API.
func safeArrayLock(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayLock.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayUnlock unlocks SafeArray for reading.
//
// AKA: SafeArrayUnlock in Windows API.
func safeArrayUnlock(safearray *SafeArray) (err error) {
err = convertHresultToError(procSafeArrayUnlock.Call(uintptr(unsafe.Pointer(safearray))))
return
}
// safeArrayPutElement stores the data element at the specified location in the
// array.
//
// AKA: SafeArrayPutElement in Windows API.
func safeArrayPutElement(safearray *SafeArray, index int64, element uintptr) (err error) {
err = convertHresultToError(
procSafeArrayPutElement.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&index)),
uintptr(unsafe.Pointer(element))))
return
}
// safeArrayGetRecordInfo accesses IRecordInfo info for custom types.
//
// AKA: SafeArrayGetRecordInfo in Windows API.
//
// XXX: Must implement IRecordInfo interface for this to return.
func safeArrayGetRecordInfo(safearray *SafeArray) (recordInfo interface{}, err error) {
err = convertHresultToError(
procSafeArrayGetRecordInfo.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&recordInfo))))
return
}
// safeArraySetRecordInfo mutates IRecordInfo info for custom types.
//
// AKA: SafeArraySetRecordInfo in Windows API.
//
// XXX: Must implement IRecordInfo interface for this to return.
func safeArraySetRecordInfo(safearray *SafeArray, recordInfo interface{}) (err error) {
err = convertHresultToError(
procSafeArraySetRecordInfo.Call(
uintptr(unsafe.Pointer(safearray)),
uintptr(unsafe.Pointer(&recordInfo))))
return
}

View File

@ -1,140 +0,0 @@
// Helper for converting SafeArray to array of objects.
package ole
import (
"unsafe"
)
type SafeArrayConversion struct {
Array *SafeArray
}
func (sac *SafeArrayConversion) ToStringArray() (strings []string) {
totalElements, _ := sac.TotalElements(0)
strings = make([]string, totalElements)
for i := int32(0); i < totalElements; i++ {
strings[int32(i)], _ = safeArrayGetElementString(sac.Array, i)
}
return
}
func (sac *SafeArrayConversion) ToByteArray() (bytes []byte) {
totalElements, _ := sac.TotalElements(0)
bytes = make([]byte, totalElements)
for i := int32(0); i < totalElements; i++ {
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&bytes[int32(i)]))
}
return
}
func (sac *SafeArrayConversion) ToValueArray() (values []interface{}) {
totalElements, _ := sac.TotalElements(0)
values = make([]interface{}, totalElements)
vt, _ := safeArrayGetVartype(sac.Array)
for i := int32(0); i < totalElements; i++ {
switch VT(vt) {
case VT_BOOL:
var v bool
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_I1:
var v int8
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_I2:
var v int16
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_I4:
var v int32
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_I8:
var v int64
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_UI1:
var v uint8
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_UI2:
var v uint16
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_UI4:
var v uint32
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_UI8:
var v uint64
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_R4:
var v float32
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_R8:
var v float64
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_BSTR:
var v string
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v
case VT_VARIANT:
var v VARIANT
safeArrayGetElement(sac.Array, i, unsafe.Pointer(&v))
values[i] = v.Value()
default:
// TODO
}
}
return
}
func (sac *SafeArrayConversion) GetType() (varType uint16, err error) {
return safeArrayGetVartype(sac.Array)
}
func (sac *SafeArrayConversion) GetDimensions() (dimensions *uint32, err error) {
return safeArrayGetDim(sac.Array)
}
func (sac *SafeArrayConversion) GetSize() (length *uint32, err error) {
return safeArrayGetElementSize(sac.Array)
}
func (sac *SafeArrayConversion) TotalElements(index uint32) (totalElements int32, err error) {
if index < 1 {
index = 1
}
// Get array bounds
var LowerBounds int32
var UpperBounds int32
LowerBounds, err = safeArrayGetLBound(sac.Array, index)
if err != nil {
return
}
UpperBounds, err = safeArrayGetUBound(sac.Array, index)
if err != nil {
return
}
totalElements = UpperBounds - LowerBounds + 1
return
}
// Release Safe Array memory
func (sac *SafeArrayConversion) Release() {
safeArrayDestroy(sac.Array)
}

View File

@ -1,33 +0,0 @@
// +build windows
package ole
import (
"unsafe"
)
func safeArrayFromByteSlice(slice []byte) *SafeArray {
array, _ := safeArrayCreateVector(VT_UI1, 0, uint32(len(slice)))
if array == nil {
panic("Could not convert []byte to SAFEARRAY")
}
for i, v := range slice {
safeArrayPutElement(array, int64(i), uintptr(unsafe.Pointer(&v)))
}
return array
}
func safeArrayFromStringSlice(slice []string) *SafeArray {
array, _ := safeArrayCreateVector(VT_BSTR, 0, uint32(len(slice)))
if array == nil {
panic("Could not convert []string to SAFEARRAY")
}
// SysAllocStringLen(s)
for i, v := range slice {
safeArrayPutElement(array, int64(i), uintptr(unsafe.Pointer(SysAllocStringLen(v))))
}
return array
}

View File

@ -1,101 +0,0 @@
package ole
import (
"unicode/utf16"
"unsafe"
)
// ClassIDFrom retrieves class ID whether given is program ID or application string.
//
// Helper that provides check against both Class ID from Program ID and Class ID from string. It is
// faster, if you know which you are using, to use the individual functions, but this will check
// against available functions for you.
func ClassIDFrom(programID string) (classID *GUID, err error) {
classID, err = CLSIDFromProgID(programID)
if err != nil {
classID, err = CLSIDFromString(programID)
if err != nil {
return
}
}
return
}
// BytePtrToString converts byte pointer to a Go string.
func BytePtrToString(p *byte) string {
a := (*[10000]uint8)(unsafe.Pointer(p))
i := 0
for a[i] != 0 {
i++
}
return string(a[:i])
}
// UTF16PtrToString is alias for LpOleStrToString.
//
// Kept for compatibility reasons.
func UTF16PtrToString(p *uint16) string {
return LpOleStrToString(p)
}
// LpOleStrToString converts COM Unicode to Go string.
func LpOleStrToString(p *uint16) string {
if p == nil {
return ""
}
length := lpOleStrLen(p)
a := make([]uint16, length)
ptr := unsafe.Pointer(p)
for i := 0; i < int(length); i++ {
a[i] = *(*uint16)(ptr)
ptr = unsafe.Pointer(uintptr(ptr) + 2)
}
return string(utf16.Decode(a))
}
// BstrToString converts COM binary string to Go string.
func BstrToString(p *uint16) string {
if p == nil {
return ""
}
length := SysStringLen((*int16)(unsafe.Pointer(p)))
a := make([]uint16, length)
ptr := unsafe.Pointer(p)
for i := 0; i < int(length); i++ {
a[i] = *(*uint16)(ptr)
ptr = unsafe.Pointer(uintptr(ptr) + 2)
}
return string(utf16.Decode(a))
}
// lpOleStrLen returns the length of Unicode string.
func lpOleStrLen(p *uint16) (length int64) {
if p == nil {
return 0
}
ptr := unsafe.Pointer(p)
for i := 0; ; i++ {
if 0 == *(*uint16)(ptr) {
length = int64(i)
break
}
ptr = unsafe.Pointer(uintptr(ptr) + 2)
}
return
}
// convertHresultToError converts syscall to error, if call is unsuccessful.
func convertHresultToError(hr uintptr, r2 uintptr, ignore error) (err error) {
if hr != 0 {
err = NewError(hr)
}
return
}

View File

@ -1,16 +0,0 @@
// +build windows
package ole
import (
"syscall"
)
var (
modcombase = syscall.NewLazyDLL("combase.dll")
modkernel32, _ = syscall.LoadDLL("kernel32.dll")
modole32, _ = syscall.LoadDLL("ole32.dll")
modoleaut32, _ = syscall.LoadDLL("oleaut32.dll")
modmsvcrt, _ = syscall.LoadDLL("msvcrt.dll")
moduser32, _ = syscall.LoadDLL("user32.dll")
)

View File

@ -1,105 +0,0 @@
package ole
import "unsafe"
// NewVariant returns new variant based on type and value.
func NewVariant(vt VT, val int64) VARIANT {
return VARIANT{VT: vt, Val: val}
}
// ToIUnknown converts Variant to Unknown object.
func (v *VARIANT) ToIUnknown() *IUnknown {
if v.VT != VT_UNKNOWN {
return nil
}
return (*IUnknown)(unsafe.Pointer(uintptr(v.Val)))
}
// ToIDispatch converts variant to dispatch object.
func (v *VARIANT) ToIDispatch() *IDispatch {
if v.VT != VT_DISPATCH {
return nil
}
return (*IDispatch)(unsafe.Pointer(uintptr(v.Val)))
}
// ToArray converts variant to SafeArray helper.
func (v *VARIANT) ToArray() *SafeArrayConversion {
if v.VT != VT_SAFEARRAY {
if v.VT&VT_ARRAY == 0 {
return nil
}
}
var safeArray *SafeArray = (*SafeArray)(unsafe.Pointer(uintptr(v.Val)))
return &SafeArrayConversion{safeArray}
}
// ToString converts variant to Go string.
func (v *VARIANT) ToString() string {
if v.VT != VT_BSTR {
return ""
}
return BstrToString(*(**uint16)(unsafe.Pointer(&v.Val)))
}
// Clear the memory of variant object.
func (v *VARIANT) Clear() error {
return VariantClear(v)
}
// Value returns variant value based on its type.
//
// Currently supported types: 2- and 4-byte integers, strings, bools.
// Note that 64-bit integers, datetimes, and other types are stored as strings
// and will be returned as strings.
//
// Needs to be further converted, because this returns an interface{}.
func (v *VARIANT) Value() interface{} {
switch v.VT {
case VT_I1:
return int8(v.Val)
case VT_UI1:
return uint8(v.Val)
case VT_I2:
return int16(v.Val)
case VT_UI2:
return uint16(v.Val)
case VT_I4:
return int32(v.Val)
case VT_UI4:
return uint32(v.Val)
case VT_I8:
return int64(v.Val)
case VT_UI8:
return uint64(v.Val)
case VT_INT:
return int(v.Val)
case VT_UINT:
return uint(v.Val)
case VT_INT_PTR:
return uintptr(v.Val) // TODO
case VT_UINT_PTR:
return uintptr(v.Val)
case VT_R4:
return *(*float32)(unsafe.Pointer(&v.Val))
case VT_R8:
return *(*float64)(unsafe.Pointer(&v.Val))
case VT_BSTR:
return v.ToString()
case VT_DATE:
// VT_DATE type will either return float64 or time.Time.
d := uint64(v.Val)
date, err := GetVariantDate(d)
if err != nil {
return float64(v.Val)
}
return date
case VT_UNKNOWN:
return v.ToIUnknown()
case VT_DISPATCH:
return v.ToIDispatch()
case VT_BOOL:
return v.Val != 0
}
return nil
}

View File

@ -1,11 +0,0 @@
// +build 386
package ole
type VARIANT struct {
VT VT // 2
wReserved1 uint16 // 4
wReserved2 uint16 // 6
wReserved3 uint16 // 8
Val int64 // 16
}

View File

@ -1,12 +0,0 @@
// +build amd64
package ole
type VARIANT struct {
VT VT // 2
wReserved1 uint16 // 4
wReserved2 uint16 // 6
wReserved3 uint16 // 8
Val int64 // 16
_ [8]byte // 24
}

View File

@ -1,22 +0,0 @@
// +build windows,386
package ole
import (
"errors"
"syscall"
"time"
"unsafe"
)
// GetVariantDate converts COM Variant Time value to Go time.Time.
func GetVariantDate(value uint64) (time.Time, error) {
var st syscall.Systemtime
v1 := uint32(value)
v2 := uint32(value >> 32)
r, _, _ := procVariantTimeToSystemTime.Call(uintptr(v1), uintptr(v2), uintptr(unsafe.Pointer(&st)))
if r != 0 {
return time.Date(int(st.Year), time.Month(st.Month), int(st.Day), int(st.Hour), int(st.Minute), int(st.Second), int(st.Milliseconds/1000), time.UTC), nil
}
return time.Now(), errors.New("Could not convert to time, passing current time.")
}

View File

@ -1,20 +0,0 @@
// +build windows,amd64
package ole
import (
"errors"
"syscall"
"time"
"unsafe"
)
// GetVariantDate converts COM Variant Time value to Go time.Time.
func GetVariantDate(value uint64) (time.Time, error) {
var st syscall.Systemtime
r, _, _ := procVariantTimeToSystemTime.Call(uintptr(value), uintptr(unsafe.Pointer(&st)))
if r != 0 {
return time.Date(int(st.Year), time.Month(st.Month), int(st.Day), int(st.Hour), int(st.Minute), int(st.Second), int(st.Milliseconds/1000), time.UTC), nil
}
return time.Now(), errors.New("Could not convert to time, passing current time.")
}

View File

@ -1,12 +0,0 @@
// +build ppc64le
package ole
type VARIANT struct {
VT VT // 2
wReserved1 uint16 // 4
wReserved2 uint16 // 6
wReserved3 uint16 // 8
Val int64 // 16
_ [8]byte // 24
}

View File

@ -1,12 +0,0 @@
// +build s390x
package ole
type VARIANT struct {
VT VT // 2
wReserved1 uint16 // 4
wReserved2 uint16 // 6
wReserved3 uint16 // 8
Val int64 // 16
_ [8]byte // 24
}

View File

@ -1,58 +0,0 @@
// generated by stringer -output vt_string.go -type VT; DO NOT EDIT
package ole
import "fmt"
const (
_VT_name_0 = "VT_EMPTYVT_NULLVT_I2VT_I4VT_R4VT_R8VT_CYVT_DATEVT_BSTRVT_DISPATCHVT_ERRORVT_BOOLVT_VARIANTVT_UNKNOWNVT_DECIMAL"
_VT_name_1 = "VT_I1VT_UI1VT_UI2VT_UI4VT_I8VT_UI8VT_INTVT_UINTVT_VOIDVT_HRESULTVT_PTRVT_SAFEARRAYVT_CARRAYVT_USERDEFINEDVT_LPSTRVT_LPWSTR"
_VT_name_2 = "VT_RECORDVT_INT_PTRVT_UINT_PTR"
_VT_name_3 = "VT_FILETIMEVT_BLOBVT_STREAMVT_STORAGEVT_STREAMED_OBJECTVT_STORED_OBJECTVT_BLOB_OBJECTVT_CFVT_CLSID"
_VT_name_4 = "VT_BSTR_BLOBVT_VECTOR"
_VT_name_5 = "VT_ARRAY"
_VT_name_6 = "VT_BYREF"
_VT_name_7 = "VT_RESERVED"
_VT_name_8 = "VT_ILLEGAL"
)
var (
_VT_index_0 = [...]uint8{0, 8, 15, 20, 25, 30, 35, 40, 47, 54, 65, 73, 80, 90, 100, 110}
_VT_index_1 = [...]uint8{0, 5, 11, 17, 23, 28, 34, 40, 47, 54, 64, 70, 82, 91, 105, 113, 122}
_VT_index_2 = [...]uint8{0, 9, 19, 30}
_VT_index_3 = [...]uint8{0, 11, 18, 27, 37, 55, 71, 85, 90, 98}
_VT_index_4 = [...]uint8{0, 12, 21}
_VT_index_5 = [...]uint8{0, 8}
_VT_index_6 = [...]uint8{0, 8}
_VT_index_7 = [...]uint8{0, 11}
_VT_index_8 = [...]uint8{0, 10}
)
func (i VT) String() string {
switch {
case 0 <= i && i <= 14:
return _VT_name_0[_VT_index_0[i]:_VT_index_0[i+1]]
case 16 <= i && i <= 31:
i -= 16
return _VT_name_1[_VT_index_1[i]:_VT_index_1[i+1]]
case 36 <= i && i <= 38:
i -= 36
return _VT_name_2[_VT_index_2[i]:_VT_index_2[i+1]]
case 64 <= i && i <= 72:
i -= 64
return _VT_name_3[_VT_index_3[i]:_VT_index_3[i+1]]
case 4095 <= i && i <= 4096:
i -= 4095
return _VT_name_4[_VT_index_4[i]:_VT_index_4[i+1]]
case i == 8192:
return _VT_name_5
case i == 16384:
return _VT_name_6
case i == 32768:
return _VT_name_7
case i == 65535:
return _VT_name_8
default:
return fmt.Sprintf("VT(%d)", i)
}
}

View File

@ -1,99 +0,0 @@
// +build windows
package ole
import (
"reflect"
"syscall"
"unicode/utf8"
"unsafe"
)
var (
procRoInitialize = modcombase.NewProc("RoInitialize")
procRoActivateInstance = modcombase.NewProc("RoActivateInstance")
procRoGetActivationFactory = modcombase.NewProc("RoGetActivationFactory")
procWindowsCreateString = modcombase.NewProc("WindowsCreateString")
procWindowsDeleteString = modcombase.NewProc("WindowsDeleteString")
procWindowsGetStringRawBuffer = modcombase.NewProc("WindowsGetStringRawBuffer")
)
func RoInitialize(thread_type uint32) (err error) {
hr, _, _ := procRoInitialize.Call(uintptr(thread_type))
if hr != 0 {
err = NewError(hr)
}
return
}
func RoActivateInstance(clsid string) (ins *IInspectable, err error) {
hClsid, err := NewHString(clsid)
if err != nil {
return nil, err
}
defer DeleteHString(hClsid)
hr, _, _ := procRoActivateInstance.Call(
uintptr(unsafe.Pointer(hClsid)),
uintptr(unsafe.Pointer(&ins)))
if hr != 0 {
err = NewError(hr)
}
return
}
func RoGetActivationFactory(clsid string, iid *GUID) (ins *IInspectable, err error) {
hClsid, err := NewHString(clsid)
if err != nil {
return nil, err
}
defer DeleteHString(hClsid)
hr, _, _ := procRoGetActivationFactory.Call(
uintptr(unsafe.Pointer(hClsid)),
uintptr(unsafe.Pointer(iid)),
uintptr(unsafe.Pointer(&ins)))
if hr != 0 {
err = NewError(hr)
}
return
}
// HString is handle string for pointers.
type HString uintptr
// NewHString returns a new HString for Go string.
func NewHString(s string) (hstring HString, err error) {
u16 := syscall.StringToUTF16Ptr(s)
len := uint32(utf8.RuneCountInString(s))
hr, _, _ := procWindowsCreateString.Call(
uintptr(unsafe.Pointer(u16)),
uintptr(len),
uintptr(unsafe.Pointer(&hstring)))
if hr != 0 {
err = NewError(hr)
}
return
}
// DeleteHString deletes HString.
func DeleteHString(hstring HString) (err error) {
hr, _, _ := procWindowsDeleteString.Call(uintptr(hstring))
if hr != 0 {
err = NewError(hr)
}
return
}
// String returns Go string value of HString.
func (h HString) String() string {
var u16buf uintptr
var u16len uint32
u16buf, _, _ = procWindowsGetStringRawBuffer.Call(
uintptr(h),
uintptr(unsafe.Pointer(&u16len)))
u16hdr := reflect.SliceHeader{Data: u16buf, Len: int(u16len), Cap: int(u16len)}
u16 := *(*[]uint16)(unsafe.Pointer(&u16hdr))
return syscall.UTF16ToString(u16)
}

View File

@ -1,36 +0,0 @@
// +build !windows
package ole
// RoInitialize
func RoInitialize(thread_type uint32) (err error) {
return NewError(E_NOTIMPL)
}
// RoActivateInstance
func RoActivateInstance(clsid string) (ins *IInspectable, err error) {
return nil, NewError(E_NOTIMPL)
}
// RoGetActivationFactory
func RoGetActivationFactory(clsid string, iid *GUID) (ins *IInspectable, err error) {
return nil, NewError(E_NOTIMPL)
}
// HString is handle string for pointers.
type HString uintptr
// NewHString returns a new HString for Go string.
func NewHString(s string) (hstring HString, err error) {
return HString(uintptr(0)), NewError(E_NOTIMPL)
}
// DeleteHString deletes HString.
func DeleteHString(hstring HString) (err error) {
return NewError(E_NOTIMPL)
}
// String returns Go string value of HString.
func (h HString) String() string {
return ""
}

27
vendor/github.com/google/go-cmp/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2017 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

156
vendor/github.com/google/go-cmp/cmp/cmpopts/equate.go generated vendored Normal file
View File

@ -0,0 +1,156 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmpopts provides common options for the cmp package.
package cmpopts
import (
"math"
"reflect"
"time"
"github.com/google/go-cmp/cmp"
"golang.org/x/xerrors"
)
func equateAlways(_, _ interface{}) bool { return true }
// EquateEmpty returns a Comparer option that determines all maps and slices
// with a length of zero to be equal, regardless of whether they are nil.
//
// EquateEmpty can be used in conjunction with SortSlices and SortMaps.
func EquateEmpty() cmp.Option {
return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways))
}
func isEmpty(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) &&
(vx.Len() == 0 && vy.Len() == 0)
}
// EquateApprox returns a Comparer option that determines float32 or float64
// values to be equal if they are within a relative fraction or absolute margin.
// This option is not used when either x or y is NaN or infinite.
//
// The fraction determines that the difference of two values must be within the
// smaller fraction of the two values, while the margin determines that the two
// values must be within some absolute margin.
// To express only a fraction or only a margin, use 0 for the other parameter.
// The fraction and margin must be non-negative.
//
// The mathematical expression used is equivalent to:
// |x-y| ≤ max(fraction*min(|x|, |y|), margin)
//
// EquateApprox can be used in conjunction with EquateNaNs.
func EquateApprox(fraction, margin float64) cmp.Option {
if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) {
panic("margin or fraction must be a non-negative number")
}
a := approximator{fraction, margin}
return cmp.Options{
cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)),
cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)),
}
}
type approximator struct{ frac, marg float64 }
func areRealF64s(x, y float64) bool {
return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0)
}
func areRealF32s(x, y float32) bool {
return areRealF64s(float64(x), float64(y))
}
func (a approximator) compareF64(x, y float64) bool {
relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y))
return math.Abs(x-y) <= math.Max(a.marg, relMarg)
}
func (a approximator) compareF32(x, y float32) bool {
return a.compareF64(float64(x), float64(y))
}
// EquateNaNs returns a Comparer option that determines float32 and float64
// NaN values to be equal.
//
// EquateNaNs can be used in conjunction with EquateApprox.
func EquateNaNs() cmp.Option {
return cmp.Options{
cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)),
cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)),
}
}
func areNaNsF64s(x, y float64) bool {
return math.IsNaN(x) && math.IsNaN(y)
}
func areNaNsF32s(x, y float32) bool {
return areNaNsF64s(float64(x), float64(y))
}
// EquateApproxTime returns a Comparer option that determines two non-zero
// time.Time values to be equal if they are within some margin of one another.
// If both times have a monotonic clock reading, then the monotonic time
// difference will be used. The margin must be non-negative.
func EquateApproxTime(margin time.Duration) cmp.Option {
if margin < 0 {
panic("margin must be a non-negative number")
}
a := timeApproximator{margin}
return cmp.FilterValues(areNonZeroTimes, cmp.Comparer(a.compare))
}
func areNonZeroTimes(x, y time.Time) bool {
return !x.IsZero() && !y.IsZero()
}
type timeApproximator struct {
margin time.Duration
}
func (a timeApproximator) compare(x, y time.Time) bool {
// Avoid subtracting times to avoid overflow when the
// difference is larger than the largest representible duration.
if x.After(y) {
// Ensure x is always before y
x, y = y, x
}
// We're within the margin if x+margin >= y.
// Note: time.Time doesn't have AfterOrEqual method hence the negation.
return !x.Add(a.margin).Before(y)
}
// AnyError is an error that matches any non-nil error.
var AnyError anyError
type anyError struct{}
func (anyError) Error() string { return "any error" }
func (anyError) Is(err error) bool { return err != nil }
// EquateErrors returns a Comparer option that determines errors to be equal
// if errors.Is reports them to match. The AnyError error can be used to
// match any non-nil error.
func EquateErrors() cmp.Option {
return cmp.FilterValues(areConcreteErrors, cmp.Comparer(compareErrors))
}
// areConcreteErrors reports whether x and y are types that implement error.
// The input types are deliberately of the interface{} type rather than the
// error type so that we can handle situations where the current type is an
// interface{}, but the underlying concrete types both happen to implement
// the error interface.
func areConcreteErrors(x, y interface{}) bool {
_, ok1 := x.(error)
_, ok2 := y.(error)
return ok1 && ok2
}
func compareErrors(x, y interface{}) bool {
xe := x.(error)
ye := y.(error)
// TODO(≥go1.13): Use standard definition of errors.Is.
return xerrors.Is(xe, ye) || xerrors.Is(ye, xe)
}

206
vendor/github.com/google/go-cmp/cmp/cmpopts/ignore.go generated vendored Normal file
View File

@ -0,0 +1,206 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// IgnoreFields returns an Option that ignores fields of the
// given names on a single struct type. It respects the names of exported fields
// that are forwarded due to struct embedding.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to ignore a
// specific sub-field that is embedded or nested within the parent struct.
func IgnoreFields(typ interface{}, names ...string) cmp.Option {
sf := newStructFilter(typ, names...)
return cmp.FilterPath(sf.filter, cmp.Ignore())
}
// IgnoreTypes returns an Option that ignores all values assignable to
// certain types, which are specified by passing in a value of each type.
func IgnoreTypes(typs ...interface{}) cmp.Option {
tf := newTypeFilter(typs...)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type typeFilter []reflect.Type
func newTypeFilter(typs ...interface{}) (tf typeFilter) {
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil {
// This occurs if someone tries to pass in sync.Locker(nil)
panic("cannot determine type; consider using IgnoreInterfaces")
}
tf = append(tf, t)
}
return tf
}
func (tf typeFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreInterfaces returns an Option that ignores all values or references of
// values assignable to certain interface types. These interfaces are specified
// by passing in an anonymous struct with the interface types embedded in it.
// For example, to ignore sync.Locker, pass in struct{sync.Locker}{}.
func IgnoreInterfaces(ifaces interface{}) cmp.Option {
tf := newIfaceFilter(ifaces)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type ifaceFilter []reflect.Type
func newIfaceFilter(ifaces interface{}) (tf ifaceFilter) {
t := reflect.TypeOf(ifaces)
if ifaces == nil || t.Name() != "" || t.Kind() != reflect.Struct {
panic("input must be an anonymous struct")
}
for i := 0; i < t.NumField(); i++ {
fi := t.Field(i)
switch {
case !fi.Anonymous:
panic("struct cannot have named fields")
case fi.Type.Kind() != reflect.Interface:
panic("embedded field must be an interface type")
case fi.Type.NumMethod() == 0:
// This matches everything; why would you ever want this?
panic("cannot ignore empty interface")
default:
tf = append(tf, fi.Type)
}
}
return tf
}
func (tf ifaceFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
if t.Kind() != reflect.Ptr && reflect.PtrTo(t).AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreUnexported returns an Option that only ignores the immediate unexported
// fields of a struct, including anonymous fields of unexported types.
// In particular, unexported fields within the struct's exported fields
// of struct types, including anonymous fields, will not be ignored unless the
// type of the field itself is also passed to IgnoreUnexported.
//
// Avoid ignoring unexported fields of a type which you do not control (i.e. a
// type from another repository), as changes to the implementation of such types
// may change how the comparison behaves. Prefer a custom Comparer instead.
func IgnoreUnexported(typs ...interface{}) cmp.Option {
ux := newUnexportedFilter(typs...)
return cmp.FilterPath(ux.filter, cmp.Ignore())
}
type unexportedFilter struct{ m map[reflect.Type]bool }
func newUnexportedFilter(typs ...interface{}) unexportedFilter {
ux := unexportedFilter{m: make(map[reflect.Type]bool)}
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
ux.m[t] = true
}
return ux
}
func (xf unexportedFilter) filter(p cmp.Path) bool {
sf, ok := p.Index(-1).(cmp.StructField)
if !ok {
return false
}
return xf.m[p.Index(-2).Type()] && !isExported(sf.Name())
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// IgnoreSliceElements returns an Option that ignores elements of []V.
// The discard function must be of the form "func(T) bool" which is used to
// ignore slice elements of type V, where V is assignable to T.
// Elements are ignored if the function reports true.
func IgnoreSliceElements(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.ValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
si, ok := p.Index(-1).(cmp.SliceIndex)
if !ok {
return false
}
if !si.Type().AssignableTo(vf.Type().In(0)) {
return false
}
vx, vy := si.Values()
if vx.IsValid() && vf.Call([]reflect.Value{vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}
// IgnoreMapEntries returns an Option that ignores entries of map[K]V.
// The discard function must be of the form "func(T, R) bool" which is used to
// ignore map entries of type K and V, where K and V are assignable to T and R.
// Entries are ignored if the function reports true.
func IgnoreMapEntries(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.KeyValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
if !mi.Key().Type().AssignableTo(vf.Type().In(0)) || !mi.Type().AssignableTo(vf.Type().In(1)) {
return false
}
k := mi.Key()
vx, vy := mi.Values()
if vx.IsValid() && vf.Call([]reflect.Value{k, vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{k, vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}

147
vendor/github.com/google/go-cmp/cmp/cmpopts/sort.go generated vendored Normal file
View File

@ -0,0 +1,147 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"sort"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// SortSlices returns a Transformer option that sorts all []V.
// The less function must be of the form "func(T, T) bool" which is used to
// sort any slice with element type V that is assignable to T.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
//
// The less function does not have to be "total". That is, if !less(x, y) and
// !less(y, x) for two elements x and y, their relative order is maintained.
//
// SortSlices can be used in conjunction with EquateEmpty.
func SortSlices(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ss := sliceSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ss.filter, cmp.Transformer("cmpopts.SortSlices", ss.sort))
}
type sliceSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ss sliceSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
if !(x != nil && y != nil && vx.Type() == vy.Type()) ||
!(vx.Kind() == reflect.Slice && vx.Type().Elem().AssignableTo(ss.in)) ||
(vx.Len() <= 1 && vy.Len() <= 1) {
return false
}
// Check whether the slices are already sorted to avoid an infinite
// recursion cycle applying the same transform to itself.
ok1 := sort.SliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sort.SliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
return !ok1 || !ok2
}
func (ss sliceSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
dst := reflect.MakeSlice(src.Type(), src.Len(), src.Len())
for i := 0; i < src.Len(); i++ {
dst.Index(i).Set(src.Index(i))
}
sort.SliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
ss.checkSort(dst)
return dst.Interface()
}
func (ss sliceSorter) checkSort(v reflect.Value) {
start := -1 // Start of a sequence of equal elements.
for i := 1; i < v.Len(); i++ {
if ss.less(v, i-1, i) {
// Check that first and last elements in v[start:i] are equal.
if start >= 0 && (ss.less(v, start, i-1) || ss.less(v, i-1, start)) {
panic(fmt.Sprintf("incomparable values detected: want equal elements: %v", v.Slice(start, i)))
}
start = -1
} else if start == -1 {
start = i
}
}
}
func (ss sliceSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i), v.Index(j)
return ss.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}
// SortMaps returns a Transformer option that flattens map[K]V types to be a
// sorted []struct{K, V}. The less function must be of the form
// "func(T, T) bool" which is used to sort any map with key K that is
// assignable to T.
//
// Flattening the map into a slice has the property that cmp.Equal is able to
// use Comparers on K or the K.Equal method if it exists.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
// • Total: if x != y, then either less(x, y) or less(y, x)
//
// SortMaps can be used in conjunction with EquateEmpty.
func SortMaps(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ms := mapSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ms.filter, cmp.Transformer("cmpopts.SortMaps", ms.sort))
}
type mapSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ms mapSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Map && vx.Type().Key().AssignableTo(ms.in)) &&
(vx.Len() != 0 || vy.Len() != 0)
}
func (ms mapSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
outType := reflect.StructOf([]reflect.StructField{
{Name: "K", Type: src.Type().Key()},
{Name: "V", Type: src.Type().Elem()},
})
dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len())
for i, k := range src.MapKeys() {
v := reflect.New(outType).Elem()
v.Field(0).Set(k)
v.Field(1).Set(src.MapIndex(k))
dst.Index(i).Set(v)
}
sort.Slice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
ms.checkSort(dst)
return dst.Interface()
}
func (ms mapSorter) checkSort(v reflect.Value) {
for i := 1; i < v.Len(); i++ {
if !ms.less(v, i-1, i) {
panic(fmt.Sprintf("partial order detected: want %v < %v", v.Index(i-1), v.Index(i)))
}
}
}
func (ms mapSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i).Field(0), v.Index(j).Field(0)
return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}

View File

@ -0,0 +1,187 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp"
)
// filterField returns a new Option where opt is only evaluated on paths that
// include a specific exported field on a single struct type.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to select a
// specific sub-field that is embedded or nested within the parent struct.
func filterField(typ interface{}, name string, opt cmp.Option) cmp.Option {
// TODO: This is currently unexported over concerns of how helper filters
// can be composed together easily.
// TODO: Add tests for FilterField.
sf := newStructFilter(typ, name)
return cmp.FilterPath(sf.filter, opt)
}
type structFilter struct {
t reflect.Type // The root struct type to match on
ft fieldTree // Tree of fields to match on
}
func newStructFilter(typ interface{}, names ...string) structFilter {
// TODO: Perhaps allow * as a special identifier to allow ignoring any
// number of path steps until the next field match?
// This could be useful when a concrete struct gets transformed into
// an anonymous struct where it is not possible to specify that by type,
// but the transformer happens to provide guarantees about the names of
// the transformed fields.
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
var ft fieldTree
for _, name := range names {
cname, err := canonicalName(t, name)
if err != nil {
panic(fmt.Sprintf("%s: %v", strings.Join(cname, "."), err))
}
ft.insert(cname)
}
return structFilter{t, ft}
}
func (sf structFilter) filter(p cmp.Path) bool {
for i, ps := range p {
if ps.Type().AssignableTo(sf.t) && sf.ft.matchPrefix(p[i+1:]) {
return true
}
}
return false
}
// fieldTree represents a set of dot-separated identifiers.
//
// For example, inserting the following selectors:
// Foo
// Foo.Bar.Baz
// Foo.Buzz
// Nuka.Cola.Quantum
//
// Results in a tree of the form:
// {sub: {
// "Foo": {ok: true, sub: {
// "Bar": {sub: {
// "Baz": {ok: true},
// }},
// "Buzz": {ok: true},
// }},
// "Nuka": {sub: {
// "Cola": {sub: {
// "Quantum": {ok: true},
// }},
// }},
// }}
type fieldTree struct {
ok bool // Whether this is a specified node
sub map[string]fieldTree // The sub-tree of fields under this node
}
// insert inserts a sequence of field accesses into the tree.
func (ft *fieldTree) insert(cname []string) {
if ft.sub == nil {
ft.sub = make(map[string]fieldTree)
}
if len(cname) == 0 {
ft.ok = true
return
}
sub := ft.sub[cname[0]]
sub.insert(cname[1:])
ft.sub[cname[0]] = sub
}
// matchPrefix reports whether any selector in the fieldTree matches
// the start of path p.
func (ft fieldTree) matchPrefix(p cmp.Path) bool {
for _, ps := range p {
switch ps := ps.(type) {
case cmp.StructField:
ft = ft.sub[ps.Name()]
if ft.ok {
return true
}
if len(ft.sub) == 0 {
return false
}
case cmp.Indirect:
default:
return false
}
}
return false
}
// canonicalName returns a list of identifiers where any struct field access
// through an embedded field is expanded to include the names of the embedded
// types themselves.
//
// For example, suppose field "Foo" is not directly in the parent struct,
// but actually from an embedded struct of type "Bar". Then, the canonical name
// of "Foo" is actually "Bar.Foo".
//
// Suppose field "Foo" is not directly in the parent struct, but actually
// a field in two different embedded structs of types "Bar" and "Baz".
// Then the selector "Foo" causes a panic since it is ambiguous which one it
// refers to. The user must specify either "Bar.Foo" or "Baz.Foo".
func canonicalName(t reflect.Type, sel string) ([]string, error) {
var name string
sel = strings.TrimPrefix(sel, ".")
if sel == "" {
return nil, fmt.Errorf("name must not be empty")
}
if i := strings.IndexByte(sel, '.'); i < 0 {
name, sel = sel, ""
} else {
name, sel = sel[:i], sel[i:]
}
// Type must be a struct or pointer to struct.
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return nil, fmt.Errorf("%v must be a struct", t)
}
// Find the canonical name for this current field name.
// If the field exists in an embedded struct, then it will be expanded.
sf, _ := t.FieldByName(name)
if !isExported(name) {
// Avoid using reflect.Type.FieldByName for unexported fields due to
// buggy behavior with regard to embeddeding and unexported fields.
// See https://golang.org/issue/4876 for details.
sf = reflect.StructField{}
for i := 0; i < t.NumField() && sf.Name == ""; i++ {
if t.Field(i).Name == name {
sf = t.Field(i)
}
}
}
if sf.Name == "" {
return []string{name}, fmt.Errorf("does not exist")
}
var ss []string
for i := range sf.Index {
ss = append(ss, t.FieldByIndex(sf.Index[:i+1]).Name)
}
if sel == "" {
return ss, nil
}
ssPost, err := canonicalName(sf.Type, sel)
return append(ss, ssPost...), err
}

35
vendor/github.com/google/go-cmp/cmp/cmpopts/xform.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"github.com/google/go-cmp/cmp"
)
type xformFilter struct{ xform cmp.Option }
func (xf xformFilter) filter(p cmp.Path) bool {
for _, ps := range p {
if t, ok := ps.(cmp.Transform); ok && t.Option() == xf.xform {
return false
}
}
return true
}
// AcyclicTransformer returns a Transformer with a filter applied that ensures
// that the transformer cannot be recursively applied upon its own output.
//
// An example use case is a transformer that splits a string by lines:
// AcyclicTransformer("SplitLines", func(s string) []string{
// return strings.Split(s, "\n")
// })
//
// Had this been an unfiltered Transformer instead, this would result in an
// infinite cycle converting a string to []string to [][]string and so on.
func AcyclicTransformer(name string, xformFunc interface{}) cmp.Option {
xf := xformFilter{cmp.Transformer(name, xformFunc)}
return cmp.FilterPath(xf.filter, xf.xform)
}

682
vendor/github.com/google/go-cmp/cmp/compare.go generated vendored Normal file
View File

@ -0,0 +1,682 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
// It is intended to only be used in tests, as performance is not a goal and
// it may panic if it cannot compare the values. Its propensity towards
// panicking means that its unsuitable for production environments where a
// spurious panic may be fatal.
//
// The primary features of cmp are:
//
// • When the default behavior of equality does not suit the needs of the test,
// custom equality functions can override the equality operation.
// For example, an equality function may report floats as equal so long as they
// are within some tolerance of each other.
//
// • Types that have an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation for the types
// that they define.
//
// • If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
// compared using the Exporter option.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value"
)
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is greater than one,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform the current
// values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
// evaluation proceeds to the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
//
// Structs are equal if recursively calling Equal on all fields report equal.
// If a struct contains unexported fields, Equal panics unless an Ignore option
// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
// explicitly permits comparing the unexported field.
//
// Slices are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored slice or array elements report equal.
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
// consider using cmpopts.EquateEmpty.
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using cmpopts.EquateEmpty.
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively
// calling Equal on the underlying values reports equal.
//
// Before recursing into a pointer, slice element, or map, the current path
// is checked to detect whether the address has already been visited.
// If there is a cycle, then the pointed at values are considered equal
// only if both addresses were previously visited in the same path step.
func Equal(x, y interface{}, opts ...Option) bool {
s := newState(opts)
s.compareAny(rootStep(x, y))
return s.result.Equal()
}
// Diff returns a human-readable report of the differences between two values:
// y - x. It returns an empty string if and only if Equal returns true for the
// same input values and options.
//
// The output is displayed as a literal in pseudo-Go syntax.
// At the start of each line, a "-" prefix indicates an element removed from y,
// a "+" prefix to indicates an element added to y, and the lack of a prefix
// indicates an element common to both x and y. If possible, the output
// uses fmt.Stringer.String or error.Error methods to produce more humanly
// readable outputs. In such cases, the string is prefixed with either an
// 's' or 'e' character, respectively, to indicate that the method was called.
//
// Do not depend on this output being stable. If you need the ability to
// programmatically interpret the difference, consider using a custom Reporter.
func Diff(x, y interface{}, opts ...Option) string {
s := newState(opts)
// Optimization: If there are no other reporters, we can optimize for the
// common case where the result is equal (and thus no reported difference).
// This avoids the expensive construction of a difference tree.
if len(s.reporters) == 0 {
s.compareAny(rootStep(x, y))
if s.result.Equal() {
return ""
}
s.result = diff.Result{} // Reset results
}
r := new(defaultReporter)
s.reporters = append(s.reporters, reporter{r})
s.compareAny(rootStep(x, y))
d := r.String()
if (d == "") != s.result.Equal() {
panic("inconsistent difference and equality results")
}
return d
}
// rootStep constructs the first path step. If x and y have differing types,
// then they are stored within an empty interface type.
func rootStep(x, y interface{}) PathStep {
vx := reflect.ValueOf(x)
vy := reflect.ValueOf(y)
// If the inputs are different types, auto-wrap them in an empty interface
// so that they have the same parent type.
var t reflect.Type
if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
t = reflect.TypeOf((*interface{})(nil)).Elem()
if vx.IsValid() {
vvx := reflect.New(t).Elem()
vvx.Set(vx)
vx = vvx
}
if vy.IsValid() {
vvy := reflect.New(t).Elem()
vvy.Set(vy)
vy = vvy
}
} else {
t = vx.Type()
}
return &pathStep{t, vx, vy}
}
type state struct {
// These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
curPtrs pointerPath // The current set of visited pointers
reporters []reporter // Optional reporters
// recChecker checks for infinite cycles applying the same set of
// transformers upon the output of itself.
recChecker recChecker
// dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value.
dynChecker dynChecker
// These fields, once set by processOption, will not change.
exporters []exporter // List of exporters for structs with unexported fields
opts Options // List of all fundamental and filter options
}
func newState(opts []Option) *state {
// Always ensure a validator option exists to validate the inputs.
s := &state{opts: Options{validator{}}}
s.curPtrs.Init()
s.processOption(Options(opts))
return s
}
func (s *state) processOption(opt Option) {
switch opt := opt.(type) {
case nil:
case Options:
for _, o := range opt {
s.processOption(o)
}
case coreOption:
type filtered interface {
isFiltered() bool
}
if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
}
s.opts = append(s.opts, opt)
case exporter:
s.exporters = append(s.exporters, opt)
case reporter:
s.reporters = append(s.reporters, opt)
default:
panic(fmt.Sprintf("unknown option %T", opt))
}
}
// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(step PathStep) diff.Result {
// We do not save and restore curPath and curPtrs because all of the
// compareX methods should properly push and pop from them.
// It is an implementation bug if the contents of the paths differ from
// when calling this function to when returning from it.
oldResult, oldReporters := s.result, s.reporters
s.result = diff.Result{} // Reset result
s.reporters = nil // Remove reporters to avoid spurious printouts
s.compareAny(step)
res := s.result
s.result, s.reporters = oldResult, oldReporters
return res
}
func (s *state) compareAny(step PathStep) {
// Update the path stack.
s.curPath.push(step)
defer s.curPath.pop()
for _, r := range s.reporters {
r.PushStep(step)
defer r.PopStep()
}
s.recChecker.Check(s.curPath)
// Cycle-detection for slice elements (see NOTE in compareSlice).
t := step.Type()
vx, vy := step.Values()
if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
px, py := vx.Addr(), vy.Addr()
if eq, visited := s.curPtrs.Push(px, py); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(px, py)
}
// Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(t, vx, vy) {
return
}
// Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(t, vx, vy) {
return
}
// Rule 3: Compare based on the underlying kind.
switch t.Kind() {
case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), 0)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), 0)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), 0)
case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), 0)
case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), 0)
case reflect.String:
s.report(vx.String() == vy.String(), 0)
case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), 0)
case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), 0)
case reflect.Struct:
s.compareStruct(t, vx, vy)
case reflect.Slice, reflect.Array:
s.compareSlice(t, vx, vy)
case reflect.Map:
s.compareMap(t, vx, vy)
case reflect.Ptr:
s.comparePtr(t, vx, vy)
case reflect.Interface:
s.compareInterface(t, vx, vy)
default:
panic(fmt.Sprintf("%v kind not handled", t.Kind()))
}
}
func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
// Evaluate all filters and apply the remaining options.
if opt := s.opts.filter(s, t, vx, vy); opt != nil {
opt.apply(s, vx, vy)
return true
}
return false
}
func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
// Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) {
return false
}
eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, reportByMethod)
return true
}
func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
v = sanitizeValue(v, f.Type().In(0))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0]
}
// Run the function twice and ensure that we get the same results back.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, v)
got := <-c
want := f.Call([]reflect.Value{v})[0]
if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
// To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself.
if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
return want
}
panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
}
return want
}
func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
x = sanitizeValue(x, f.Type().In(0))
y = sanitizeValue(y, f.Type().In(1))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{x, y})[0].Bool()
}
// Swapping the input arguments is sufficient to check that
// f is symmetric and deterministic.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, y, x)
got := <-c
want := f.Call([]reflect.Value{x, y})[0].Bool()
if !got.IsValid() || got.Bool() != want {
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
}
return want
}
func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
var ret reflect.Value
defer func() {
recover() // Ignore panics, let the other call to f panic instead
c <- ret
}()
ret = f.Call(vs)[0]
}
// sanitizeValue converts nil interfaces of type T to those of type R,
// assuming that T is assignable to R.
// Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
// TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143).
if !flags.AtLeastGo110 {
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem()
}
}
return v
}
func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
var addr bool
var vax, vay reflect.Value // Addressable versions of vx and vy
var mayForce, mayForceInit bool
step := StructField{&structField{}}
for i := 0; i < t.NumField(); i++ {
step.typ = t.Field(i).Type
step.vx = vx.Field(i)
step.vy = vy.Field(i)
step.name = t.Field(i).Name
step.idx = i
step.unexported = !isExported(step.name)
if step.unexported {
if step.name == "_" {
continue
}
// Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() {
// For retrieveUnexportedField to work, the parent struct must
// be addressable. Create a new copy of the values if
// necessary to make them addressable.
addr = vx.CanAddr() || vy.CanAddr()
vax = makeAddressable(vx)
vay = makeAddressable(vy)
}
if !mayForceInit {
for _, xf := range s.exporters {
mayForce = mayForce || xf(t)
}
mayForceInit = true
}
step.mayForce = mayForce
step.paddr = addr
step.pvx = vax
step.pvy = vay
step.field = t.Field(i)
}
s.compareAny(step)
}
}
func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
isSlice := t.Kind() == reflect.Slice
if isSlice && (vx.IsNil() || vy.IsNil()) {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
// since slices represents a list of pointers, rather than a single pointer.
// The pointer checking logic must be handled on a per-element basis
// in compareAny.
//
// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
// pointer P, a length N, and a capacity C. Supposing each slice element has
// a memory size of M, then the slice is equivalent to the list of pointers:
// [P+i*M for i in range(N)]
//
// For example, v[:0] and v[:1] are slices with the same starting pointer,
// but they are clearly different values. Using the slice pointer alone
// violates the assumption that equal pointers implies equal values.
step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
withIndexes := func(ix, iy int) SliceIndex {
if ix >= 0 {
step.vx, step.xkey = vx.Index(ix), ix
} else {
step.vx, step.xkey = reflect.Value{}, -1
}
if iy >= 0 {
step.vy, step.ykey = vy.Index(iy), iy
} else {
step.vy, step.ykey = reflect.Value{}, -1
}
return step
}
// Ignore options are able to ignore missing elements in a slice.
// However, detecting these reliably requires an optimal differencing
// algorithm, for which diff.Difference is not.
//
// Instead, we first iterate through both slices to detect which elements
// would be ignored if standing alone. The index of non-discarded elements
// are stored in a separate slice, which diffing is then performed on.
var indexesX, indexesY []int
var ignoredX, ignoredY []bool
for ix := 0; ix < vx.Len(); ix++ {
ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
if !ignored {
indexesX = append(indexesX, ix)
}
ignoredX = append(ignoredX, ignored)
}
for iy := 0; iy < vy.Len(); iy++ {
ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
if !ignored {
indexesY = append(indexesY, iy)
}
ignoredY = append(ignoredY, ignored)
}
// Compute an edit-script for slices vx and vy (excluding ignored elements).
edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
})
// Replay the ignore-scripts and the edit-script.
var ix, iy int
for ix < vx.Len() || iy < vy.Len() {
var e diff.EditType
switch {
case ix < len(ignoredX) && ignoredX[ix]:
e = diff.UniqueX
case iy < len(ignoredY) && ignoredY[iy]:
e = diff.UniqueY
default:
e, edits = edits[0], edits[1:]
}
switch e {
case diff.UniqueX:
s.compareAny(withIndexes(ix, -1))
ix++
case diff.UniqueY:
s.compareAny(withIndexes(-1, iy))
iy++
default:
s.compareAny(withIndexes(ix, iy))
ix++
iy++
}
}
}
func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for maps.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.vx = vx.MapIndex(k)
step.vy = vy.MapIndex(k)
step.key = k
if !step.vx.IsValid() && !step.vy.IsValid() {
// It is possible for both vx and vy to be invalid if the
// key contained a NaN value in it.
//
// Even with the ability to retrieve NaN keys in Go 1.12,
// there still isn't a sensible way to compare the values since
// a NaN key may map to multiple unordered values.
// The most reasonable way to compare NaNs would be to compare the
// set of values. However, this is impossible to do efficiently
// since set equality is provably an O(n^2) operation given only
// an Equal function. If we had a Less function or Hash function,
// this could be done in O(n*log(n)) or O(n), respectively.
//
// Rather than adding complex logic to deal with NaNs, make it
// the user's responsibility to compare such obscure maps.
const help = "consider providing a Comparer to compare the map"
panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
}
s.compareAny(step)
}
}
func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for pointers.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
vx, vy = vx.Elem(), vy.Elem()
s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
}
func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
vx, vy = vx.Elem(), vy.Elem()
if vx.Type() != vy.Type() {
s.report(false, 0)
return
}
s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
}
func (s *state) report(eq bool, rf resultFlags) {
if rf&reportByIgnore == 0 {
if eq {
s.result.NumSame++
rf |= reportEqual
} else {
s.result.NumDiff++
rf |= reportUnequal
}
}
for _, r := range s.reporters {
r.Report(Result{flags: rf})
}
}
// recChecker tracks the state needed to periodically perform checks that
// user provided transformers are not stuck in an infinitely recursive cycle.
type recChecker struct{ next int }
// Check scans the Path for any recursive transformers and panics when any
// recursive transformers are detected. Note that the presence of a
// recursive Transformer does not necessarily imply an infinite cycle.
// As such, this check only activates after some minimal number of path steps.
func (rc *recChecker) Check(p Path) {
const minLen = 1 << 16
if rc.next == 0 {
rc.next = minLen
}
if len(p) < rc.next {
return
}
rc.next <<= 1
// Check whether the same transformer has appeared at least twice.
var ss []string
m := map[Option]int{}
for _, ps := range p {
if t, ok := ps.(Transform); ok {
t := t.Option()
if m[t] == 1 { // Transformer was used exactly once before
tf := t.(*transformer).fnc.Type()
ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
}
m[t]++
}
}
if len(ss) > 0 {
const warning = "recursive set of Transformers detected"
const help = "consider using cmpopts.AcyclicTransformer"
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
}
}
// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }
// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
ok := dc.curr == dc.next
if ok {
dc.curr = 0
dc.next++
}
dc.curr++
return ok
}
// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
if v.CanAddr() {
return v
}
vc := reflect.New(v.Type()).Elem()
vc.Set(v)
return vc
}

15
vendor/github.com/google/go-cmp/cmp/export_panic.go generated vendored Normal file
View File

@ -0,0 +1,15 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego
package cmp
import "reflect"
const supportExporters = false
func retrieveUnexportedField(reflect.Value, reflect.StructField, bool) reflect.Value {
panic("no support for forcibly accessing unexported fields")
}

35
vendor/github.com/google/go-cmp/cmp/export_unsafe.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego
package cmp
import (
"reflect"
"unsafe"
)
const supportExporters = true
// retrieveUnexportedField uses unsafe to forcibly retrieve any field from
// a struct such that the value has read-write permissions.
//
// The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve. If addr is false,
// then the returned value will be shallowed copied to be non-addressable.
func retrieveUnexportedField(v reflect.Value, f reflect.StructField, addr bool) reflect.Value {
ve := reflect.NewAt(f.Type, unsafe.Pointer(uintptr(unsafe.Pointer(v.UnsafeAddr()))+f.Offset)).Elem()
if !addr {
// A field is addressable if and only if the struct is addressable.
// If the original parent value was not addressable, shallow copy the
// value to make it non-addressable to avoid leaking an implementation
// detail of how forcibly exporting a field works.
if ve.Kind() == reflect.Interface && ve.IsNil() {
return reflect.Zero(f.Type)
}
return reflect.ValueOf(ve.Interface()).Convert(f.Type)
}
return ve
}

View File

@ -0,0 +1,17 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !cmp_debug
package diff
var debug debugger
type debugger struct{}
func (debugger) Begin(_, _ int, f EqualFunc, _, _ *EditScript) EqualFunc {
return f
}
func (debugger) Update() {}
func (debugger) Finish() {}

View File

@ -0,0 +1,122 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build cmp_debug
package diff
import (
"fmt"
"strings"
"sync"
"time"
)
// The algorithm can be seen running in real-time by enabling debugging:
// go test -tags=cmp_debug -v
//
// Example output:
// === RUN TestDifference/#34
// ┌───────────────────────────────┐
// │ \ · · · · · · · · · · · · · · │
// │ · # · · · · · · · · · · · · · │
// │ · \ · · · · · · · · · · · · · │
// │ · · \ · · · · · · · · · · · · │
// │ · · · X # · · · · · · · · · · │
// │ · · · # \ · · · · · · · · · · │
// │ · · · · · # # · · · · · · · · │
// │ · · · · · # \ · · · · · · · · │
// │ · · · · · · · \ · · · · · · · │
// │ · · · · · · · · \ · · · · · · │
// │ · · · · · · · · · \ · · · · · │
// │ · · · · · · · · · · \ · · # · │
// │ · · · · · · · · · · · \ # # · │
// │ · · · · · · · · · · · # # # · │
// │ · · · · · · · · · · # # # # · │
// │ · · · · · · · · · # # # # # · │
// │ · · · · · · · · · · · · · · \ │
// └───────────────────────────────┘
// [.Y..M.XY......YXYXY.|]
//
// The grid represents the edit-graph where the horizontal axis represents
// list X and the vertical axis represents list Y. The start of the two lists
// is the top-left, while the ends are the bottom-right. The '·' represents
// an unexplored node in the graph. The '\' indicates that the two symbols
// from list X and Y are equal. The 'X' indicates that two symbols are similar
// (but not exactly equal) to each other. The '#' indicates that the two symbols
// are different (and not similar). The algorithm traverses this graph trying to
// make the paths starting in the top-left and the bottom-right connect.
//
// The series of '.', 'X', 'Y', and 'M' characters at the bottom represents
// the currently established path from the forward and reverse searches,
// separated by a '|' character.
const (
updateDelay = 100 * time.Millisecond
finishDelay = 500 * time.Millisecond
ansiTerminal = true // ANSI escape codes used to move terminal cursor
)
var debug debugger
type debugger struct {
sync.Mutex
p1, p2 EditScript
fwdPath, revPath *EditScript
grid []byte
lines int
}
func (dbg *debugger) Begin(nx, ny int, f EqualFunc, p1, p2 *EditScript) EqualFunc {
dbg.Lock()
dbg.fwdPath, dbg.revPath = p1, p2
top := "┌─" + strings.Repeat("──", nx) + "┐\n"
row := "│ " + strings.Repeat("· ", nx) + "│\n"
btm := "└─" + strings.Repeat("──", nx) + "┘\n"
dbg.grid = []byte(top + strings.Repeat(row, ny) + btm)
dbg.lines = strings.Count(dbg.String(), "\n")
fmt.Print(dbg)
// Wrap the EqualFunc so that we can intercept each result.
return func(ix, iy int) (r Result) {
cell := dbg.grid[len(top)+iy*len(row):][len("│ ")+len("· ")*ix:][:len("·")]
for i := range cell {
cell[i] = 0 // Zero out the multiple bytes of UTF-8 middle-dot
}
switch r = f(ix, iy); {
case r.Equal():
cell[0] = '\\'
case r.Similar():
cell[0] = 'X'
default:
cell[0] = '#'
}
return
}
}
func (dbg *debugger) Update() {
dbg.print(updateDelay)
}
func (dbg *debugger) Finish() {
dbg.print(finishDelay)
dbg.Unlock()
}
func (dbg *debugger) String() string {
dbg.p1, dbg.p2 = *dbg.fwdPath, dbg.p2[:0]
for i := len(*dbg.revPath) - 1; i >= 0; i-- {
dbg.p2 = append(dbg.p2, (*dbg.revPath)[i])
}
return fmt.Sprintf("%s[%v|%v]\n\n", dbg.grid, dbg.p1, dbg.p2)
}
func (dbg *debugger) print(d time.Duration) {
if ansiTerminal {
fmt.Printf("\x1b[%dA", dbg.lines) // Reset terminal cursor
}
fmt.Print(dbg)
time.Sleep(d)
}

View File

@ -0,0 +1,392 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package diff implements an algorithm for producing edit-scripts.
// The edit-script is a sequence of operations needed to transform one list
// of symbols into another (or vice-versa). The edits allowed are insertions,
// deletions, and modifications. The summation of all edits is called the
// Levenshtein distance as this problem is well-known in computer science.
//
// This package prioritizes performance over accuracy. That is, the run time
// is more important than obtaining a minimal Levenshtein distance.
package diff
import (
"math/rand"
"time"
"github.com/google/go-cmp/cmp/internal/flags"
)
// EditType represents a single operation within an edit-script.
type EditType uint8
const (
// Identity indicates that a symbol pair is identical in both list X and Y.
Identity EditType = iota
// UniqueX indicates that a symbol only exists in X and not Y.
UniqueX
// UniqueY indicates that a symbol only exists in Y and not X.
UniqueY
// Modified indicates that a symbol pair is a modification of each other.
Modified
)
// EditScript represents the series of differences between two lists.
type EditScript []EditType
// String returns a human-readable string representing the edit-script where
// Identity, UniqueX, UniqueY, and Modified are represented by the
// '.', 'X', 'Y', and 'M' characters, respectively.
func (es EditScript) String() string {
b := make([]byte, len(es))
for i, e := range es {
switch e {
case Identity:
b[i] = '.'
case UniqueX:
b[i] = 'X'
case UniqueY:
b[i] = 'Y'
case Modified:
b[i] = 'M'
default:
panic("invalid edit-type")
}
}
return string(b)
}
// stats returns a histogram of the number of each type of edit operation.
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
for _, e := range es {
switch e {
case Identity:
s.NI++
case UniqueX:
s.NX++
case UniqueY:
s.NY++
case Modified:
s.NM++
default:
panic("invalid edit-type")
}
}
return
}
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
// lists X and Y are equal.
func (es EditScript) Dist() int { return len(es) - es.stats().NI }
// LenX is the length of the X list.
func (es EditScript) LenX() int { return len(es) - es.stats().NY }
// LenY is the length of the Y list.
func (es EditScript) LenY() int { return len(es) - es.stats().NX }
// EqualFunc reports whether the symbols at indexes ix and iy are equal.
// When called by Difference, the index is guaranteed to be within nx and ny.
type EqualFunc func(ix int, iy int) Result
// Result is the result of comparison.
// NumSame is the number of sub-elements that are equal.
// NumDiff is the number of sub-elements that are not equal.
type Result struct{ NumSame, NumDiff int }
// BoolResult returns a Result that is either Equal or not Equal.
func BoolResult(b bool) Result {
if b {
return Result{NumSame: 1} // Equal, Similar
} else {
return Result{NumDiff: 2} // Not Equal, not Similar
}
}
// Equal indicates whether the symbols are equal. Two symbols are equal
// if and only if NumDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NumDiff == 0 }
// Similar indicates whether two symbols are similar and may be represented
// by using the Modified type. As a special case, we consider binary comparisons
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
//
// The exact ratio of NumSame to NumDiff to determine similarity may change.
func (r Result) Similar() bool {
// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
return r.NumSame+1 >= r.NumDiff
}
var randInt = rand.New(rand.NewSource(time.Now().Unix())).Intn(2)
// Difference reports whether two lists of lengths nx and ny are equal
// given the definition of equality provided as f.
//
// This function returns an edit-script, which is a sequence of operations
// needed to convert one list into the other. The following invariants for
// the edit-script are maintained:
// • eq == (es.Dist()==0)
// • nx == es.LenX()
// • ny == es.LenY()
//
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
// produces an edit-script with a minimal Levenshtein distance). This algorithm
// favors performance over optimality. The exact output is not guaranteed to
// be stable and may change over time.
func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// This algorithm is based on traversing what is known as an "edit-graph".
// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
// by Eugene W. Myers. Since D can be as large as N itself, this is
// effectively O(N^2). Unlike the algorithm from that paper, we are not
// interested in the optimal path, but at least some "decent" path.
//
// For example, let X and Y be lists of symbols:
// X = [A B C A B B A]
// Y = [C B A B A C]
//
// The edit-graph can be drawn as the following:
// A B C A B B A
// ┌─────────────┐
// C │_|_|\|_|_|_|_│ 0
// B │_|\|_|_|\|\|_│ 1
// A │\|_|_|\|_|_|\│ 2
// B │_|\|_|_|\|\|_│ 3
// A │\|_|_|\|_|_|\│ 4
// C │ | |\| | | | │ 5
// └─────────────┘ 6
// 0 1 2 3 4 5 6 7
//
// List X is written along the horizontal axis, while list Y is written
// along the vertical axis. At any point on this grid, if the symbol in
// list X matches the corresponding symbol in list Y, then a '\' is drawn.
// The goal of any minimal edit-script algorithm is to find a path from the
// top-left corner to the bottom-right corner, while traveling through the
// fewest horizontal or vertical edges.
// A horizontal edge is equivalent to inserting a symbol from list X.
// A vertical edge is equivalent to inserting a symbol from list Y.
// A diagonal edge is equivalent to a matching symbol between both X and Y.
// To ensure flexibility in changing the algorithm in the future,
// introduce some degree of deliberate instability.
// This is achieved by fiddling the zigzag iterator to start searching
// the graph starting from the bottom-right versus than the top-left.
// The result may differ depending on the starting search location,
// but still produces a valid edit script.
zigzagInit := randInt // either 0 or 1
if flags.Deterministic {
zigzagInit = 0
}
// Invariants:
// • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
// • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
//
// In general:
// • fwdFrontier.X < revFrontier.X
// • fwdFrontier.Y < revFrontier.Y
// Unless, it is time for the algorithm to terminate.
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
fwdFrontier := fwdPath.point // Forward search frontier
revFrontier := revPath.point // Reverse search frontier
// Search budget bounds the cost of searching for better paths.
// The longest sequence of non-matching symbols that can be tolerated is
// approximately the square-root of the search budget.
searchBudget := 4 * (nx + ny) // O(n)
// The algorithm below is a greedy, meet-in-the-middle algorithm for
// computing sub-optimal edit-scripts between two lists.
//
// The algorithm is approximately as follows:
// • Searching for differences switches back-and-forth between
// a search that starts at the beginning (the top-left corner), and
// a search that starts at the end (the bottom-right corner). The goal of
// the search is connect with the search from the opposite corner.
// • As we search, we build a path in a greedy manner, where the first
// match seen is added to the path (this is sub-optimal, but provides a
// decent result in practice). When matches are found, we try the next pair
// of symbols in the lists and follow all matches as far as possible.
// • When searching for matches, we search along a diagonal going through
// through the "frontier" point. If no matches are found, we advance the
// frontier towards the opposite corner.
// • This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
//
// This algorithm is correct even if searching only in the forward direction
// or in the reverse direction. We do both because it is commonly observed
// that two lists commonly differ because elements were added to the front
// or end of the other list.
//
// Running the tests with the "cmp_debug" build tag prints a visualization
// of the algorithm running in real-time. This is educational for
// understanding how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
for {
// Forward search from the beginning.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, zigzagInit; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
switch {
case p.X >= revPath.X || p.Y < fwdPath.Y:
stop1 = true // Hit top-right corner
case p.Y >= revPath.Y || p.X < fwdPath.X:
stop2 = true // Hit bottom-left corner
case f(p.X, p.Y).Equal():
// Match found, so connect the path to this point.
fwdPath.connect(p, f)
fwdPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(fwdPath.X, fwdPath.Y).Equal() {
break
}
fwdPath.append(Identity)
}
fwdFrontier = fwdPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards reverse point.
if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
fwdFrontier.X++
} else {
fwdFrontier.Y++
}
// Reverse search from the end.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
z := zigzag(i)
p := point{revFrontier.X - z, revFrontier.Y + z}
switch {
case fwdPath.X >= p.X || revPath.Y < p.Y:
stop1 = true // Hit bottom-left corner
case fwdPath.Y >= p.Y || revPath.X < p.X:
stop2 = true // Hit top-right corner
case f(p.X-1, p.Y-1).Equal():
// Match found, so connect the path to this point.
revPath.connect(p, f)
revPath.append(Identity)
// Follow sequence of matches as far as possible.
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
if !f(revPath.X-1, revPath.Y-1).Equal() {
break
}
revPath.append(Identity)
}
revFrontier = revPath.point
stop1, stop2 = true, true
default:
searchBudget-- // Match not found
}
debug.Update()
}
// Advance the frontier towards forward point.
if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
revFrontier.X--
} else {
revFrontier.Y--
}
}
// Join the forward and reverse paths and then append the reverse path.
fwdPath.connect(revPath.point, f)
for i := len(revPath.es) - 1; i >= 0; i-- {
t := revPath.es[i]
revPath.es = revPath.es[:i]
fwdPath.append(t)
}
debug.Finish()
return fwdPath.es
}
type path struct {
dir int // +1 if forward, -1 if reverse
point // Leading point of the EditScript path
es EditScript
}
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
// to the edit-script to connect p.point to dst.
func (p *path) connect(dst point, f EqualFunc) {
if p.dir > 0 {
// Connect in forward direction.
for dst.X > p.X && dst.Y > p.Y {
switch r := f(p.X, p.Y); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case dst.X-p.X >= dst.Y-p.Y:
p.append(UniqueX)
default:
p.append(UniqueY)
}
}
for dst.X > p.X {
p.append(UniqueX)
}
for dst.Y > p.Y {
p.append(UniqueY)
}
} else {
// Connect in reverse direction.
for p.X > dst.X && p.Y > dst.Y {
switch r := f(p.X-1, p.Y-1); {
case r.Equal():
p.append(Identity)
case r.Similar():
p.append(Modified)
case p.Y-dst.Y >= p.X-dst.X:
p.append(UniqueY)
default:
p.append(UniqueX)
}
}
for p.X > dst.X {
p.append(UniqueX)
}
for p.Y > dst.Y {
p.append(UniqueY)
}
}
}
func (p *path) append(t EditType) {
p.es = append(p.es, t)
switch t {
case Identity, Modified:
p.add(p.dir, p.dir)
case UniqueX:
p.add(p.dir, 0)
case UniqueY:
p.add(0, p.dir)
}
debug.Update()
}
type point struct{ X, Y int }
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
func zigzag(x int) int {
if x&1 != 0 {
x = ^x
}
return x >> 1
}

View File

@ -0,0 +1,9 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package flags
// Deterministic controls whether the output of Diff should be deterministic.
// This is only used for testing.
var Deterministic bool

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = false

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = true

View File

@ -0,0 +1,99 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package function provides functionality for identifying function types.
package function
import (
"reflect"
"regexp"
"runtime"
"strings"
)
type funcType int
const (
_ funcType = iota
tbFunc // func(T) bool
ttbFunc // func(T, T) bool
trbFunc // func(T, R) bool
tibFunc // func(T, I) bool
trFunc // func(T) R
Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool
ValuePredicate = tbFunc // func(T) bool
KeyValuePredicate = trbFunc // func(T, R) bool
)
var boolType = reflect.TypeOf(true)
// IsType reports whether the reflect.Type is of the specified function type.
func IsType(t reflect.Type, ft funcType) bool {
if t == nil || t.Kind() != reflect.Func || t.IsVariadic() {
return false
}
ni, no := t.NumIn(), t.NumOut()
switch ft {
case tbFunc: // func(T) bool
if ni == 1 && no == 1 && t.Out(0) == boolType {
return true
}
case ttbFunc: // func(T, T) bool
if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType {
return true
}
case trbFunc: // func(T, R) bool
if ni == 2 && no == 1 && t.Out(0) == boolType {
return true
}
case tibFunc: // func(T, I) bool
if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType {
return true
}
case trFunc: // func(T) R
if ni == 1 && no == 1 {
return true
}
}
return false
}
var lastIdentRx = regexp.MustCompile(`[_\p{L}][_\p{L}\p{N}]*$`)
// NameOf returns the name of the function value.
func NameOf(v reflect.Value) string {
fnc := runtime.FuncForPC(v.Pointer())
if fnc == nil {
return "<unknown>"
}
fullName := fnc.Name() // e.g., "long/path/name/mypkg.(*MyType).(long/path/name/mypkg.myMethod)-fm"
// Method closures have a "-fm" suffix.
fullName = strings.TrimSuffix(fullName, "-fm")
var name string
for len(fullName) > 0 {
inParen := strings.HasSuffix(fullName, ")")
fullName = strings.TrimSuffix(fullName, ")")
s := lastIdentRx.FindString(fullName)
if s == "" {
break
}
name = s + "." + name
fullName = strings.TrimSuffix(fullName, s)
if i := strings.LastIndexByte(fullName, '('); inParen && i >= 0 {
fullName = fullName[:i]
}
fullName = strings.TrimSuffix(fullName, ".")
}
return strings.TrimSuffix(name, ".")
}

View File

@ -0,0 +1,157 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"reflect"
"strconv"
)
// TypeString is nearly identical to reflect.Type.String,
// but has an additional option to specify that full type names be used.
func TypeString(t reflect.Type, qualified bool) string {
return string(appendTypeName(nil, t, qualified, false))
}
func appendTypeName(b []byte, t reflect.Type, qualified, elideFunc bool) []byte {
// BUG: Go reflection provides no way to disambiguate two named types
// of the same name and within the same package,
// but declared within the namespace of different functions.
// Named type.
if t.Name() != "" {
if qualified && t.PkgPath() != "" {
b = append(b, '"')
b = append(b, t.PkgPath()...)
b = append(b, '"')
b = append(b, '.')
b = append(b, t.Name()...)
} else {
b = append(b, t.String()...)
}
return b
}
// Unnamed type.
switch k := t.Kind(); k {
case reflect.Bool, reflect.String, reflect.UnsafePointer,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
b = append(b, k.String()...)
case reflect.Chan:
if t.ChanDir() == reflect.RecvDir {
b = append(b, "<-"...)
}
b = append(b, "chan"...)
if t.ChanDir() == reflect.SendDir {
b = append(b, "<-"...)
}
b = append(b, ' ')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Func:
if !elideFunc {
b = append(b, "func"...)
}
b = append(b, '(')
for i := 0; i < t.NumIn(); i++ {
if i > 0 {
b = append(b, ", "...)
}
if i == t.NumIn()-1 && t.IsVariadic() {
b = append(b, "..."...)
b = appendTypeName(b, t.In(i).Elem(), qualified, false)
} else {
b = appendTypeName(b, t.In(i), qualified, false)
}
}
b = append(b, ')')
switch t.NumOut() {
case 0:
// Do nothing
case 1:
b = append(b, ' ')
b = appendTypeName(b, t.Out(0), qualified, false)
default:
b = append(b, " ("...)
for i := 0; i < t.NumOut(); i++ {
if i > 0 {
b = append(b, ", "...)
}
b = appendTypeName(b, t.Out(i), qualified, false)
}
b = append(b, ')')
}
case reflect.Struct:
b = append(b, "struct{ "...)
for i := 0; i < t.NumField(); i++ {
if i > 0 {
b = append(b, "; "...)
}
sf := t.Field(i)
if !sf.Anonymous {
if qualified && sf.PkgPath != "" {
b = append(b, '"')
b = append(b, sf.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, sf.Name...)
b = append(b, ' ')
}
b = appendTypeName(b, sf.Type, qualified, false)
if sf.Tag != "" {
b = append(b, ' ')
b = strconv.AppendQuote(b, string(sf.Tag))
}
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
case reflect.Slice, reflect.Array:
b = append(b, '[')
if k == reflect.Array {
b = strconv.AppendUint(b, uint64(t.Len()), 10)
}
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Map:
b = append(b, "map["...)
b = appendTypeName(b, t.Key(), qualified, false)
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Ptr:
b = append(b, '*')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Interface:
b = append(b, "interface{ "...)
for i := 0; i < t.NumMethod(); i++ {
if i > 0 {
b = append(b, "; "...)
}
m := t.Method(i)
if qualified && m.PkgPath != "" {
b = append(b, '"')
b = append(b, m.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, m.Name...)
b = appendTypeName(b, m.Type, qualified, true)
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
default:
panic("invalid kind: " + k.String())
}
return b
}

View File

@ -0,0 +1,33 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego
package value
import "reflect"
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p uintptr
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// NOTE: Storing a pointer as an uintptr is technically incorrect as it
// assumes that the GC implementation does not use a moving collector.
return Pointer{v.Pointer(), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == 0
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return p.p
}

View File

@ -0,0 +1,36 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego
package value
import (
"reflect"
"unsafe"
)
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p unsafe.Pointer
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// The proper representation of a pointer is unsafe.Pointer,
// which is necessary if the GC ever uses a moving collector.
return Pointer{unsafe.Pointer(v.Pointer()), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == nil
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return uintptr(p.p)
}

View File

@ -0,0 +1,106 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"fmt"
"math"
"reflect"
"sort"
)
// SortKeys sorts a list of map keys, deduplicating keys if necessary.
// The type of each value must be comparable.
func SortKeys(vs []reflect.Value) []reflect.Value {
if len(vs) == 0 {
return vs
}
// Sort the map keys.
sort.SliceStable(vs, func(i, j int) bool { return isLess(vs[i], vs[j]) })
// Deduplicate keys (fails for NaNs).
vs2 := vs[:1]
for _, v := range vs[1:] {
if isLess(vs2[len(vs2)-1], v) {
vs2 = append(vs2, v)
}
}
return vs2
}
// isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool {
switch x.Type().Kind() {
case reflect.Bool:
return !x.Bool() && y.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return x.Int() < y.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return x.Uint() < y.Uint()
case reflect.Float32, reflect.Float64:
// NOTE: This does not sort -0 as less than +0
// since Go maps treat -0 and +0 as equal keys.
fx, fy := x.Float(), y.Float()
return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy)
case reflect.Complex64, reflect.Complex128:
cx, cy := x.Complex(), y.Complex()
rx, ix, ry, iy := real(cx), imag(cx), real(cy), imag(cy)
if rx == ry || (math.IsNaN(rx) && math.IsNaN(ry)) {
return ix < iy || math.IsNaN(ix) && !math.IsNaN(iy)
}
return rx < ry || math.IsNaN(rx) && !math.IsNaN(ry)
case reflect.Ptr, reflect.UnsafePointer, reflect.Chan:
return x.Pointer() < y.Pointer()
case reflect.String:
return x.String() < y.String()
case reflect.Array:
for i := 0; i < x.Len(); i++ {
if isLess(x.Index(i), y.Index(i)) {
return true
}
if isLess(y.Index(i), x.Index(i)) {
return false
}
}
return false
case reflect.Struct:
for i := 0; i < x.NumField(); i++ {
if isLess(x.Field(i), y.Field(i)) {
return true
}
if isLess(y.Field(i), x.Field(i)) {
return false
}
}
return false
case reflect.Interface:
vx, vy := x.Elem(), y.Elem()
if !vx.IsValid() || !vy.IsValid() {
return !vx.IsValid() && vy.IsValid()
}
tx, ty := vx.Type(), vy.Type()
if tx == ty {
return isLess(x.Elem(), y.Elem())
}
if tx.Kind() != ty.Kind() {
return vx.Kind() < vy.Kind()
}
if tx.String() != ty.String() {
return tx.String() < ty.String()
}
if tx.PkgPath() != ty.PkgPath() {
return tx.PkgPath() < ty.PkgPath()
}
// This can happen in rare situations, so we fallback to just comparing
// the unique pointer for a reflect.Type. This guarantees deterministic
// ordering within a program, but it is obviously not stable.
return reflect.ValueOf(vx.Type()).Pointer() < reflect.ValueOf(vy.Type()).Pointer()
default:
// Must be Func, Map, or Slice; which are not comparable.
panic(fmt.Sprintf("%T is not comparable", x.Type()))
}
}

View File

@ -0,0 +1,48 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import (
"math"
"reflect"
)
// IsZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func IsZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return math.Float64bits(v.Float()) == 0
case reflect.Complex64, reflect.Complex128:
return math.Float64bits(real(v.Complex())) == 0 && math.Float64bits(imag(v.Complex())) == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !IsZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !IsZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

552
vendor/github.com/google/go-cmp/cmp/options.go generated vendored Normal file
View File

@ -0,0 +1,552 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"regexp"
"strings"
"github.com/google/go-cmp/cmp/internal/function"
)
// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
type Option interface {
// filter applies all filters and returns the option that remains.
// Each option may only read s.curPath and call s.callTTBFunc.
//
// An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types.
filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption
}
// applicableOption represents the following types:
// Fundamental: ignore | validator | *comparer | *transformer
// Grouping: Options
type applicableOption interface {
Option
// apply executes the option, which may mutate s or panic.
apply(s *state, vx, vy reflect.Value)
}
// coreOption represents the following types:
// Fundamental: ignore | validator | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter
type coreOption interface {
Option
isCore()
}
type core struct{}
func (core) isCore() {}
// Options is a list of Option values that also satisfies the Option interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
// on all individual options held within.
type Options []Option
func (opts Options) filter(s *state, t reflect.Type, vx, vy reflect.Value) (out applicableOption) {
for _, opt := range opts {
switch opt := opt.filter(s, t, vx, vy); opt.(type) {
case ignore:
return ignore{} // Only ignore can short-circuit evaluation
case validator:
out = validator{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options:
switch out.(type) {
case nil:
out = opt
case validator:
// Keep validator
case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers
}
}
}
return out
}
func (opts Options) apply(s *state, _, _ reflect.Value) {
const warning = "ambiguous set of applicable options"
const help = "consider using filters to ensure at most one Comparer or Transformer may apply"
var ss []string
for _, opt := range flattenOptions(nil, opts) {
ss = append(ss, fmt.Sprint(opt))
}
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", warning, s.curPath, set, help))
}
func (opts Options) String() string {
var ss []string
for _, opt := range opts {
ss = append(ss, fmt.Sprint(opt))
}
return fmt.Sprintf("Options{%s}", strings.Join(ss, ", "))
}
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option {
if f == nil {
panic("invalid path filter function")
}
if opt := normalizeOption(opt); opt != nil {
return &pathFilter{fnc: f, opt: opt}
}
return nil
}
type pathFilter struct {
core
fnc func(Path) bool
opt Option
}
func (f pathFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if f.fnc(s.curPath) {
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f pathFilter) String() string {
return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(f.fnc)), f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If either value is invalid or
// the type of the values is not assignable to T, then this filter implicitly
// returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
// deterministic (i.e., produces the same result when given the same inputs).
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterValues(f interface{}, opt Option) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() {
panic(fmt.Sprintf("invalid values filter function: %T", f))
}
if opt := normalizeOption(opt); opt != nil {
vf := &valuesFilter{fnc: v, opt: opt}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
vf.typ = ti
}
return vf
}
return nil
}
type valuesFilter struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
opt Option
}
func (f valuesFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vx.CanInterface() || !vy.IsValid() || !vy.CanInterface() {
return nil
}
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f valuesFilter) String() string {
return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(f.fnc), f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
func Ignore() Option { return ignore{} }
type ignore struct{ core }
func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption { return ignore{} }
func (ignore) apply(s *state, _, _ reflect.Value) { s.report(true, reportByIgnore) }
func (ignore) String() string { return "Ignore()" }
// validator is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields, missing slice elements, or
// missing map entries. Both values are validator only for unexported fields.
type validator struct{ core }
func (validator) filter(_ *state, _ reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return validator{}
}
if !vx.CanInterface() || !vy.CanInterface() {
return validator{}
}
return nil
}
func (validator) apply(s *state, vx, vy reflect.Value) {
// Implies missing slice element or map entry.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), 0)
return
}
// Unable to Interface implies unexported field without visibility access.
if !vx.CanInterface() || !vy.CanInterface() {
help := "consider using a custom Comparer; if you control the implementation of type, you can also consider using an Exporter, AllowUnexported, or cmpopts.IgnoreUnexported"
var name string
if t := s.curPath.Index(-2).Type(); t.Name() != "" {
// Named type with unexported fields.
name = fmt.Sprintf("%q.%v", t.PkgPath(), t.Name()) // e.g., "path/to/package".MyType
if _, ok := reflect.New(t).Interface().(error); ok {
help = "consider using cmpopts.EquateErrors to compare error values"
}
} else {
// Unnamed type with unexported fields. Derive PkgPath from field.
var pkgPath string
for i := 0; i < t.NumField() && pkgPath == ""; i++ {
pkgPath = t.Field(i).PkgPath
}
name = fmt.Sprintf("%q.(%v)", pkgPath, t.String()) // e.g., "path/to/package".(struct { a int })
}
panic(fmt.Sprintf("cannot handle unexported field at %#v:\n\t%v\n%s", s.curPath, name, help))
}
panic("not reachable")
}
// identRx represents a valid identifier according to the Go specification.
const identRx = `[_\p{L}][_\p{L}\p{N}]*`
var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
// type T to those of type R and is implicitly filtered to input values
// assignable to T. The transformer must not mutate T in any way.
//
// To help prevent some cases of infinite recursive cycles applying the
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep (and eventually shown in the Diff output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f))
}
if name == "" {
name = function.NameOf(v)
if !identsRx.MatchString(name) {
name = "λ" // Lambda-symbol as placeholder name
}
} else if !identsRx.MatchString(name) {
panic(fmt.Sprintf("invalid name: %q", name))
}
tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
tr.typ = ti
}
return tr
}
type transformer struct {
core
name string
typ reflect.Type // T
fnc reflect.Value // func(T) R
}
func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, t reflect.Type, _, _ reflect.Value) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(Transform); !ok {
break // Hit most recent non-Transform step
} else if tr == t.trans {
return nil // Cannot directly use same Transform
}
}
if tr.typ == nil || t.AssignableTo(tr.typ) {
return tr
}
return nil
}
func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
step := Transform{&transform{pathStep{typ: tr.fnc.Type().Out(0)}, tr}}
vvx := s.callTRFunc(tr.fnc, vx, step)
vvy := s.callTRFunc(tr.fnc, vy, step)
step.vx, step.vy = vvx, vvy
s.compareAny(step)
}
func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, function.NameOf(tr.fnc))
}
// Comparer returns an Option that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
// filtered to input values assignable to T. If T is an interface, it is
// possible that f is called with two values of different concrete types that
// both implement T.
//
// The equality function must be:
// • Symmetric: equal(x, y) == equal(y, x)
// • Deterministic: equal(x, y) == equal(x, y)
// • Pure: equal(x, y) does not modify x or y
func Comparer(f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Equal) || v.IsNil() {
panic(fmt.Sprintf("invalid comparer function: %T", f))
}
cm := &comparer{fnc: v}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
cm.typ = ti
}
return cm
}
type comparer struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, t reflect.Type, _, _ reflect.Value) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm
}
return nil
}
func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, reportByFunc)
}
func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", function.NameOf(cm.fnc))
}
// Exporter returns an Option that specifies whether Equal is allowed to
// introspect into the unexported fields of certain struct types.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// In many cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
//
// Comparer(func(x, y reflect.Type) bool { return x == y })
// Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func Exporter(f func(reflect.Type) bool) Option {
if !supportExporters {
panic("Exporter is not supported on purego builds")
}
return exporter(f)
}
type exporter func(reflect.Type) bool
func (exporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// AllowUnexported returns an Options that allows Equal to forcibly introspect
// unexported fields of the specified struct types.
//
// See Exporter for the proper use of this option.
func AllowUnexported(types ...interface{}) Option {
m := make(map[reflect.Type]bool)
for _, typ := range types {
t := reflect.TypeOf(typ)
if t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
}
m[t] = true
}
return exporter(func(t reflect.Type) bool { return m[t] })
}
// Result represents the comparison result for a single node and
// is provided by cmp when calling Result (see Reporter).
type Result struct {
_ [0]func() // Make Result incomparable
flags resultFlags
}
// Equal reports whether the node was determined to be equal or not.
// As a special case, ignored nodes are considered equal.
func (r Result) Equal() bool {
return r.flags&(reportEqual|reportByIgnore) != 0
}
// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
func (r Result) ByIgnore() bool {
return r.flags&reportByIgnore != 0
}
// ByMethod reports whether the Equal method determined equality.
func (r Result) ByMethod() bool {
return r.flags&reportByMethod != 0
}
// ByFunc reports whether a Comparer function determined equality.
func (r Result) ByFunc() bool {
return r.flags&reportByFunc != 0
}
// ByCycle reports whether a reference cycle was detected.
func (r Result) ByCycle() bool {
return r.flags&reportByCycle != 0
}
type resultFlags uint
const (
_ resultFlags = (1 << iota) / 2
reportEqual
reportUnequal
reportByIgnore
reportByMethod
reportByFunc
reportByCycle
)
// Reporter is an Option that can be passed to Equal. When Equal traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported
// as such by calling the Report method.
func Reporter(r interface {
// PushStep is called when a tree-traversal operation is performed.
// The PathStep itself is only valid until the step is popped.
// The PathStep.Values are valid for the duration of the entire traversal
// and must not be mutated.
//
// Equal always calls PushStep at the start to provide an operation-less
// PathStep used to report the root values.
//
// Within a slice, the exact set of inserted, removed, or modified elements
// is unspecified and may change in future implementations.
// The entries of a map are iterated through in an unspecified order.
PushStep(PathStep)
// Report is called exactly once on leaf nodes to report whether the
// comparison identified the node as equal, unequal, or ignored.
// A leaf node is one that is immediately preceded by and followed by
// a pair of PushStep and PopStep calls.
Report(Result)
// PopStep ascends back up the value tree.
// There is always a matching pop call for every push call.
PopStep()
}) Option {
return reporter{r}
}
type reporter struct{ reporterIface }
type reporterIface interface {
PushStep(PathStep)
Report(Result)
PopStep()
}
func (reporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// normalizeOption normalizes the input options such that all Options groups
// are flattened and groups with a single element are reduced to that element.
// Only coreOptions and Options containing coreOptions are allowed.
func normalizeOption(src Option) Option {
switch opts := flattenOptions(nil, Options{src}); len(opts) {
case 0:
return nil
case 1:
return opts[0]
default:
return opts
}
}
// flattenOptions copies all options in src to dst as a flat list.
// Only coreOptions and Options containing coreOptions are allowed.
func flattenOptions(dst, src Options) Options {
for _, opt := range src {
switch opt := opt.(type) {
case nil:
continue
case Options:
dst = flattenOptions(dst, opt)
case coreOption:
dst = append(dst, opt)
default:
panic(fmt.Sprintf("invalid option type: %T", opt))
}
}
return dst
}

378
vendor/github.com/google/go-cmp/cmp/path.go generated vendored Normal file
View File

@ -0,0 +1,378 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
// Path is a list of PathSteps describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// simply to identify the initial type.
//
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
type Path []PathStep
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
//
// Implementations of this interface are
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
type PathStep interface {
String() string
// Type is the resulting type after performing the path step.
Type() reflect.Type
// Values is the resulting values after performing the path step.
// The type of each valid value is guaranteed to be identical to Type.
//
// In some cases, one or both may be invalid or have restrictions:
// • For StructField, both are not interface-able if the current field
// is unexported and the struct type is not explicitly permitted by
// an Exporter to traverse unexported fields.
// • For SliceIndex, one may be invalid if an element is missing from
// either the x or y slice.
// • For MapIndex, one may be invalid if an entry is missing from
// either the x or y map.
//
// The provided values must not be mutated.
Values() (vx, vy reflect.Value)
}
var (
_ PathStep = StructField{}
_ PathStep = SliceIndex{}
_ PathStep = MapIndex{}
_ PathStep = Indirect{}
_ PathStep = TypeAssertion{}
_ PathStep = Transform{}
)
func (pa *Path) push(s PathStep) {
*pa = append(*pa, s)
}
func (pa *Path) pop() {
*pa = (*pa)[:len(*pa)-1]
}
// Last returns the last PathStep in the Path.
// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Last() PathStep {
return pa.Index(-1)
}
// Index returns the ith step in the Path and supports negative indexing.
// A negative index starts counting from the tail of the Path such that -1
// refers to the last step, -2 refers to the second-to-last step, and so on.
// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
func (pa Path) Index(i int) PathStep {
if i < 0 {
i = len(pa) + i
}
if i < 0 || i >= len(pa) {
return pathStep{}
}
return pa[i]
}
// String returns the simplified path to a node.
// The simplified path only contains struct field accesses.
//
// For example:
// MyMap.MySlices.MyField
func (pa Path) String() string {
var ss []string
for _, s := range pa {
if _, ok := s.(StructField); ok {
ss = append(ss, s.String())
}
}
return strings.TrimPrefix(strings.Join(ss, ""), ".")
}
// GoString returns the path to a specific node using Go syntax.
//
// For example:
// (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
func (pa Path) GoString() string {
var ssPre, ssPost []string
var numIndirect int
for i, s := range pa {
var nextStep PathStep
if i+1 < len(pa) {
nextStep = pa[i+1]
}
switch s := s.(type) {
case Indirect:
numIndirect++
pPre, pPost := "(", ")"
switch nextStep.(type) {
case Indirect:
continue // Next step is indirection, so let them batch up
case StructField:
numIndirect-- // Automatic indirection on struct fields
case nil:
pPre, pPost = "", "" // Last step; no need for parenthesis
}
if numIndirect > 0 {
ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
ssPost = append(ssPost, pPost)
}
numIndirect = 0
continue
case Transform:
ssPre = append(ssPre, s.trans.name+"(")
ssPost = append(ssPost, ")")
continue
}
ssPost = append(ssPost, s.String())
}
for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
}
return strings.Join(ssPre, "") + strings.Join(ssPost, "")
}
type pathStep struct {
typ reflect.Type
vx, vy reflect.Value
}
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
func (ps pathStep) String() string {
if ps.typ == nil {
return "<nil>"
}
s := ps.typ.String()
if s == "" || strings.ContainsAny(s, "{}\n") {
return "root" // Type too simple or complex to print
}
return fmt.Sprintf("{%s}", s)
}
// StructField represents a struct field access on a field called Name.
type StructField struct{ *structField }
type structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
mayForce bool // Forcibly allow visibility
paddr bool // Was parent addressable?
pvx, pvy reflect.Value // Parent values (always addressible)
field reflect.StructField // Field information
}
func (sf StructField) Type() reflect.Type { return sf.typ }
func (sf StructField) Values() (vx, vy reflect.Value) {
if !sf.unexported {
return sf.vx, sf.vy // CanInterface reports true
}
// Forcibly obtain read-write access to an unexported struct field.
if sf.mayForce {
vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
return vx, vy // CanInterface reports true
}
return sf.vx, sf.vy // CanInterface reports false
}
func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
// Name is the field name.
func (sf StructField) Name() string { return sf.name }
// Index is the index of the field in the parent struct type.
// See reflect.Type.Field.
func (sf StructField) Index() int { return sf.idx }
// SliceIndex is an index operation on a slice or array at some index Key.
type SliceIndex struct{ *sliceIndex }
type sliceIndex struct {
pathStep
xkey, ykey int
isSlice bool // False for reflect.Array
}
func (si SliceIndex) Type() reflect.Type { return si.typ }
func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
func (si SliceIndex) String() string {
switch {
case si.xkey == si.ykey:
return fmt.Sprintf("[%d]", si.xkey)
case si.ykey == -1:
// [5->?] means "I don't know where X[5] went"
return fmt.Sprintf("[%d->?]", si.xkey)
case si.xkey == -1:
// [?->3] means "I don't know where Y[3] came from"
return fmt.Sprintf("[?->%d]", si.ykey)
default:
// [5->3] means "X[5] moved to Y[3]"
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
}
}
// Key is the index key; it may return -1 if in a split state
func (si SliceIndex) Key() int {
if si.xkey != si.ykey {
return -1
}
return si.xkey
}
// SplitKeys are the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
// MapIndex is an index operation on a map at some index Key.
type MapIndex struct{ *mapIndex }
type mapIndex struct {
pathStep
key reflect.Value
}
func (mi MapIndex) Type() reflect.Type { return mi.typ }
func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
// Key is the value of the map key.
func (mi MapIndex) Key() reflect.Value { return mi.key }
// Indirect represents pointer indirection on the parent type.
type Indirect struct{ *indirect }
type indirect struct {
pathStep
}
func (in Indirect) Type() reflect.Type { return in.typ }
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
func (in Indirect) String() string { return "*" }
// TypeAssertion represents a type assertion on an interface.
type TypeAssertion struct{ *typeAssertion }
type typeAssertion struct {
pathStep
}
func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
// Transform is a transformation from the parent type to the current type.
type Transform struct{ *transform }
type transform struct {
pathStep
trans *transformer
}
func (tf Transform) Type() reflect.Type { return tf.typ }
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
// Name is the name of the Transformer.
func (tf Transform) Name() string { return tf.trans.name }
// Func is the function pointer to the transformer function.
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
func (tf Transform) Option() Option { return tf.trans }
// pointerPath represents a dual-stack of pointers encountered when
// recursively traversing the x and y values. This data structure supports
// detection of cycles and determining whether the cycles are equal.
// In Go, cycles can occur via pointers, slices, and maps.
//
// The pointerPath uses a map to represent a stack; where descension into a
// pointer pushes the address onto the stack, and ascension from a pointer
// pops the address from the stack. Thus, when traversing into a pointer from
// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
// by checking whether the pointer has already been visited. The cycle detection
// uses a seperate stack for the x and y values.
//
// If a cycle is detected we need to determine whether the two pointers
// should be considered equal. The definition of equality chosen by Equal
// requires two graphs to have the same structure. To determine this, both the
// x and y values must have a cycle where the previous pointers were also
// encountered together as a pair.
//
// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
// MapIndex with pointer information for the x and y values.
// Suppose px and py are two pointers to compare, we then search the
// Path for whether px was ever encountered in the Path history of x, and
// similarly so with py. If either side has a cycle, the comparison is only
// equal if both px and py have a cycle resulting from the same PathStep.
//
// Using a map as a stack is more performant as we can perform cycle detection
// in O(1) instead of O(N) where N is len(Path).
type pointerPath struct {
// mx is keyed by x pointers, where the value is the associated y pointer.
mx map[value.Pointer]value.Pointer
// my is keyed by y pointers, where the value is the associated x pointer.
my map[value.Pointer]value.Pointer
}
func (p *pointerPath) Init() {
p.mx = make(map[value.Pointer]value.Pointer)
p.my = make(map[value.Pointer]value.Pointer)
}
// Push indicates intent to descend into pointers vx and vy where
// visited reports whether either has been seen before. If visited before,
// equal reports whether both pointers were encountered together.
// Pop must be called if and only if the pointers were never visited.
//
// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
// and be non-nil.
func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
px := value.PointerOf(vx)
py := value.PointerOf(vy)
_, ok1 := p.mx[px]
_, ok2 := p.my[py]
if ok1 || ok2 {
equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
return equal, true
}
p.mx[px] = py
p.my[py] = px
return false, false
}
// Pop ascends from pointers vx and vy.
func (p pointerPath) Pop(vx, vy reflect.Value) {
delete(p.mx, value.PointerOf(vx))
delete(p.my, value.PointerOf(vy))
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}

54
vendor/github.com/google/go-cmp/cmp/report.go generated vendored Normal file
View File

@ -0,0 +1,54 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
// defaultReporter implements the reporter interface.
//
// As Equal serially calls the PushStep, Report, and PopStep methods, the
// defaultReporter constructs a tree-based representation of the compared value
// and the result of each comparison (see valueNode).
//
// When the String method is called, the FormatDiff method transforms the
// valueNode tree into a textNode tree, which is a tree-based representation
// of the textual output (see textNode).
//
// Lastly, the textNode.String method produces the final report as a string.
type defaultReporter struct {
root *valueNode
curr *valueNode
}
func (r *defaultReporter) PushStep(ps PathStep) {
r.curr = r.curr.PushStep(ps)
if r.root == nil {
r.root = r.curr
}
}
func (r *defaultReporter) Report(rs Result) {
r.curr.Report(rs)
}
func (r *defaultReporter) PopStep() {
r.curr = r.curr.PopStep()
}
// String provides a full report of the differences detected as a structured
// literal in pseudo-Go syntax. String may only be called after the entire tree
// has been traversed.
func (r *defaultReporter) String() string {
assert(r.root != nil && r.curr == nil)
if r.root.NumDiff == 0 {
return ""
}
ptrs := new(pointerReferences)
text := formatOptions{}.FormatDiff(r.root, ptrs)
resolveReferences(text)
return text.String()
}
func assert(ok bool) {
if !ok {
panic("assertion failure")
}
}

432
vendor/github.com/google/go-cmp/cmp/report_compare.go generated vendored Normal file
View File

@ -0,0 +1,432 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/value"
)
// numContextRecords is the number of surrounding equal records to print.
const numContextRecords = 2
type diffMode byte
const (
diffUnknown diffMode = 0
diffIdentical diffMode = ' '
diffRemoved diffMode = '-'
diffInserted diffMode = '+'
)
type typeMode int
const (
// emitType always prints the type.
emitType typeMode = iota
// elideType never prints the type.
elideType
// autoType prints the type only for composite kinds
// (i.e., structs, slices, arrays, and maps).
autoType
)
type formatOptions struct {
// DiffMode controls the output mode of FormatDiff.
//
// If diffUnknown, then produce a diff of the x and y values.
// If diffIdentical, then emit values as if they were equal.
// If diffRemoved, then only emit x values (ignoring y values).
// If diffInserted, then only emit y values (ignoring x values).
DiffMode diffMode
// TypeMode controls whether to print the type for the current node.
//
// As a general rule of thumb, we always print the type of the next node
// after an interface, and always elide the type of the next node after
// a slice or map node.
TypeMode typeMode
// formatValueOptions are options specific to printing reflect.Values.
formatValueOptions
}
func (opts formatOptions) WithDiffMode(d diffMode) formatOptions {
opts.DiffMode = d
return opts
}
func (opts formatOptions) WithTypeMode(t typeMode) formatOptions {
opts.TypeMode = t
return opts
}
func (opts formatOptions) WithVerbosity(level int) formatOptions {
opts.VerbosityLevel = level
opts.LimitVerbosity = true
return opts
}
func (opts formatOptions) verbosity() uint {
switch {
case opts.VerbosityLevel < 0:
return 0
case opts.VerbosityLevel > 16:
return 16 // some reasonable maximum to avoid shift overflow
default:
return uint(opts.VerbosityLevel)
}
}
const maxVerbosityPreset = 3
// verbosityPreset modifies the verbosity settings given an index
// between 0 and maxVerbosityPreset, inclusive.
func verbosityPreset(opts formatOptions, i int) formatOptions {
opts.VerbosityLevel = int(opts.verbosity()) + 2*i
if i > 0 {
opts.AvoidStringer = true
}
if i >= maxVerbosityPreset {
opts.PrintAddresses = true
opts.QualifiedNames = true
}
return opts
}
// FormatDiff converts a valueNode tree into a textNode tree, where the later
// is a textual representation of the differences detected in the former.
func (opts formatOptions) FormatDiff(v *valueNode, ptrs *pointerReferences) (out textNode) {
if opts.DiffMode == diffIdentical {
opts = opts.WithVerbosity(1)
} else {
opts = opts.WithVerbosity(3)
}
// Check whether we have specialized formatting for this node.
// This is not necessary, but helpful for producing more readable outputs.
if opts.CanFormatDiffSlice(v) {
return opts.FormatDiffSlice(v)
}
var parentKind reflect.Kind
if v.parent != nil && v.parent.TransformerName == "" {
parentKind = v.parent.Type.Kind()
}
// For leaf nodes, format the value based on the reflect.Values alone.
if v.MaxDepth == 0 {
switch opts.DiffMode {
case diffUnknown, diffIdentical:
// Format Equal.
if v.NumDiff == 0 {
outx := opts.FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.FormatValue(v.ValueY, parentKind, ptrs)
if v.NumIgnored > 0 && v.NumSame == 0 {
return textEllipsis
} else if outx.Len() < outy.Len() {
return outx
} else {
return outy
}
}
// Format unequal.
assert(opts.DiffMode == diffUnknown)
var list textList
outx := opts.WithTypeMode(elideType).FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.WithTypeMode(elideType).FormatValue(v.ValueY, parentKind, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i).WithTypeMode(elideType)
outx = opts2.FormatValue(v.ValueX, parentKind, ptrs)
outy = opts2.FormatValue(v.ValueY, parentKind, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: '-', Value: outx})
}
if outy != nil {
list = append(list, textRecord{Diff: '+', Value: outy})
}
return opts.WithTypeMode(emitType).FormatType(v.Type, list)
case diffRemoved:
return opts.FormatValue(v.ValueX, parentKind, ptrs)
case diffInserted:
return opts.FormatValue(v.ValueY, parentKind, ptrs)
default:
panic("invalid diff mode")
}
}
// Register slice element to support cycle detection.
if parentKind == reflect.Slice {
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, true)
defer ptrs.Pop()
defer func() { out = wrapTrunkReferences(ptrRefs, out) }()
}
// Descend into the child value node.
if v.TransformerName != "" {
out := opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
out = &textWrap{Prefix: "Inverse(" + v.TransformerName + ", ", Value: out, Suffix: ")"}
return opts.FormatType(v.Type, out)
} else {
switch k := v.Type.Kind(); k {
case reflect.Struct, reflect.Array, reflect.Slice:
out = opts.formatDiffList(v.Records, k, ptrs)
out = opts.FormatType(v.Type, out)
case reflect.Map:
// Register map to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.formatDiffList(v.Records, k, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = opts.FormatType(v.Type, out)
case reflect.Ptr:
// Register pointer to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.FormatDiff(v.Value, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = &textWrap{Prefix: "&", Value: out}
case reflect.Interface:
out = opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
default:
panic(fmt.Sprintf("%v cannot have children", k))
}
return out
}
}
func (opts formatOptions) formatDiffList(recs []reportRecord, k reflect.Kind, ptrs *pointerReferences) textNode {
// Derive record name based on the data structure kind.
var name string
var formatKey func(reflect.Value) string
switch k {
case reflect.Struct:
name = "field"
opts = opts.WithTypeMode(autoType)
formatKey = func(v reflect.Value) string { return v.String() }
case reflect.Slice, reflect.Array:
name = "element"
opts = opts.WithTypeMode(elideType)
formatKey = func(reflect.Value) string { return "" }
case reflect.Map:
name = "entry"
opts = opts.WithTypeMode(elideType)
formatKey = func(v reflect.Value) string { return formatMapKey(v, false, ptrs) }
}
maxLen := -1
if opts.LimitVerbosity {
if opts.DiffMode == diffIdentical {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
} else {
maxLen = (1 << opts.verbosity()) << 1 // 2, 4, 8, 16, 32, 64, etc...
}
opts.VerbosityLevel--
}
// Handle unification.
switch opts.DiffMode {
case diffIdentical, diffRemoved, diffInserted:
var list textList
var deferredEllipsis bool // Add final "..." to indicate records were dropped
for _, r := range recs {
if len(list) == maxLen {
deferredEllipsis = true
break
}
// Elide struct fields that are zero value.
if k == reflect.Struct {
var isZero bool
switch opts.DiffMode {
case diffIdentical:
isZero = value.IsZero(r.Value.ValueX) || value.IsZero(r.Value.ValueY)
case diffRemoved:
isZero = value.IsZero(r.Value.ValueX)
case diffInserted:
isZero = value.IsZero(r.Value.ValueY)
}
if isZero {
continue
}
}
// Elide ignored nodes.
if r.Value.NumIgnored > 0 && r.Value.NumSame+r.Value.NumDiff == 0 {
deferredEllipsis = !(k == reflect.Slice || k == reflect.Array)
if !deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
continue
}
if out := opts.FormatDiff(r.Value, ptrs); out != nil {
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
}
if deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case diffUnknown:
default:
panic("invalid diff mode")
}
// Handle differencing.
var numDiffs int
var list textList
var keys []reflect.Value // invariant: len(list) == len(keys)
groups := coalesceAdjacentRecords(name, recs)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Handle equal records.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing records to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < numContextRecords && numLo+numHi < numEqual && i != 0 {
if r := recs[numLo].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numLo++
}
for numHi < numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
if r := recs[numEqual-numHi-1].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numHi++
}
if numEqual-(numLo+numHi) == 1 && ds.NumIgnored == 0 {
numHi++ // Avoid pointless coalescing of a single equal record
}
// Format the equal values.
for _, r := range recs[:numLo] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
for _, r := range recs[numEqual-numHi : numEqual] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
recs = recs[numEqual:]
continue
}
// Handle unequal records.
for _, r := range recs[:ds.NumDiff()] {
switch {
case opts.CanFormatDiffSlice(r.Value):
out := opts.FormatDiffSlice(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
case r.Value.NumChildren == r.Value.MaxDepth:
outx := opts.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy := opts.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i)
outx = opts2.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy = opts2.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: diffRemoved, Key: formatKey(r.Key), Value: outx})
keys = append(keys, r.Key)
}
if outy != nil {
list = append(list, textRecord{Diff: diffInserted, Key: formatKey(r.Key), Value: outy})
keys = append(keys, r.Key)
}
default:
out := opts.FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
}
recs = recs[ds.NumDiff():]
numDiffs += ds.NumDiff()
}
if maxGroup.IsZero() {
assert(len(recs) == 0)
} else {
list.AppendEllipsis(maxGroup)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
assert(len(list) == len(keys))
// For maps, the default formatting logic uses fmt.Stringer which may
// produce ambiguous output. Avoid calling String to disambiguate.
if k == reflect.Map {
var ambiguous bool
seenKeys := map[string]reflect.Value{}
for i, currKey := range keys {
if currKey.IsValid() {
strKey := list[i].Key
prevKey, seen := seenKeys[strKey]
if seen && prevKey.CanInterface() && currKey.CanInterface() {
ambiguous = prevKey.Interface() != currKey.Interface()
if ambiguous {
break
}
}
seenKeys[strKey] = currKey
}
}
if ambiguous {
for i, k := range keys {
if k.IsValid() {
list[i].Key = formatMapKey(k, true, ptrs)
}
}
}
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
}
// coalesceAdjacentRecords coalesces the list of records into groups of
// adjacent equal, or unequal counts.
func coalesceAdjacentRecords(name string, recs []reportRecord) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, r := range recs {
switch rv := r.Value; {
case rv.NumIgnored > 0 && rv.NumSame+rv.NumDiff == 0:
lastStats(1).NumIgnored++
case rv.NumDiff == 0:
lastStats(1).NumIdentical++
case rv.NumDiff > 0 && !rv.ValueY.IsValid():
lastStats(2).NumRemoved++
case rv.NumDiff > 0 && !rv.ValueX.IsValid():
lastStats(2).NumInserted++
default:
lastStats(2).NumModified++
}
}
return groups
}

View File

@ -0,0 +1,264 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/value"
)
const (
pointerDelimPrefix = "⟪"
pointerDelimSuffix = "⟫"
)
// formatPointer prints the address of the pointer.
func formatPointer(p value.Pointer, withDelims bool) string {
v := p.Uintptr()
if flags.Deterministic {
v = 0xdeadf00f // Only used for stable testing purposes
}
if withDelims {
return pointerDelimPrefix + formatHex(uint64(v)) + pointerDelimSuffix
}
return formatHex(uint64(v))
}
// pointerReferences is a stack of pointers visited so far.
type pointerReferences [][2]value.Pointer
func (ps *pointerReferences) PushPair(vx, vy reflect.Value, d diffMode, deref bool) (pp [2]value.Pointer) {
if deref && vx.IsValid() {
vx = vx.Addr()
}
if deref && vy.IsValid() {
vy = vy.Addr()
}
switch d {
case diffUnknown, diffIdentical:
pp = [2]value.Pointer{value.PointerOf(vx), value.PointerOf(vy)}
case diffRemoved:
pp = [2]value.Pointer{value.PointerOf(vx), value.Pointer{}}
case diffInserted:
pp = [2]value.Pointer{value.Pointer{}, value.PointerOf(vy)}
}
*ps = append(*ps, pp)
return pp
}
func (ps *pointerReferences) Push(v reflect.Value) (p value.Pointer, seen bool) {
p = value.PointerOf(v)
for _, pp := range *ps {
if p == pp[0] || p == pp[1] {
return p, true
}
}
*ps = append(*ps, [2]value.Pointer{p, p})
return p, false
}
func (ps *pointerReferences) Pop() {
*ps = (*ps)[:len(*ps)-1]
}
// trunkReferences is metadata for a textNode indicating that the sub-tree
// represents the value for either pointer in a pair of references.
type trunkReferences struct{ pp [2]value.Pointer }
// trunkReference is metadata for a textNode indicating that the sub-tree
// represents the value for the given pointer reference.
type trunkReference struct{ p value.Pointer }
// leafReference is metadata for a textNode indicating that the value is
// truncated as it refers to another part of the tree (i.e., a trunk).
type leafReference struct{ p value.Pointer }
func wrapTrunkReferences(pp [2]value.Pointer, s textNode) textNode {
switch {
case pp[0].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[1]}}
case pp[1].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
case pp[0] == pp[1]:
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
default:
return &textWrap{Value: s, Metadata: trunkReferences{pp}}
}
}
func wrapTrunkReference(p value.Pointer, printAddress bool, s textNode) textNode {
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: s, Metadata: trunkReference{p}}
}
func makeLeafReference(p value.Pointer, printAddress bool) textNode {
out := &textWrap{Prefix: "(", Value: textEllipsis, Suffix: ")"}
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: out, Metadata: leafReference{p}}
}
// resolveReferences walks the textNode tree searching for any leaf reference
// metadata and resolves each against the corresponding trunk references.
// Since pointer addresses in memory are not particularly readable to the user,
// it replaces each pointer value with an arbitrary and unique reference ID.
func resolveReferences(s textNode) {
var walkNodes func(textNode, func(textNode))
walkNodes = func(s textNode, f func(textNode)) {
f(s)
switch s := s.(type) {
case *textWrap:
walkNodes(s.Value, f)
case textList:
for _, r := range s {
walkNodes(r.Value, f)
}
}
}
// Collect all trunks and leaves with reference metadata.
var trunks, leaves []*textWrap
walkNodes(s, func(s textNode) {
if s, ok := s.(*textWrap); ok {
switch s.Metadata.(type) {
case leafReference:
leaves = append(leaves, s)
case trunkReference, trunkReferences:
trunks = append(trunks, s)
}
}
})
// No leaf references to resolve.
if len(leaves) == 0 {
return
}
// Collect the set of all leaf references to resolve.
leafPtrs := make(map[value.Pointer]bool)
for _, leaf := range leaves {
leafPtrs[leaf.Metadata.(leafReference).p] = true
}
// Collect the set of trunk pointers that are always paired together.
// This allows us to assign a single ID to both pointers for brevity.
// If a pointer in a pair ever occurs by itself or as a different pair,
// then the pair is broken.
pairedTrunkPtrs := make(map[value.Pointer]value.Pointer)
unpair := func(p value.Pointer) {
if !pairedTrunkPtrs[p].IsNil() {
pairedTrunkPtrs[pairedTrunkPtrs[p]] = value.Pointer{} // invalidate other half
}
pairedTrunkPtrs[p] = value.Pointer{} // invalidate this half
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
unpair(p.p) // standalone pointer cannot be part of a pair
case trunkReferences:
p0, ok0 := pairedTrunkPtrs[p.pp[0]]
p1, ok1 := pairedTrunkPtrs[p.pp[1]]
switch {
case !ok0 && !ok1:
// Register the newly seen pair.
pairedTrunkPtrs[p.pp[0]] = p.pp[1]
pairedTrunkPtrs[p.pp[1]] = p.pp[0]
case ok0 && ok1 && p0 == p.pp[1] && p1 == p.pp[0]:
// Exact pair already seen; do nothing.
default:
// Pair conflicts with some other pair; break all pairs.
unpair(p.pp[0])
unpair(p.pp[1])
}
}
}
// Correlate each pointer referenced by leaves to a unique identifier,
// and print the IDs for each trunk that matches those pointers.
var nextID uint
ptrIDs := make(map[value.Pointer]uint)
newID := func() uint {
id := nextID
nextID++
return id
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
if print := leafPtrs[p.p]; print {
id, ok := ptrIDs[p.p]
if !ok {
id = newID()
ptrIDs[p.p] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
}
case trunkReferences:
print0 := leafPtrs[p.pp[0]]
print1 := leafPtrs[p.pp[1]]
if print0 || print1 {
id0, ok0 := ptrIDs[p.pp[0]]
id1, ok1 := ptrIDs[p.pp[1]]
isPair := pairedTrunkPtrs[p.pp[0]] == p.pp[1] && pairedTrunkPtrs[p.pp[1]] == p.pp[0]
if isPair {
var id uint
assert(ok0 == ok1) // must be seen together or not at all
if ok0 {
assert(id0 == id1) // must have the same ID
id = id0
} else {
id = newID()
ptrIDs[p.pp[0]] = id
ptrIDs[p.pp[1]] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
} else {
if print0 && !ok0 {
id0 = newID()
ptrIDs[p.pp[0]] = id0
}
if print1 && !ok1 {
id1 = newID()
ptrIDs[p.pp[1]] = id1
}
switch {
case print0 && print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0)+","+formatReference(id1))
case print0:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0))
case print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id1))
}
}
}
}
}
// Update all leaf references with the unique identifier.
for _, leaf := range leaves {
if id, ok := ptrIDs[leaf.Metadata.(leafReference).p]; ok {
leaf.Prefix = updateReferencePrefix(leaf.Prefix, formatReference(id))
}
}
}
func formatReference(id uint) string {
return fmt.Sprintf("ref#%d", id)
}
func updateReferencePrefix(prefix, ref string) string {
if prefix == "" {
return pointerDelimPrefix + ref + pointerDelimSuffix
}
suffix := strings.TrimPrefix(prefix, pointerDelimPrefix)
return pointerDelimPrefix + ref + ": " + suffix
}

400
vendor/github.com/google/go-cmp/cmp/report_reflect.go generated vendored Normal file
View File

@ -0,0 +1,400 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
type formatValueOptions struct {
// AvoidStringer controls whether to avoid calling custom stringer
// methods like error.Error or fmt.Stringer.String.
AvoidStringer bool
// PrintAddresses controls whether to print the address of all pointers,
// slice elements, and maps.
PrintAddresses bool
// QualifiedNames controls whether FormatType uses the fully qualified name
// (including the full package path as opposed to just the package name).
QualifiedNames bool
// VerbosityLevel controls the amount of output to produce.
// A higher value produces more output. A value of zero or lower produces
// no output (represented using an ellipsis).
// If LimitVerbosity is false, then the level is treated as infinite.
VerbosityLevel int
// LimitVerbosity specifies that formatting should respect VerbosityLevel.
LimitVerbosity bool
}
// FormatType prints the type as if it were wrapping s.
// This may return s as-is depending on the current type and TypeMode mode.
func (opts formatOptions) FormatType(t reflect.Type, s textNode) textNode {
// Check whether to emit the type or not.
switch opts.TypeMode {
case autoType:
switch t.Kind() {
case reflect.Struct, reflect.Slice, reflect.Array, reflect.Map:
if s.Equal(textNil) {
return s
}
default:
return s
}
if opts.DiffMode == diffIdentical {
return s // elide type for identical nodes
}
case elideType:
return s
}
// Determine the type label, applying special handling for unnamed types.
typeName := value.TypeString(t, opts.QualifiedNames)
if t.Name() == "" {
// According to Go grammar, certain type literals contain symbols that
// do not strongly bind to the next lexicographical token (e.g., *T).
switch t.Kind() {
case reflect.Chan, reflect.Func, reflect.Ptr:
typeName = "(" + typeName + ")"
}
}
return &textWrap{Prefix: typeName, Value: wrapParens(s)}
}
// wrapParens wraps s with a set of parenthesis, but avoids it if the
// wrapped node itself is already surrounded by a pair of parenthesis or braces.
// It handles unwrapping one level of pointer-reference nodes.
func wrapParens(s textNode) textNode {
var refNode *textWrap
if s2, ok := s.(*textWrap); ok {
// Unwrap a single pointer reference node.
switch s2.Metadata.(type) {
case leafReference, trunkReference, trunkReferences:
refNode = s2
if s3, ok := refNode.Value.(*textWrap); ok {
s2 = s3
}
}
// Already has delimiters that make parenthesis unnecessary.
hasParens := strings.HasPrefix(s2.Prefix, "(") && strings.HasSuffix(s2.Suffix, ")")
hasBraces := strings.HasPrefix(s2.Prefix, "{") && strings.HasSuffix(s2.Suffix, "}")
if hasParens || hasBraces {
return s
}
}
if refNode != nil {
refNode.Value = &textWrap{Prefix: "(", Value: refNode.Value, Suffix: ")"}
return s
}
return &textWrap{Prefix: "(", Value: s, Suffix: ")"}
}
// FormatValue prints the reflect.Value, taking extra care to avoid descending
// into pointers already in ptrs. As pointers are visited, ptrs is also updated.
func (opts formatOptions) FormatValue(v reflect.Value, parentKind reflect.Kind, ptrs *pointerReferences) (out textNode) {
if !v.IsValid() {
return nil
}
t := v.Type()
// Check slice element for cycles.
if parentKind == reflect.Slice {
ptrRef, visited := ptrs.Push(v.Addr())
if visited {
return makeLeafReference(ptrRef, false)
}
defer ptrs.Pop()
defer func() { out = wrapTrunkReference(ptrRef, false, out) }()
}
// Check whether there is an Error or String method to call.
if !opts.AvoidStringer && v.CanInterface() {
// Avoid calling Error or String methods on nil receivers since many
// implementations crash when doing so.
if (t.Kind() != reflect.Ptr && t.Kind() != reflect.Interface) || !v.IsNil() {
var prefix, strVal string
func() {
// Swallow and ignore any panics from String or Error.
defer func() { recover() }()
switch v := v.Interface().(type) {
case error:
strVal = v.Error()
prefix = "e"
case fmt.Stringer:
strVal = v.String()
prefix = "s"
}
}()
if prefix != "" {
return opts.formatString(prefix, strVal)
}
}
}
// Check whether to explicitly wrap the result with the type.
var skipType bool
defer func() {
if !skipType {
out = opts.FormatType(t, out)
}
}()
switch t.Kind() {
case reflect.Bool:
return textLine(fmt.Sprint(v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return textLine(fmt.Sprint(v.Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uint8:
if parentKind == reflect.Slice || parentKind == reflect.Array {
return textLine(formatHex(v.Uint()))
}
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uintptr:
return textLine(formatHex(v.Uint()))
case reflect.Float32, reflect.Float64:
return textLine(fmt.Sprint(v.Float()))
case reflect.Complex64, reflect.Complex128:
return textLine(fmt.Sprint(v.Complex()))
case reflect.String:
return opts.formatString("", v.String())
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return textLine(formatPointer(value.PointerOf(v), true))
case reflect.Struct:
var list textList
v := makeAddressable(v) // needed for retrieveUnexportedField
maxLen := v.NumField()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if value.IsZero(vv) {
continue // Elide fields with zero values
}
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sf := t.Field(i)
if supportExporters && !isExported(sf.Name) {
vv = retrieveUnexportedField(v, sf, true)
}
s := opts.WithTypeMode(autoType).FormatValue(vv, t.Kind(), ptrs)
list = append(list, textRecord{Key: sf.Name, Value: s})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case reflect.Slice:
if v.IsNil() {
return textNil
}
// Check whether this is a []byte of text data.
if t.Elem() == reflect.TypeOf(byte(0)) {
b := v.Bytes()
isPrintSpace := func(r rune) bool { return unicode.IsPrint(r) && unicode.IsSpace(r) }
if len(b) > 0 && utf8.Valid(b) && len(bytes.TrimFunc(b, isPrintSpace)) == 0 {
out = opts.formatString("", string(b))
return opts.WithTypeMode(emitType).FormatType(t, out)
}
}
fallthrough
case reflect.Array:
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for i := 0; i < v.Len(); i++ {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
s := opts.WithTypeMode(elideType).FormatValue(v.Index(i), t.Kind(), ptrs)
list = append(list, textRecord{Value: s})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if t.Kind() == reflect.Slice && opts.PrintAddresses {
header := fmt.Sprintf("ptr:%v, len:%d, cap:%d", formatPointer(value.PointerOf(v), false), v.Len(), v.Cap())
out = &textWrap{Prefix: pointerDelimPrefix + header + pointerDelimSuffix, Value: out}
}
return out
case reflect.Map:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
return makeLeafReference(ptrRef, opts.PrintAddresses)
}
defer ptrs.Pop()
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for _, k := range value.SortKeys(v.MapKeys()) {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sk := formatMapKey(k, false, ptrs)
sv := opts.WithTypeMode(elideType).FormatValue(v.MapIndex(k), t.Kind(), ptrs)
list = append(list, textRecord{Key: sk, Value: sv})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
return out
case reflect.Ptr:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
out = makeLeafReference(ptrRef, opts.PrintAddresses)
return &textWrap{Prefix: "&", Value: out}
}
defer ptrs.Pop()
skipType = true // Let the underlying value print the type instead
out = opts.FormatValue(v.Elem(), t.Kind(), ptrs)
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
out = &textWrap{Prefix: "&", Value: out}
return out
case reflect.Interface:
if v.IsNil() {
return textNil
}
// Interfaces accept different concrete types,
// so configure the underlying value to explicitly print the type.
skipType = true // Print the concrete type instead
return opts.WithTypeMode(emitType).FormatValue(v.Elem(), t.Kind(), ptrs)
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func (opts formatOptions) formatString(prefix, s string) textNode {
maxLen := len(s)
maxLines := strings.Count(s, "\n") + 1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 5 // 32, 64, 128, 256, etc...
maxLines = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
}
// For multiline strings, use the triple-quote syntax,
// but only use it when printing removed or inserted nodes since
// we only want the extra verbosity for those cases.
lines := strings.Split(strings.TrimSuffix(s, "\n"), "\n")
isTripleQuoted := len(lines) >= 4 && (opts.DiffMode == '-' || opts.DiffMode == '+')
for i := 0; i < len(lines) && isTripleQuoted; i++ {
lines[i] = strings.TrimPrefix(strings.TrimSuffix(lines[i], "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
line := lines[i]
isTripleQuoted = !strings.HasPrefix(strings.TrimPrefix(line, prefix), `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == "" && len(line) <= maxLen
}
if isTripleQuoted {
var list textList
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
for i, line := range lines {
if numElided := len(lines) - i; i == maxLines-1 && numElided > 1 {
comment := commentString(fmt.Sprintf("%d elided lines", numElided))
list = append(list, textRecord{Diff: opts.DiffMode, Value: textEllipsis, ElideComma: true, Comment: comment})
break
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(line), ElideComma: true})
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
return &textWrap{Prefix: "(", Value: list, Suffix: ")"}
}
// Format the string as a single-line quoted string.
if len(s) > maxLen+len(textEllipsis) {
return textLine(prefix + formatString(s[:maxLen]) + string(textEllipsis))
}
return textLine(prefix + formatString(s))
}
// formatMapKey formats v as if it were a map key.
// The result is guaranteed to be a single line.
func formatMapKey(v reflect.Value, disambiguate bool, ptrs *pointerReferences) string {
var opts formatOptions
opts.DiffMode = diffIdentical
opts.TypeMode = elideType
opts.PrintAddresses = disambiguate
opts.AvoidStringer = disambiguate
opts.QualifiedNames = disambiguate
s := opts.FormatValue(v, reflect.Map, ptrs).String()
return strings.TrimSpace(s)
}
// formatString prints s as a double-quoted or backtick-quoted string.
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !(unicode.IsPrint(r) || r == '\t')
}
if utf8.ValidString(s) && strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
// formatHex prints u as a hexadecimal integer in Go notation.
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}

448
vendor/github.com/google/go-cmp/cmp/report_slices.go generated vendored Normal file
View File

@ -0,0 +1,448 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/diff"
)
// CanFormatDiffSlice reports whether we support custom formatting for nodes
// that are slices of primitive kinds or strings.
func (opts formatOptions) CanFormatDiffSlice(v *valueNode) bool {
switch {
case opts.DiffMode != diffUnknown:
return false // Must be formatting in diff mode
case v.NumDiff == 0:
return false // No differences detected
case !v.ValueX.IsValid() || !v.ValueY.IsValid():
return false // Both values must be valid
case v.Type.Kind() == reflect.Slice && (v.ValueX.Len() == 0 || v.ValueY.Len() == 0):
return false // Both slice values have to be non-empty
case v.NumIgnored > 0:
return false // Some ignore option was used
case v.NumTransformed > 0:
return false // Some transform option was used
case v.NumCompared > 1:
return false // More than one comparison was used
case v.NumCompared == 1 && v.Type.Name() != "":
// The need for cmp to check applicability of options on every element
// in a slice is a significant performance detriment for large []byte.
// The workaround is to specify Comparer(bytes.Equal),
// which enables cmp to compare []byte more efficiently.
// If they differ, we still want to provide batched diffing.
// The logic disallows named types since they tend to have their own
// String method, with nicer formatting than what this provides.
return false
}
switch t := v.Type; t.Kind() {
case reflect.String:
case reflect.Array, reflect.Slice:
// Only slices of primitive types have specialized handling.
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
default:
return false
}
// If a sufficient number of elements already differ,
// use specialized formatting even if length requirement is not met.
if v.NumDiff > v.NumSame {
return true
}
default:
return false
}
// Use specialized string diffing for longer slices or strings.
const minLength = 64
return v.ValueX.Len() >= minLength && v.ValueY.Len() >= minLength
}
// FormatDiffSlice prints a diff for the slices (or strings) represented by v.
// This provides custom-tailored logic to make printing of differences in
// textual strings and slices of primitive kinds more readable.
func (opts formatOptions) FormatDiffSlice(v *valueNode) textNode {
assert(opts.DiffMode == diffUnknown)
t, vx, vy := v.Type, v.ValueX, v.ValueY
// Auto-detect the type of the data.
var isLinedText, isText, isBinary bool
var sx, sy string
switch {
case t.Kind() == reflect.String:
sx, sy = vx.String(), vy.String()
isText = true // Initial estimate, verify later
case t.Kind() == reflect.Slice && t.Elem() == reflect.TypeOf(byte(0)):
sx, sy = string(vx.Bytes()), string(vy.Bytes())
isBinary = true // Initial estimate, verify later
case t.Kind() == reflect.Array:
// Arrays need to be addressable for slice operations to work.
vx2, vy2 := reflect.New(t).Elem(), reflect.New(t).Elem()
vx2.Set(vx)
vy2.Set(vy)
vx, vy = vx2, vy2
}
if isText || isBinary {
var numLines, lastLineIdx, maxLineLen int
isBinary = !utf8.ValidString(sx) || !utf8.ValidString(sy)
for i, r := range sx + sy {
if !(unicode.IsPrint(r) || unicode.IsSpace(r)) || r == utf8.RuneError {
isBinary = true
break
}
if r == '\n' {
if maxLineLen < i-lastLineIdx {
maxLineLen = i - lastLineIdx
}
lastLineIdx = i + 1
numLines++
}
}
isText = !isBinary
isLinedText = isText && numLines >= 4 && maxLineLen <= 1024
}
// Format the string into printable records.
var list textList
var delim string
switch {
// If the text appears to be multi-lined text,
// then perform differencing across individual lines.
case isLinedText:
ssx := strings.Split(sx, "\n")
ssy := strings.Split(sy, "\n")
list = opts.formatDiffSlice(
reflect.ValueOf(ssx), reflect.ValueOf(ssy), 1, "line",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.Index(0).String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = "\n"
// If possible, use a custom triple-quote (""") syntax for printing
// differences in a string literal. This format is more readable,
// but has edge-cases where differences are visually indistinguishable.
// This format is avoided under the following conditions:
// • A line starts with `"""`
// • A line starts with "..."
// • A line contains non-printable characters
// • Adjacent different lines differ only by whitespace
//
// For example:
// """
// ... // 3 identical lines
// foo
// bar
// - baz
// + BAZ
// """
isTripleQuoted := true
prevRemoveLines := map[string]bool{}
prevInsertLines := map[string]bool{}
var list2 textList
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
for _, r := range list {
if !r.Value.Equal(textEllipsis) {
line, _ := strconv.Unquote(string(r.Value.(textLine)))
line = strings.TrimPrefix(strings.TrimSuffix(line, "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
normLine := strings.Map(func(r rune) rune {
if unicode.IsSpace(r) {
return -1 // drop whitespace to avoid visually indistinguishable output
}
return r
}, line)
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
isTripleQuoted = !strings.HasPrefix(line, `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == ""
switch r.Diff {
case diffRemoved:
isTripleQuoted = isTripleQuoted && !prevInsertLines[normLine]
prevRemoveLines[normLine] = true
case diffInserted:
isTripleQuoted = isTripleQuoted && !prevRemoveLines[normLine]
prevInsertLines[normLine] = true
}
if !isTripleQuoted {
break
}
r.Value = textLine(line)
r.ElideComma = true
}
if !(r.Diff == diffRemoved || r.Diff == diffInserted) { // start a new non-adjacent difference group
prevRemoveLines = map[string]bool{}
prevInsertLines = map[string]bool{}
}
list2 = append(list2, r)
}
if r := list2[len(list2)-1]; r.Diff == diffIdentical && len(r.Value.(textLine)) == 0 {
list2 = list2[:len(list2)-1] // elide single empty line at the end
}
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
if isTripleQuoted {
var out textNode = &textWrap{Prefix: "(", Value: list2, Suffix: ")"}
switch t.Kind() {
case reflect.String:
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
// Always emit type for slices since the triple-quote syntax
// looks like a string (not a slice).
opts = opts.WithTypeMode(emitType)
out = opts.FormatType(t, out)
}
return out
}
// If the text appears to be single-lined text,
// then perform differencing in approximately fixed-sized chunks.
// The output is printed as quoted strings.
case isText:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 64, "byte",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = ""
// If the text appears to be binary data,
// then perform differencing in approximately fixed-sized chunks.
// The output is inspired by hexdump.
case isBinary:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 16, "byte",
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
ss = append(ss, formatHex(v.Index(i).Uint()))
}
s := strings.Join(ss, ", ")
comment := commentString(fmt.Sprintf("%c|%v|", d, formatASCII(v.String())))
return textRecord{Diff: d, Value: textLine(s), Comment: comment}
},
)
// For all other slices of primitive types,
// then perform differencing in approximately fixed-sized chunks.
// The size of each chunk depends on the width of the element kind.
default:
var chunkSize int
if t.Elem().Kind() == reflect.Bool {
chunkSize = 16
} else {
switch t.Elem().Bits() {
case 8:
chunkSize = 16
case 16:
chunkSize = 12
case 32:
chunkSize = 8
default:
chunkSize = 8
}
}
list = opts.formatDiffSlice(
vx, vy, chunkSize, t.Elem().Kind().String(),
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
ss = append(ss, fmt.Sprint(v.Index(i).Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
ss = append(ss, fmt.Sprint(v.Index(i).Uint()))
case reflect.Uint8, reflect.Uintptr:
ss = append(ss, formatHex(v.Index(i).Uint()))
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
ss = append(ss, fmt.Sprint(v.Index(i).Interface()))
}
}
s := strings.Join(ss, ", ")
return textRecord{Diff: d, Value: textLine(s)}
},
)
}
// Wrap the output with appropriate type information.
var out textNode = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if !isText {
// The "{...}" byte-sequence literal is not valid Go syntax for strings.
// Emit the type for extra clarity (e.g. "string{...}").
if t.Kind() == reflect.String {
opts = opts.WithTypeMode(emitType)
}
return opts.FormatType(t, out)
}
switch t.Kind() {
case reflect.String:
out = &textWrap{Prefix: "strings.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
out = &textWrap{Prefix: "bytes.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf([]byte(nil)) {
out = opts.FormatType(t, out)
}
}
return out
}
// formatASCII formats s as an ASCII string.
// This is useful for printing binary strings in a semi-legible way.
func formatASCII(s string) string {
b := bytes.Repeat([]byte{'.'}, len(s))
for i := 0; i < len(s); i++ {
if ' ' <= s[i] && s[i] <= '~' {
b[i] = s[i]
}
}
return string(b)
}
func (opts formatOptions) formatDiffSlice(
vx, vy reflect.Value, chunkSize int, name string,
makeRec func(reflect.Value, diffMode) textRecord,
) (list textList) {
es := diff.Difference(vx.Len(), vy.Len(), func(ix int, iy int) diff.Result {
return diff.BoolResult(vx.Index(ix).Interface() == vy.Index(iy).Interface())
})
appendChunks := func(v reflect.Value, d diffMode) int {
n0 := v.Len()
for v.Len() > 0 {
n := chunkSize
if n > v.Len() {
n = v.Len()
}
list = append(list, makeRec(v.Slice(0, n), d))
v = v.Slice(n, v.Len())
}
return n0 - v.Len()
}
var numDiffs int
maxLen := -1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
opts.VerbosityLevel--
}
groups := coalesceAdjacentEdits(name, es)
groups = coalesceInterveningIdentical(groups, chunkSize/4)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Print equal.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing equal bytes to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < chunkSize*numContextRecords && numLo+numHi < numEqual && i != 0 {
numLo++
}
for numHi < chunkSize*numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
numHi++
}
if numEqual-(numLo+numHi) <= chunkSize && ds.NumIgnored == 0 {
numHi = numEqual - numLo // Avoid pointless coalescing of single equal row
}
// Print the equal bytes.
appendChunks(vx.Slice(0, numLo), diffIdentical)
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
}
appendChunks(vx.Slice(numEqual-numHi, numEqual), diffIdentical)
vx = vx.Slice(numEqual, vx.Len())
vy = vy.Slice(numEqual, vy.Len())
continue
}
// Print unequal.
len0 := len(list)
nx := appendChunks(vx.Slice(0, ds.NumIdentical+ds.NumRemoved+ds.NumModified), diffRemoved)
vx = vx.Slice(nx, vx.Len())
ny := appendChunks(vy.Slice(0, ds.NumIdentical+ds.NumInserted+ds.NumModified), diffInserted)
vy = vy.Slice(ny, vy.Len())
numDiffs += len(list) - len0
}
if maxGroup.IsZero() {
assert(vx.Len() == 0 && vy.Len() == 0)
} else {
list.AppendEllipsis(maxGroup)
}
return list
}
// coalesceAdjacentEdits coalesces the list of edits into groups of adjacent
// equal or unequal counts.
func coalesceAdjacentEdits(name string, es diff.EditScript) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, e := range es {
switch e {
case diff.Identity:
lastStats(1).NumIdentical++
case diff.UniqueX:
lastStats(2).NumRemoved++
case diff.UniqueY:
lastStats(2).NumInserted++
case diff.Modified:
lastStats(2).NumModified++
}
}
return groups
}
// coalesceInterveningIdentical coalesces sufficiently short (<= windowSize)
// equal groups into adjacent unequal groups that currently result in a
// dual inserted/removed printout. This acts as a high-pass filter to smooth
// out high-frequency changes within the windowSize.
func coalesceInterveningIdentical(groups []diffStats, windowSize int) []diffStats {
groups, groupsOrig := groups[:0], groups
for i, ds := range groupsOrig {
if len(groups) >= 2 && ds.NumDiff() > 0 {
prev := &groups[len(groups)-2] // Unequal group
curr := &groups[len(groups)-1] // Equal group
next := &groupsOrig[i] // Unequal group
hadX, hadY := prev.NumRemoved > 0, prev.NumInserted > 0
hasX, hasY := next.NumRemoved > 0, next.NumInserted > 0
if ((hadX || hasX) && (hadY || hasY)) && curr.NumIdentical <= windowSize {
*prev = prev.Append(*curr).Append(*next)
groups = groups[:len(groups)-1] // Truncate off equal group
continue
}
}
groups = append(groups, ds)
}
return groups
}

431
vendor/github.com/google/go-cmp/cmp/report_text.go generated vendored Normal file
View File

@ -0,0 +1,431 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"math/rand"
"strings"
"time"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/flags"
)
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
const maxColumnLength = 80
type indentMode int
func (n indentMode) appendIndent(b []byte, d diffMode) []byte {
// The output of Diff is documented as being unstable to provide future
// flexibility in changing the output for more humanly readable reports.
// This logic intentionally introduces instability to the exact output
// so that users can detect accidental reliance on stability early on,
// rather than much later when an actual change to the format occurs.
if flags.Deterministic || randBool {
// Use regular spaces (U+0020).
switch d {
case diffUnknown, diffIdentical:
b = append(b, " "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
} else {
// Use non-breaking spaces (U+00a0).
switch d {
case diffUnknown, diffIdentical:
b = append(b, "  "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
}
return repeatCount(n).appendChar(b, '\t')
}
type repeatCount int
func (n repeatCount) appendChar(b []byte, c byte) []byte {
for ; n > 0; n-- {
b = append(b, c)
}
return b
}
// textNode is a simplified tree-based representation of structured text.
// Possible node types are textWrap, textList, or textLine.
type textNode interface {
// Len reports the length in bytes of a single-line version of the tree.
// Nested textRecord.Diff and textRecord.Comment fields are ignored.
Len() int
// Equal reports whether the two trees are structurally identical.
// Nested textRecord.Diff and textRecord.Comment fields are compared.
Equal(textNode) bool
// String returns the string representation of the text tree.
// It is not guaranteed that len(x.String()) == x.Len(),
// nor that x.String() == y.String() implies that x.Equal(y).
String() string
// formatCompactTo formats the contents of the tree as a single-line string
// to the provided buffer. Any nested textRecord.Diff and textRecord.Comment
// fields are ignored.
//
// However, not all nodes in the tree should be collapsed as a single-line.
// If a node can be collapsed as a single-line, it is replaced by a textLine
// node. Since the top-level node cannot replace itself, this also returns
// the current node itself.
//
// This does not mutate the receiver.
formatCompactTo([]byte, diffMode) ([]byte, textNode)
// formatExpandedTo formats the contents of the tree as a multi-line string
// to the provided buffer. In order for column alignment to operate well,
// formatCompactTo must be called before calling formatExpandedTo.
formatExpandedTo([]byte, diffMode, indentMode) []byte
}
// textWrap is a wrapper that concatenates a prefix and/or a suffix
// to the underlying node.
type textWrap struct {
Prefix string // e.g., "bytes.Buffer{"
Value textNode // textWrap | textList | textLine
Suffix string // e.g., "}"
Metadata interface{} // arbitrary metadata; has no effect on formatting
}
func (s *textWrap) Len() int {
return len(s.Prefix) + s.Value.Len() + len(s.Suffix)
}
func (s1 *textWrap) Equal(s2 textNode) bool {
if s2, ok := s2.(*textWrap); ok {
return s1.Prefix == s2.Prefix && s1.Value.Equal(s2.Value) && s1.Suffix == s2.Suffix
}
return false
}
func (s *textWrap) String() string {
var d diffMode
var n indentMode
_, s2 := s.formatCompactTo(nil, d)
b := n.appendIndent(nil, d) // Leading indent
b = s2.formatExpandedTo(b, d, n) // Main body
b = append(b, '\n') // Trailing newline
return string(b)
}
func (s *textWrap) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
n0 := len(b) // Original buffer length
b = append(b, s.Prefix...)
b, s.Value = s.Value.formatCompactTo(b, d)
b = append(b, s.Suffix...)
if _, ok := s.Value.(textLine); ok {
return b, textLine(b[n0:])
}
return b, s
}
func (s *textWrap) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
b = append(b, s.Prefix...)
b = s.Value.formatExpandedTo(b, d, n)
b = append(b, s.Suffix...)
return b
}
// textList is a comma-separated list of textWrap or textLine nodes.
// The list may be formatted as multi-lines or single-line at the discretion
// of the textList.formatCompactTo method.
type textList []textRecord
type textRecord struct {
Diff diffMode // e.g., 0 or '-' or '+'
Key string // e.g., "MyField"
Value textNode // textWrap | textLine
ElideComma bool // avoid trailing comma
Comment fmt.Stringer // e.g., "6 identical fields"
}
// AppendEllipsis appends a new ellipsis node to the list if none already
// exists at the end. If cs is non-zero it coalesces the statistics with the
// previous diffStats.
func (s *textList) AppendEllipsis(ds diffStats) {
hasStats := !ds.IsZero()
if len(*s) == 0 || !(*s)[len(*s)-1].Value.Equal(textEllipsis) {
if hasStats {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true, Comment: ds})
} else {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true})
}
return
}
if hasStats {
(*s)[len(*s)-1].Comment = (*s)[len(*s)-1].Comment.(diffStats).Append(ds)
}
}
func (s textList) Len() (n int) {
for i, r := range s {
n += len(r.Key)
if r.Key != "" {
n += len(": ")
}
n += r.Value.Len()
if i < len(s)-1 {
n += len(", ")
}
}
return n
}
func (s1 textList) Equal(s2 textNode) bool {
if s2, ok := s2.(textList); ok {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
r1, r2 := s1[i], s2[i]
if !(r1.Diff == r2.Diff && r1.Key == r2.Key && r1.Value.Equal(r2.Value) && r1.Comment == r2.Comment) {
return false
}
}
return true
}
return false
}
func (s textList) String() string {
return (&textWrap{Prefix: "{", Value: s, Suffix: "}"}).String()
}
func (s textList) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
s = append(textList(nil), s...) // Avoid mutating original
// Determine whether we can collapse this list as a single line.
n0 := len(b) // Original buffer length
var multiLine bool
for i, r := range s {
if r.Diff == diffInserted || r.Diff == diffRemoved {
multiLine = true
}
b = append(b, r.Key...)
if r.Key != "" {
b = append(b, ": "...)
}
b, s[i].Value = r.Value.formatCompactTo(b, d|r.Diff)
if _, ok := s[i].Value.(textLine); !ok {
multiLine = true
}
if r.Comment != nil {
multiLine = true
}
if i < len(s)-1 {
b = append(b, ", "...)
}
}
// Force multi-lined output when printing a removed/inserted node that
// is sufficiently long.
if (d == diffInserted || d == diffRemoved) && len(b[n0:]) > maxColumnLength {
multiLine = true
}
if !multiLine {
return b, textLine(b[n0:])
}
return b, s
}
func (s textList) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
alignKeyLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return r.Key == "" || !isLine
},
func(r textRecord) int { return utf8.RuneCountInString(r.Key) },
)
alignValueLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return !isLine || r.Value.Equal(textEllipsis) || r.Comment == nil
},
func(r textRecord) int { return utf8.RuneCount(r.Value.(textLine)) },
)
// Format lists of simple lists in a batched form.
// If the list is sequence of only textLine values,
// then batch multiple values on a single line.
var isSimple bool
for _, r := range s {
_, isLine := r.Value.(textLine)
isSimple = r.Diff == 0 && r.Key == "" && isLine && r.Comment == nil
if !isSimple {
break
}
}
if isSimple {
n++
var batch []byte
emitBatch := func() {
if len(batch) > 0 {
b = n.appendIndent(append(b, '\n'), d)
b = append(b, bytes.TrimRight(batch, " ")...)
batch = batch[:0]
}
}
for _, r := range s {
line := r.Value.(textLine)
if len(batch)+len(line)+len(", ") > maxColumnLength {
emitBatch()
}
batch = append(batch, line...)
batch = append(batch, ", "...)
}
emitBatch()
n--
return n.appendIndent(append(b, '\n'), d)
}
// Format the list as a multi-lined output.
n++
for i, r := range s {
b = n.appendIndent(append(b, '\n'), d|r.Diff)
if r.Key != "" {
b = append(b, r.Key+": "...)
}
b = alignKeyLens[i].appendChar(b, ' ')
b = r.Value.formatExpandedTo(b, d|r.Diff, n)
if !r.ElideComma {
b = append(b, ',')
}
b = alignValueLens[i].appendChar(b, ' ')
if r.Comment != nil {
b = append(b, " // "+r.Comment.String()...)
}
}
n--
return n.appendIndent(append(b, '\n'), d)
}
func (s textList) alignLens(
skipFunc func(textRecord) bool,
lenFunc func(textRecord) int,
) []repeatCount {
var startIdx, endIdx, maxLen int
lens := make([]repeatCount, len(s))
for i, r := range s {
if skipFunc(r) {
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
startIdx, endIdx, maxLen = i+1, i+1, 0
} else {
if maxLen < lenFunc(r) {
maxLen = lenFunc(r)
}
endIdx = i + 1
}
}
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
return lens
}
// textLine is a single-line segment of text and is always a leaf node
// in the textNode tree.
type textLine []byte
var (
textNil = textLine("nil")
textEllipsis = textLine("...")
)
func (s textLine) Len() int {
return len(s)
}
func (s1 textLine) Equal(s2 textNode) bool {
if s2, ok := s2.(textLine); ok {
return bytes.Equal([]byte(s1), []byte(s2))
}
return false
}
func (s textLine) String() string {
return string(s)
}
func (s textLine) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
return append(b, s...), s
}
func (s textLine) formatExpandedTo(b []byte, _ diffMode, _ indentMode) []byte {
return append(b, s...)
}
type diffStats struct {
Name string
NumIgnored int
NumIdentical int
NumRemoved int
NumInserted int
NumModified int
}
func (s diffStats) IsZero() bool {
s.Name = ""
return s == diffStats{}
}
func (s diffStats) NumDiff() int {
return s.NumRemoved + s.NumInserted + s.NumModified
}
func (s diffStats) Append(ds diffStats) diffStats {
assert(s.Name == ds.Name)
s.NumIgnored += ds.NumIgnored
s.NumIdentical += ds.NumIdentical
s.NumRemoved += ds.NumRemoved
s.NumInserted += ds.NumInserted
s.NumModified += ds.NumModified
return s
}
// String prints a humanly-readable summary of coalesced records.
//
// Example:
// diffStats{Name: "Field", NumIgnored: 5}.String() => "5 ignored fields"
func (s diffStats) String() string {
var ss []string
var sum int
labels := [...]string{"ignored", "identical", "removed", "inserted", "modified"}
counts := [...]int{s.NumIgnored, s.NumIdentical, s.NumRemoved, s.NumInserted, s.NumModified}
for i, n := range counts {
if n > 0 {
ss = append(ss, fmt.Sprintf("%d %v", n, labels[i]))
}
sum += n
}
// Pluralize the name (adjusting for some obscure English grammar rules).
name := s.Name
if sum > 1 {
name += "s"
if strings.HasSuffix(name, "ys") {
name = name[:len(name)-2] + "ies" // e.g., "entrys" => "entries"
}
}
// Format the list according to English grammar (with Oxford comma).
switch n := len(ss); n {
case 0:
return ""
case 1, 2:
return strings.Join(ss, " and ") + " " + name
default:
return strings.Join(ss[:n-1], ", ") + ", and " + ss[n-1] + " " + name
}
}
type commentString string
func (s commentString) String() string { return string(s) }

121
vendor/github.com/google/go-cmp/cmp/report_value.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import "reflect"
// valueNode represents a single node within a report, which is a
// structured representation of the value tree, containing information
// regarding which nodes are equal or not.
type valueNode struct {
parent *valueNode
Type reflect.Type
ValueX reflect.Value
ValueY reflect.Value
// NumSame is the number of leaf nodes that are equal.
// All descendants are equal only if NumDiff is 0.
NumSame int
// NumDiff is the number of leaf nodes that are not equal.
NumDiff int
// NumIgnored is the number of leaf nodes that are ignored.
NumIgnored int
// NumCompared is the number of leaf nodes that were compared
// using an Equal method or Comparer function.
NumCompared int
// NumTransformed is the number of non-leaf nodes that were transformed.
NumTransformed int
// NumChildren is the number of transitive descendants of this node.
// This counts from zero; thus, leaf nodes have no descendants.
NumChildren int
// MaxDepth is the maximum depth of the tree. This counts from zero;
// thus, leaf nodes have a depth of zero.
MaxDepth int
// Records is a list of struct fields, slice elements, or map entries.
Records []reportRecord // If populated, implies Value is not populated
// Value is the result of a transformation, pointer indirect, of
// type assertion.
Value *valueNode // If populated, implies Records is not populated
// TransformerName is the name of the transformer.
TransformerName string // If non-empty, implies Value is populated
}
type reportRecord struct {
Key reflect.Value // Invalid for slice element
Value *valueNode
}
func (parent *valueNode) PushStep(ps PathStep) (child *valueNode) {
vx, vy := ps.Values()
child = &valueNode{parent: parent, Type: ps.Type(), ValueX: vx, ValueY: vy}
switch s := ps.(type) {
case StructField:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: reflect.ValueOf(s.Name()), Value: child})
case SliceIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Value: child})
case MapIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: s.Key(), Value: child})
case Indirect:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case TypeAssertion:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case Transform:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
parent.TransformerName = s.Name()
parent.NumTransformed++
default:
assert(parent == nil) // Must be the root step
}
return child
}
func (r *valueNode) Report(rs Result) {
assert(r.MaxDepth == 0) // May only be called on leaf nodes
if rs.ByIgnore() {
r.NumIgnored++
} else {
if rs.Equal() {
r.NumSame++
} else {
r.NumDiff++
}
}
assert(r.NumSame+r.NumDiff+r.NumIgnored == 1)
if rs.ByMethod() {
r.NumCompared++
}
if rs.ByFunc() {
r.NumCompared++
}
assert(r.NumCompared <= 1)
}
func (child *valueNode) PopStep() (parent *valueNode) {
if child.parent == nil {
return nil
}
parent = child.parent
parent.NumSame += child.NumSame
parent.NumDiff += child.NumDiff
parent.NumIgnored += child.NumIgnored
parent.NumCompared += child.NumCompared
parent.NumTransformed += child.NumTransformed
parent.NumChildren += child.NumChildren + 1
if parent.MaxDepth < child.MaxDepth+1 {
parent.MaxDepth = child.MaxDepth + 1
}
return parent
}

View File

@ -0,0 +1,744 @@
package testutil
import (
"encoding/json"
"fmt"
"reflect"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/influxdata/telegraf"
"github.com/stretchr/testify/assert"
)
var (
lastID uint64
)
func newTrackingID() telegraf.TrackingID {
id := atomic.AddUint64(&lastID, 1)
return telegraf.TrackingID(id)
}
// Metric defines a single point measurement
type Metric struct {
Measurement string
Tags map[string]string
Fields map[string]interface{}
Time time.Time
Type telegraf.ValueType
}
func (p *Metric) String() string {
return fmt.Sprintf("%s %v %v", p.Measurement, p.Tags, p.Fields)
}
// Accumulator defines a mocked out accumulator
type Accumulator struct {
sync.Mutex
*sync.Cond
Metrics []*Metric
nMetrics uint64
Discard bool
Errors []error
debug bool
delivered chan telegraf.DeliveryInfo
TimeFunc func() time.Time
}
func (a *Accumulator) NMetrics() uint64 {
return atomic.LoadUint64(&a.nMetrics)
}
func (a *Accumulator) GetTelegrafMetrics() []telegraf.Metric {
metrics := []telegraf.Metric{}
for _, m := range a.Metrics {
metrics = append(metrics, FromTestMetric(m))
}
return metrics
}
func (a *Accumulator) FirstError() error {
if len(a.Errors) == 0 {
return nil
}
return a.Errors[0]
}
func (a *Accumulator) ClearMetrics() {
a.Lock()
defer a.Unlock()
atomic.StoreUint64(&a.nMetrics, 0)
a.Metrics = make([]*Metric, 0)
}
func (a *Accumulator) addFields(
measurement string,
tags map[string]string,
fields map[string]interface{},
tp telegraf.ValueType,
timestamp ...time.Time,
) {
a.Lock()
defer a.Unlock()
atomic.AddUint64(&a.nMetrics, 1)
if a.Cond != nil {
a.Cond.Broadcast()
}
if a.Discard {
return
}
if len(fields) == 0 {
return
}
tagsCopy := map[string]string{}
for k, v := range tags {
tagsCopy[k] = v
}
fieldsCopy := map[string]interface{}{}
for k, v := range fields {
fieldsCopy[k] = v
}
var t time.Time
if len(timestamp) > 0 {
t = timestamp[0]
} else {
t = time.Now()
if a.TimeFunc == nil {
t = time.Now()
} else {
t = a.TimeFunc()
}
}
if a.debug {
pretty, _ := json.MarshalIndent(fields, "", " ")
prettyTags, _ := json.MarshalIndent(tags, "", " ")
msg := fmt.Sprintf("Adding Measurement [%s]\nFields:%s\nTags:%s\n",
measurement, string(pretty), string(prettyTags))
fmt.Print(msg)
}
p := &Metric{
Measurement: measurement,
Fields: fieldsCopy,
Tags: tagsCopy,
Time: t,
Type: tp,
}
a.Metrics = append(a.Metrics, p)
}
// AddFields adds a measurement point with a specified timestamp.
func (a *Accumulator) AddFields(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Untyped, timestamp...)
}
func (a *Accumulator) AddCounter(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Counter, timestamp...)
}
func (a *Accumulator) AddGauge(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Gauge, timestamp...)
}
func (a *Accumulator) AddMetrics(metrics []telegraf.Metric) {
for _, m := range metrics {
a.addFields(m.Name(), m.Tags(), m.Fields(), m.Type(), m.Time())
}
}
func (a *Accumulator) AddSummary(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Summary, timestamp...)
}
func (a *Accumulator) AddHistogram(
measurement string,
fields map[string]interface{},
tags map[string]string,
timestamp ...time.Time,
) {
a.addFields(measurement, tags, fields, telegraf.Histogram, timestamp...)
}
func (a *Accumulator) AddMetric(m telegraf.Metric) {
a.addFields(m.Name(), m.Tags(), m.Fields(), m.Type(), m.Time())
}
func (a *Accumulator) WithTracking(maxTracked int) telegraf.TrackingAccumulator {
return a
}
func (a *Accumulator) AddTrackingMetric(m telegraf.Metric) telegraf.TrackingID {
a.AddMetric(m)
return newTrackingID()
}
func (a *Accumulator) AddTrackingMetricGroup(group []telegraf.Metric) telegraf.TrackingID {
for _, m := range group {
a.AddMetric(m)
}
return newTrackingID()
}
func (a *Accumulator) Delivered() <-chan telegraf.DeliveryInfo {
a.Lock()
if a.delivered == nil {
a.delivered = make(chan telegraf.DeliveryInfo)
}
a.Unlock()
return a.delivered
}
// AddError appends the given error to Accumulator.Errors.
func (a *Accumulator) AddError(err error) {
if err == nil {
return
}
a.Lock()
a.Errors = append(a.Errors, err)
if a.Cond != nil {
a.Cond.Broadcast()
}
a.Unlock()
}
func (a *Accumulator) SetPrecision(precision time.Duration) {
return
}
func (a *Accumulator) DisablePrecision() {
return
}
func (a *Accumulator) Debug() bool {
// stub for implementing Accumulator interface.
return a.debug
}
func (a *Accumulator) SetDebug(debug bool) {
// stub for implementing Accumulator interface.
a.debug = debug
}
// Get gets the specified measurement point from the accumulator
func (a *Accumulator) Get(measurement string) (*Metric, bool) {
for _, p := range a.Metrics {
if p.Measurement == measurement {
return p, true
}
}
return nil, false
}
func (a *Accumulator) HasTag(measurement string, key string) bool {
for _, p := range a.Metrics {
if p.Measurement == measurement {
_, ok := p.Tags[key]
return ok
}
}
return false
}
func (a *Accumulator) TagSetValue(measurement string, key string) string {
for _, p := range a.Metrics {
if p.Measurement == measurement {
v, ok := p.Tags[key]
if ok {
return v
}
}
}
return ""
}
func (a *Accumulator) TagValue(measurement string, key string) string {
for _, p := range a.Metrics {
if p.Measurement == measurement {
v, ok := p.Tags[key]
if !ok {
return ""
}
return v
}
}
return ""
}
// Calls the given Gather function and returns the first error found.
func (a *Accumulator) GatherError(gf func(telegraf.Accumulator) error) error {
if err := gf(a); err != nil {
return err
}
if len(a.Errors) > 0 {
return a.Errors[0]
}
return nil
}
// NFields returns the total number of fields in the accumulator, across all
// measurements
func (a *Accumulator) NFields() int {
a.Lock()
defer a.Unlock()
counter := 0
for _, pt := range a.Metrics {
for range pt.Fields {
counter++
}
}
return counter
}
// Wait waits for the given number of metrics to be added to the accumulator.
func (a *Accumulator) Wait(n int) {
a.Lock()
defer a.Unlock()
if a.Cond == nil {
a.Cond = sync.NewCond(&a.Mutex)
}
for int(a.NMetrics()) < n {
a.Cond.Wait()
}
}
// WaitError waits for the given number of errors to be added to the accumulator.
func (a *Accumulator) WaitError(n int) {
a.Lock()
if a.Cond == nil {
a.Cond = sync.NewCond(&a.Mutex)
}
for len(a.Errors) < n {
a.Cond.Wait()
}
a.Unlock()
}
func (a *Accumulator) AssertContainsTaggedFields(
t *testing.T,
measurement string,
fields map[string]interface{},
tags map[string]string,
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
if p.Measurement == measurement && reflect.DeepEqual(fields, p.Fields) {
return
}
}
// We've failed. spit out some debug logging
for _, p := range a.Metrics {
if p.Measurement == measurement {
t.Log("measurement", p.Measurement, "tags", p.Tags, "fields", p.Fields)
}
}
msg := fmt.Sprintf("unknown measurement %q with tags %v", measurement, tags)
assert.Fail(t, msg)
}
func (a *Accumulator) AssertDoesNotContainsTaggedFields(
t *testing.T,
measurement string,
fields map[string]interface{},
tags map[string]string,
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
if p.Measurement == measurement && reflect.DeepEqual(fields, p.Fields) {
msg := fmt.Sprintf(
"found measurement %s with tagged fields (tags %v) which should not be there",
measurement, tags)
assert.Fail(t, msg)
}
}
return
}
func (a *Accumulator) AssertContainsFields(
t *testing.T,
measurement string,
fields map[string]interface{},
) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
assert.Equal(t, fields, p.Fields)
return
}
}
msg := fmt.Sprintf("unknown measurement %q", measurement)
assert.Fail(t, msg)
}
func (a *Accumulator) HasPoint(
measurement string,
tags map[string]string,
fieldKey string,
fieldValue interface{},
) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement != measurement {
continue
}
if !reflect.DeepEqual(tags, p.Tags) {
continue
}
v, ok := p.Fields[fieldKey]
if ok && reflect.DeepEqual(v, fieldValue) {
return true
}
}
return false
}
func (a *Accumulator) AssertDoesNotContainMeasurement(t *testing.T, measurement string) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
msg := fmt.Sprintf("found unexpected measurement %s", measurement)
assert.Fail(t, msg)
}
}
}
// HasTimestamp returns true if the measurement has a matching Time value
func (a *Accumulator) HasTimestamp(measurement string, timestamp time.Time) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
return timestamp.Equal(p.Time)
}
}
return false
}
// HasField returns true if the given measurement has a field with the given
// name
func (a *Accumulator) HasField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
if _, ok := p.Fields[field]; ok {
return true
}
}
}
return false
}
// HasIntField returns true if the measurement has an Int value
func (a *Accumulator) HasIntField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int)
return ok
}
}
}
}
return false
}
// HasInt64Field returns true if the measurement has an Int64 value
func (a *Accumulator) HasInt64Field(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int64)
return ok
}
}
}
}
return false
}
// HasInt32Field returns true if the measurement has an Int value
func (a *Accumulator) HasInt32Field(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(int32)
return ok
}
}
}
}
return false
}
// HasStringField returns true if the measurement has an String value
func (a *Accumulator) HasStringField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(string)
return ok
}
}
}
}
return false
}
// HasUIntField returns true if the measurement has a UInt value
func (a *Accumulator) HasUIntField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(uint64)
return ok
}
}
}
}
return false
}
// HasFloatField returns true if the given measurement has a float value
func (a *Accumulator) HasFloatField(measurement string, field string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
_, ok := value.(float64)
return ok
}
}
}
}
return false
}
// HasMeasurement returns true if the accumulator has a measurement with the
// given name
func (a *Accumulator) HasMeasurement(measurement string) bool {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
return true
}
}
return false
}
// IntField returns the int value of the given measurement and field or false.
func (a *Accumulator) IntField(measurement string, field string) (int, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int)
return v, ok
}
}
}
}
return 0, false
}
// Int64Field returns the int64 value of the given measurement and field or false.
func (a *Accumulator) Int64Field(measurement string, field string) (int64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int64)
return v, ok
}
}
}
}
return 0, false
}
// Uint64Field returns the int64 value of the given measurement and field or false.
func (a *Accumulator) Uint64Field(measurement string, field string) (uint64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(uint64)
return v, ok
}
}
}
}
return 0, false
}
// Int32Field returns the int32 value of the given measurement and field or false.
func (a *Accumulator) Int32Field(measurement string, field string) (int32, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(int32)
return v, ok
}
}
}
}
return 0, false
}
// FloatField returns the float64 value of the given measurement and field or false.
func (a *Accumulator) FloatField(measurement string, field string) (float64, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(float64)
return v, ok
}
}
}
}
return 0.0, false
}
// StringField returns the string value of the given measurement and field or false.
func (a *Accumulator) StringField(measurement string, field string) (string, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(string)
return v, ok
}
}
}
}
return "", false
}
// BoolField returns the bool value of the given measurement and field or false.
func (a *Accumulator) BoolField(measurement string, field string) (bool, bool) {
a.Lock()
defer a.Unlock()
for _, p := range a.Metrics {
if p.Measurement == measurement {
for fieldname, value := range p.Fields {
if fieldname == field {
v, ok := value.(bool)
return v, ok
}
}
}
}
return false, false
}
// NopAccumulator is used for benchmarking to isolate the plugin from the internal
// telegraf accumulator machinery.
type NopAccumulator struct{}
func (n *NopAccumulator) AddFields(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddGauge(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddCounter(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddSummary(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddHistogram(measurement string, fields map[string]interface{}, tags map[string]string, t ...time.Time) {
}
func (n *NopAccumulator) AddMetric(telegraf.Metric) {}
func (n *NopAccumulator) SetPrecision(precision time.Duration) {}
func (n *NopAccumulator) AddError(err error) {}
func (n *NopAccumulator) WithTracking(maxTracked int) telegraf.TrackingAccumulator { return nil }

54
vendor/github.com/influxdata/telegraf/testutil/log.go generated vendored Normal file
View File

@ -0,0 +1,54 @@
package testutil
import (
"log"
"github.com/influxdata/telegraf"
)
var _ telegraf.Logger = &Logger{}
// Logger defines a logging structure for plugins.
type Logger struct {
Name string // Name is the plugin name, will be printed in the `[]`.
}
// Errorf logs an error message, patterned after log.Printf.
func (l Logger) Errorf(format string, args ...interface{}) {
log.Printf("E! ["+l.Name+"] "+format, args...)
}
// Error logs an error message, patterned after log.Print.
func (l Logger) Error(args ...interface{}) {
log.Print(append([]interface{}{"E! [" + l.Name + "] "}, args...)...)
}
// Debugf logs a debug message, patterned after log.Printf.
func (l Logger) Debugf(format string, args ...interface{}) {
log.Printf("D! ["+l.Name+"] "+format, args...)
}
// Debug logs a debug message, patterned after log.Print.
func (l Logger) Debug(args ...interface{}) {
log.Print(append([]interface{}{"D! [" + l.Name + "] "}, args...)...)
}
// Warnf logs a warning message, patterned after log.Printf.
func (l Logger) Warnf(format string, args ...interface{}) {
log.Printf("W! ["+l.Name+"] "+format, args...)
}
// Warn logs a warning message, patterned after log.Print.
func (l Logger) Warn(args ...interface{}) {
log.Print(append([]interface{}{"W! [" + l.Name + "] "}, args...)...)
}
// Infof logs an information message, patterned after log.Printf.
func (l Logger) Infof(format string, args ...interface{}) {
log.Printf("I! ["+l.Name+"] "+format, args...)
}
// Info logs an information message, patterned after log.Print.
func (l Logger) Info(args ...interface{}) {
log.Print(append([]interface{}{"I! [" + l.Name + "] "}, args...)...)
}

View File

@ -0,0 +1,205 @@
package testutil
import (
"reflect"
"sort"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
)
type metricDiff struct {
Measurement string
Tags []*telegraf.Tag
Fields []*telegraf.Field
Type telegraf.ValueType
Time time.Time
}
func lessFunc(lhs, rhs *metricDiff) bool {
if lhs.Measurement != rhs.Measurement {
return lhs.Measurement < rhs.Measurement
}
for i := 0; ; i++ {
if i >= len(lhs.Tags) && i >= len(rhs.Tags) {
break
} else if i >= len(lhs.Tags) {
return true
} else if i >= len(rhs.Tags) {
return false
}
if lhs.Tags[i].Key != rhs.Tags[i].Key {
return lhs.Tags[i].Key < rhs.Tags[i].Key
}
if lhs.Tags[i].Value != rhs.Tags[i].Value {
return lhs.Tags[i].Value < rhs.Tags[i].Value
}
}
for i := 0; ; i++ {
if i >= len(lhs.Fields) && i >= len(rhs.Fields) {
break
} else if i >= len(lhs.Fields) {
return true
} else if i >= len(rhs.Fields) {
return false
}
if lhs.Fields[i].Key != rhs.Fields[i].Key {
return lhs.Fields[i].Key < rhs.Fields[i].Key
}
if lhs.Fields[i].Value != rhs.Fields[i].Value {
ltype := reflect.TypeOf(lhs.Fields[i].Value)
rtype := reflect.TypeOf(lhs.Fields[i].Value)
if ltype.Kind() != rtype.Kind() {
return ltype.Kind() < rtype.Kind()
}
switch v := lhs.Fields[i].Value.(type) {
case int64:
return v < lhs.Fields[i].Value.(int64)
case uint64:
return v < lhs.Fields[i].Value.(uint64)
case float64:
return v < lhs.Fields[i].Value.(float64)
case string:
return v < lhs.Fields[i].Value.(string)
case bool:
return !v
default:
panic("unknown type")
}
}
}
if lhs.Type != rhs.Type {
return lhs.Type < rhs.Type
}
if lhs.Time.UnixNano() != rhs.Time.UnixNano() {
return lhs.Time.UnixNano() < rhs.Time.UnixNano()
}
return false
}
func newMetricDiff(metric telegraf.Metric) *metricDiff {
if metric == nil {
return nil
}
m := &metricDiff{}
m.Measurement = metric.Name()
for _, tag := range metric.TagList() {
m.Tags = append(m.Tags, tag)
}
sort.Slice(m.Tags, func(i, j int) bool {
return m.Tags[i].Key < m.Tags[j].Key
})
for _, field := range metric.FieldList() {
m.Fields = append(m.Fields, field)
}
sort.Slice(m.Fields, func(i, j int) bool {
return m.Fields[i].Key < m.Fields[j].Key
})
m.Type = metric.Type()
m.Time = metric.Time()
return m
}
// SortMetrics enables sorting metrics before comparison.
func SortMetrics() cmp.Option {
return cmpopts.SortSlices(lessFunc)
}
// IgnoreTime disables comparison of timestamp.
func IgnoreTime() cmp.Option {
return cmpopts.IgnoreFields(metricDiff{}, "Time")
}
// MetricEqual returns true if the metrics are equal.
func MetricEqual(expected, actual telegraf.Metric, opts ...cmp.Option) bool {
var lhs, rhs *metricDiff
if expected != nil {
lhs = newMetricDiff(expected)
}
if actual != nil {
rhs = newMetricDiff(actual)
}
opts = append(opts, cmpopts.EquateNaNs())
return cmp.Equal(lhs, rhs, opts...)
}
// RequireMetricEqual halts the test with an error if the metrics are not
// equal.
func RequireMetricEqual(t *testing.T, expected, actual telegraf.Metric, opts ...cmp.Option) {
t.Helper()
var lhs, rhs *metricDiff
if expected != nil {
lhs = newMetricDiff(expected)
}
if actual != nil {
rhs = newMetricDiff(actual)
}
opts = append(opts, cmpopts.EquateNaNs())
if diff := cmp.Diff(lhs, rhs, opts...); diff != "" {
t.Fatalf("telegraf.Metric\n--- expected\n+++ actual\n%s", diff)
}
}
// RequireMetricsEqual halts the test with an error if the array of metrics
// are not equal.
func RequireMetricsEqual(t *testing.T, expected, actual []telegraf.Metric, opts ...cmp.Option) {
t.Helper()
lhs := make([]*metricDiff, 0, len(expected))
for _, m := range expected {
lhs = append(lhs, newMetricDiff(m))
}
rhs := make([]*metricDiff, 0, len(actual))
for _, m := range actual {
rhs = append(rhs, newMetricDiff(m))
}
opts = append(opts, cmpopts.EquateNaNs())
if diff := cmp.Diff(lhs, rhs, opts...); diff != "" {
t.Fatalf("[]telegraf.Metric\n--- expected\n+++ actual\n%s", diff)
}
}
// Metric creates a new metric or panics on error.
func MustMetric(
name string,
tags map[string]string,
fields map[string]interface{},
tm time.Time,
tp ...telegraf.ValueType,
) telegraf.Metric {
m, err := metric.New(name, tags, fields, tm, tp...)
if err != nil {
panic("MustMetric")
}
return m
}
func FromTestMetric(met *Metric) telegraf.Metric {
m, err := metric.New(met.Measurement, met.Tags, met.Fields, met.Time, met.Type)
if err != nil {
panic("MustMetric")
}
return m
}

View File

@ -0,0 +1,65 @@
package testutil
import (
"net"
"net/url"
"os"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/metric"
)
var localhost = "localhost"
// GetLocalHost returns the DOCKER_HOST environment variable, parsing
// out any scheme or ports so that only the IP address is returned.
func GetLocalHost() string {
if dockerHostVar := os.Getenv("DOCKER_HOST"); dockerHostVar != "" {
u, err := url.Parse(dockerHostVar)
if err != nil {
return dockerHostVar
}
// split out the ip addr from the port
host, _, err := net.SplitHostPort(u.Host)
if err != nil {
return dockerHostVar
}
return host
}
return localhost
}
// MockMetrics returns a mock []telegraf.Metric object for using in unit tests
// of telegraf output sinks.
func MockMetrics() []telegraf.Metric {
metrics := make([]telegraf.Metric, 0)
// Create a new point batch
metrics = append(metrics, TestMetric(1.0))
return metrics
}
// TestMetric Returns a simple test point:
// measurement -> "test1" or name
// tags -> "tag1":"value1"
// value -> value
// time -> time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)
func TestMetric(value interface{}, name ...string) telegraf.Metric {
if value == nil {
panic("Cannot use a nil value")
}
measurement := "test1"
if len(name) > 0 {
measurement = name[0]
}
tags := map[string]string{"tag1": "value1"}
pt, _ := metric.New(
measurement,
tags,
map[string]interface{}{"value": value},
time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC),
)
return pt
}

Some files were not shown because too many files have changed in this diff Show More