669 lines
19 KiB
C
669 lines
19 KiB
C
/******************************************************************************
|
|
* Nuvoton TPM I2C Device Driver Interface for WPCT301/NPCT501/NPCT6XX,
|
|
* based on the TCG TPM Interface Spec version 1.2.
|
|
* Specifications at www.trustedcomputinggroup.org
|
|
*
|
|
* Copyright (C) 2011, Nuvoton Technology Corporation.
|
|
* Dan Morav <dan.morav@nuvoton.com>
|
|
* Copyright (C) 2013, Obsidian Research Corp.
|
|
* Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see http://www.gnu.org/licenses/>.
|
|
*
|
|
* Nuvoton contact information: APC.Support@nuvoton.com
|
|
*****************************************************************************/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/of_device.h>
|
|
#include "tpm.h"
|
|
|
|
/* I2C interface offsets */
|
|
#define TPM_STS 0x00
|
|
#define TPM_BURST_COUNT 0x01
|
|
#define TPM_DATA_FIFO_W 0x20
|
|
#define TPM_DATA_FIFO_R 0x40
|
|
#define TPM_VID_DID_RID 0x60
|
|
/* TPM command header size */
|
|
#define TPM_HEADER_SIZE 10
|
|
#define TPM_RETRY 5
|
|
/*
|
|
* I2C bus device maximum buffer size w/o counting I2C address or command
|
|
* i.e. max size required for I2C write is 34 = addr, command, 32 bytes data
|
|
*/
|
|
#define TPM_I2C_MAX_BUF_SIZE 32
|
|
#define TPM_I2C_RETRY_COUNT 32
|
|
#define TPM_I2C_BUS_DELAY 1 /* msec */
|
|
#define TPM_I2C_RETRY_DELAY_SHORT 2 /* msec */
|
|
#define TPM_I2C_RETRY_DELAY_LONG 10 /* msec */
|
|
|
|
#define OF_IS_TPM2 ((void *)1)
|
|
#define I2C_IS_TPM2 1
|
|
|
|
struct priv_data {
|
|
int irq;
|
|
unsigned int intrs;
|
|
wait_queue_head_t read_queue;
|
|
};
|
|
|
|
static s32 i2c_nuvoton_read_buf(struct i2c_client *client, u8 offset, u8 size,
|
|
u8 *data)
|
|
{
|
|
s32 status;
|
|
|
|
status = i2c_smbus_read_i2c_block_data(client, offset, size, data);
|
|
dev_dbg(&client->dev,
|
|
"%s(offset=%u size=%u data=%*ph) -> sts=%d\n", __func__,
|
|
offset, size, (int)size, data, status);
|
|
return status;
|
|
}
|
|
|
|
static s32 i2c_nuvoton_write_buf(struct i2c_client *client, u8 offset, u8 size,
|
|
u8 *data)
|
|
{
|
|
s32 status;
|
|
|
|
status = i2c_smbus_write_i2c_block_data(client, offset, size, data);
|
|
dev_dbg(&client->dev,
|
|
"%s(offset=%u size=%u data=%*ph) -> sts=%d\n", __func__,
|
|
offset, size, (int)size, data, status);
|
|
return status;
|
|
}
|
|
|
|
#define TPM_STS_VALID 0x80
|
|
#define TPM_STS_COMMAND_READY 0x40
|
|
#define TPM_STS_GO 0x20
|
|
#define TPM_STS_DATA_AVAIL 0x10
|
|
#define TPM_STS_EXPECT 0x08
|
|
#define TPM_STS_RESPONSE_RETRY 0x02
|
|
#define TPM_STS_ERR_VAL 0x07 /* bit2...bit0 reads always 0 */
|
|
|
|
#define TPM_I2C_SHORT_TIMEOUT 750 /* ms */
|
|
#define TPM_I2C_LONG_TIMEOUT 2000 /* 2 sec */
|
|
|
|
/* read TPM_STS register */
|
|
static u8 i2c_nuvoton_read_status(struct tpm_chip *chip)
|
|
{
|
|
struct i2c_client *client = to_i2c_client(chip->dev.parent);
|
|
s32 status;
|
|
u8 data;
|
|
|
|
status = i2c_nuvoton_read_buf(client, TPM_STS, 1, &data);
|
|
if (status <= 0) {
|
|
dev_err(&chip->dev, "%s() error return %d\n", __func__,
|
|
status);
|
|
data = TPM_STS_ERR_VAL;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/* write byte to TPM_STS register */
|
|
static s32 i2c_nuvoton_write_status(struct i2c_client *client, u8 data)
|
|
{
|
|
s32 status;
|
|
int i;
|
|
|
|
/* this causes the current command to be aborted */
|
|
for (i = 0, status = -1; i < TPM_I2C_RETRY_COUNT && status < 0; i++) {
|
|
status = i2c_nuvoton_write_buf(client, TPM_STS, 1, &data);
|
|
msleep(TPM_I2C_BUS_DELAY);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* write commandReady to TPM_STS register */
|
|
static void i2c_nuvoton_ready(struct tpm_chip *chip)
|
|
{
|
|
struct i2c_client *client = to_i2c_client(chip->dev.parent);
|
|
s32 status;
|
|
|
|
/* this causes the current command to be aborted */
|
|
status = i2c_nuvoton_write_status(client, TPM_STS_COMMAND_READY);
|
|
if (status < 0)
|
|
dev_err(&chip->dev,
|
|
"%s() fail to write TPM_STS.commandReady\n", __func__);
|
|
}
|
|
|
|
/* read burstCount field from TPM_STS register
|
|
* return -1 on fail to read */
|
|
static int i2c_nuvoton_get_burstcount(struct i2c_client *client,
|
|
struct tpm_chip *chip)
|
|
{
|
|
unsigned long stop = jiffies + chip->timeout_d;
|
|
s32 status;
|
|
int burst_count = -1;
|
|
u8 data;
|
|
|
|
/* wait for burstcount to be non-zero */
|
|
do {
|
|
/* in I2C burstCount is 1 byte */
|
|
status = i2c_nuvoton_read_buf(client, TPM_BURST_COUNT, 1,
|
|
&data);
|
|
if (status > 0 && data > 0) {
|
|
burst_count = min_t(u8, TPM_I2C_MAX_BUF_SIZE, data);
|
|
break;
|
|
}
|
|
msleep(TPM_I2C_BUS_DELAY);
|
|
} while (time_before(jiffies, stop));
|
|
|
|
return burst_count;
|
|
}
|
|
|
|
/*
|
|
* WPCT301/NPCT501/NPCT6XX SINT# supports only dataAvail
|
|
* any call to this function which is not waiting for dataAvail will
|
|
* set queue to NULL to avoid waiting for interrupt
|
|
*/
|
|
static bool i2c_nuvoton_check_status(struct tpm_chip *chip, u8 mask, u8 value)
|
|
{
|
|
u8 status = i2c_nuvoton_read_status(chip);
|
|
return (status != TPM_STS_ERR_VAL) && ((status & mask) == value);
|
|
}
|
|
|
|
static int i2c_nuvoton_wait_for_stat(struct tpm_chip *chip, u8 mask, u8 value,
|
|
u32 timeout, wait_queue_head_t *queue)
|
|
{
|
|
if ((chip->flags & TPM_CHIP_FLAG_IRQ) && queue) {
|
|
s32 rc;
|
|
struct priv_data *priv = dev_get_drvdata(&chip->dev);
|
|
unsigned int cur_intrs = priv->intrs;
|
|
|
|
enable_irq(priv->irq);
|
|
rc = wait_event_interruptible_timeout(*queue,
|
|
cur_intrs != priv->intrs,
|
|
timeout);
|
|
if (rc > 0)
|
|
return 0;
|
|
/* At this point we know that the SINT pin is asserted, so we
|
|
* do not need to do i2c_nuvoton_check_status */
|
|
} else {
|
|
unsigned long ten_msec, stop;
|
|
bool status_valid;
|
|
|
|
/* check current status */
|
|
status_valid = i2c_nuvoton_check_status(chip, mask, value);
|
|
if (status_valid)
|
|
return 0;
|
|
|
|
/* use polling to wait for the event */
|
|
ten_msec = jiffies + msecs_to_jiffies(TPM_I2C_RETRY_DELAY_LONG);
|
|
stop = jiffies + timeout;
|
|
do {
|
|
if (time_before(jiffies, ten_msec))
|
|
msleep(TPM_I2C_RETRY_DELAY_SHORT);
|
|
else
|
|
msleep(TPM_I2C_RETRY_DELAY_LONG);
|
|
status_valid = i2c_nuvoton_check_status(chip, mask,
|
|
value);
|
|
if (status_valid)
|
|
return 0;
|
|
} while (time_before(jiffies, stop));
|
|
}
|
|
dev_err(&chip->dev, "%s(%02x, %02x) -> timeout\n", __func__, mask,
|
|
value);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* wait for dataAvail field to be set in the TPM_STS register */
|
|
static int i2c_nuvoton_wait_for_data_avail(struct tpm_chip *chip, u32 timeout,
|
|
wait_queue_head_t *queue)
|
|
{
|
|
return i2c_nuvoton_wait_for_stat(chip,
|
|
TPM_STS_DATA_AVAIL | TPM_STS_VALID,
|
|
TPM_STS_DATA_AVAIL | TPM_STS_VALID,
|
|
timeout, queue);
|
|
}
|
|
|
|
/* Read @count bytes into @buf from TPM_RD_FIFO register */
|
|
static int i2c_nuvoton_recv_data(struct i2c_client *client,
|
|
struct tpm_chip *chip, u8 *buf, size_t count)
|
|
{
|
|
struct priv_data *priv = dev_get_drvdata(&chip->dev);
|
|
s32 rc;
|
|
int burst_count, bytes2read, size = 0;
|
|
|
|
while (size < count &&
|
|
i2c_nuvoton_wait_for_data_avail(chip,
|
|
chip->timeout_c,
|
|
&priv->read_queue) == 0) {
|
|
burst_count = i2c_nuvoton_get_burstcount(client, chip);
|
|
if (burst_count < 0) {
|
|
dev_err(&chip->dev,
|
|
"%s() fail to read burstCount=%d\n", __func__,
|
|
burst_count);
|
|
return -EIO;
|
|
}
|
|
bytes2read = min_t(size_t, burst_count, count - size);
|
|
rc = i2c_nuvoton_read_buf(client, TPM_DATA_FIFO_R,
|
|
bytes2read, &buf[size]);
|
|
if (rc < 0) {
|
|
dev_err(&chip->dev,
|
|
"%s() fail on i2c_nuvoton_read_buf()=%d\n",
|
|
__func__, rc);
|
|
return -EIO;
|
|
}
|
|
dev_dbg(&chip->dev, "%s(%d):", __func__, bytes2read);
|
|
size += bytes2read;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Read TPM command results */
|
|
static int i2c_nuvoton_recv(struct tpm_chip *chip, u8 *buf, size_t count)
|
|
{
|
|
struct priv_data *priv = dev_get_drvdata(&chip->dev);
|
|
struct device *dev = chip->dev.parent;
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
s32 rc;
|
|
int expected, status, burst_count, retries, size = 0;
|
|
|
|
if (count < TPM_HEADER_SIZE) {
|
|
i2c_nuvoton_ready(chip); /* return to idle */
|
|
dev_err(dev, "%s() count < header size\n", __func__);
|
|
return -EIO;
|
|
}
|
|
for (retries = 0; retries < TPM_RETRY; retries++) {
|
|
if (retries > 0) {
|
|
/* if this is not the first trial, set responseRetry */
|
|
i2c_nuvoton_write_status(client,
|
|
TPM_STS_RESPONSE_RETRY);
|
|
}
|
|
/*
|
|
* read first available (> 10 bytes), including:
|
|
* tag, paramsize, and result
|
|
*/
|
|
status = i2c_nuvoton_wait_for_data_avail(
|
|
chip, chip->timeout_c, &priv->read_queue);
|
|
if (status != 0) {
|
|
dev_err(dev, "%s() timeout on dataAvail\n", __func__);
|
|
size = -ETIMEDOUT;
|
|
continue;
|
|
}
|
|
burst_count = i2c_nuvoton_get_burstcount(client, chip);
|
|
if (burst_count < 0) {
|
|
dev_err(dev, "%s() fail to get burstCount\n", __func__);
|
|
size = -EIO;
|
|
continue;
|
|
}
|
|
size = i2c_nuvoton_recv_data(client, chip, buf,
|
|
burst_count);
|
|
if (size < TPM_HEADER_SIZE) {
|
|
dev_err(dev, "%s() fail to read header\n", __func__);
|
|
size = -EIO;
|
|
continue;
|
|
}
|
|
/*
|
|
* convert number of expected bytes field from big endian 32 bit
|
|
* to machine native
|
|
*/
|
|
expected = be32_to_cpu(*(__be32 *) (buf + 2));
|
|
if (expected > count) {
|
|
dev_err(dev, "%s() expected > count\n", __func__);
|
|
size = -EIO;
|
|
continue;
|
|
}
|
|
rc = i2c_nuvoton_recv_data(client, chip, &buf[size],
|
|
expected - size);
|
|
size += rc;
|
|
if (rc < 0 || size < expected) {
|
|
dev_err(dev, "%s() fail to read remainder of result\n",
|
|
__func__);
|
|
size = -EIO;
|
|
continue;
|
|
}
|
|
if (i2c_nuvoton_wait_for_stat(
|
|
chip, TPM_STS_VALID | TPM_STS_DATA_AVAIL,
|
|
TPM_STS_VALID, chip->timeout_c,
|
|
NULL)) {
|
|
dev_err(dev, "%s() error left over data\n", __func__);
|
|
size = -ETIMEDOUT;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
i2c_nuvoton_ready(chip);
|
|
dev_dbg(&chip->dev, "%s() -> %d\n", __func__, size);
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Send TPM command.
|
|
*
|
|
* If interrupts are used (signaled by an irq set in the vendor structure)
|
|
* tpm.c can skip polling for the data to be available as the interrupt is
|
|
* waited for here
|
|
*/
|
|
static int i2c_nuvoton_send(struct tpm_chip *chip, u8 *buf, size_t len)
|
|
{
|
|
struct priv_data *priv = dev_get_drvdata(&chip->dev);
|
|
struct device *dev = chip->dev.parent;
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
u32 ordinal;
|
|
size_t count = 0;
|
|
int burst_count, bytes2write, retries, rc = -EIO;
|
|
|
|
for (retries = 0; retries < TPM_RETRY; retries++) {
|
|
i2c_nuvoton_ready(chip);
|
|
if (i2c_nuvoton_wait_for_stat(chip, TPM_STS_COMMAND_READY,
|
|
TPM_STS_COMMAND_READY,
|
|
chip->timeout_b, NULL)) {
|
|
dev_err(dev, "%s() timeout on commandReady\n",
|
|
__func__);
|
|
rc = -EIO;
|
|
continue;
|
|
}
|
|
rc = 0;
|
|
while (count < len - 1) {
|
|
burst_count = i2c_nuvoton_get_burstcount(client,
|
|
chip);
|
|
if (burst_count < 0) {
|
|
dev_err(dev, "%s() fail get burstCount\n",
|
|
__func__);
|
|
rc = -EIO;
|
|
break;
|
|
}
|
|
bytes2write = min_t(size_t, burst_count,
|
|
len - 1 - count);
|
|
rc = i2c_nuvoton_write_buf(client, TPM_DATA_FIFO_W,
|
|
bytes2write, &buf[count]);
|
|
if (rc < 0) {
|
|
dev_err(dev, "%s() fail i2cWriteBuf\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
dev_dbg(dev, "%s(%d):", __func__, bytes2write);
|
|
count += bytes2write;
|
|
rc = i2c_nuvoton_wait_for_stat(chip,
|
|
TPM_STS_VALID |
|
|
TPM_STS_EXPECT,
|
|
TPM_STS_VALID |
|
|
TPM_STS_EXPECT,
|
|
chip->timeout_c,
|
|
NULL);
|
|
if (rc < 0) {
|
|
dev_err(dev, "%s() timeout on Expect\n",
|
|
__func__);
|
|
rc = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
}
|
|
if (rc < 0)
|
|
continue;
|
|
|
|
/* write last byte */
|
|
rc = i2c_nuvoton_write_buf(client, TPM_DATA_FIFO_W, 1,
|
|
&buf[count]);
|
|
if (rc < 0) {
|
|
dev_err(dev, "%s() fail to write last byte\n",
|
|
__func__);
|
|
rc = -EIO;
|
|
continue;
|
|
}
|
|
dev_dbg(dev, "%s(last): %02x", __func__, buf[count]);
|
|
rc = i2c_nuvoton_wait_for_stat(chip,
|
|
TPM_STS_VALID | TPM_STS_EXPECT,
|
|
TPM_STS_VALID,
|
|
chip->timeout_c, NULL);
|
|
if (rc) {
|
|
dev_err(dev, "%s() timeout on Expect to clear\n",
|
|
__func__);
|
|
rc = -ETIMEDOUT;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (rc < 0) {
|
|
/* retries == TPM_RETRY */
|
|
i2c_nuvoton_ready(chip);
|
|
return rc;
|
|
}
|
|
/* execute the TPM command */
|
|
rc = i2c_nuvoton_write_status(client, TPM_STS_GO);
|
|
if (rc < 0) {
|
|
dev_err(dev, "%s() fail to write Go\n", __func__);
|
|
i2c_nuvoton_ready(chip);
|
|
return rc;
|
|
}
|
|
ordinal = be32_to_cpu(*((__be32 *) (buf + 6)));
|
|
rc = i2c_nuvoton_wait_for_data_avail(chip,
|
|
tpm_calc_ordinal_duration(chip,
|
|
ordinal),
|
|
&priv->read_queue);
|
|
if (rc) {
|
|
dev_err(dev, "%s() timeout command duration\n", __func__);
|
|
i2c_nuvoton_ready(chip);
|
|
return rc;
|
|
}
|
|
|
|
dev_dbg(dev, "%s() -> %zd\n", __func__, len);
|
|
return len;
|
|
}
|
|
|
|
static bool i2c_nuvoton_req_canceled(struct tpm_chip *chip, u8 status)
|
|
{
|
|
return (status == TPM_STS_COMMAND_READY);
|
|
}
|
|
|
|
static const struct tpm_class_ops tpm_i2c = {
|
|
.flags = TPM_OPS_AUTO_STARTUP,
|
|
.status = i2c_nuvoton_read_status,
|
|
.recv = i2c_nuvoton_recv,
|
|
.send = i2c_nuvoton_send,
|
|
.cancel = i2c_nuvoton_ready,
|
|
.req_complete_mask = TPM_STS_DATA_AVAIL | TPM_STS_VALID,
|
|
.req_complete_val = TPM_STS_DATA_AVAIL | TPM_STS_VALID,
|
|
.req_canceled = i2c_nuvoton_req_canceled,
|
|
};
|
|
|
|
/* The only purpose for the handler is to signal to any waiting threads that
|
|
* the interrupt is currently being asserted. The driver does not do any
|
|
* processing triggered by interrupts, and the chip provides no way to mask at
|
|
* the source (plus that would be slow over I2C). Run the IRQ as a one-shot,
|
|
* this means it cannot be shared. */
|
|
static irqreturn_t i2c_nuvoton_int_handler(int dummy, void *dev_id)
|
|
{
|
|
struct tpm_chip *chip = dev_id;
|
|
struct priv_data *priv = dev_get_drvdata(&chip->dev);
|
|
|
|
priv->intrs++;
|
|
wake_up(&priv->read_queue);
|
|
disable_irq_nosync(priv->irq);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int get_vid(struct i2c_client *client, u32 *res)
|
|
{
|
|
static const u8 vid_did_rid_value[] = { 0x50, 0x10, 0xfe };
|
|
u32 temp;
|
|
s32 rc;
|
|
|
|
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
|
|
return -ENODEV;
|
|
rc = i2c_nuvoton_read_buf(client, TPM_VID_DID_RID, 4, (u8 *)&temp);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* check WPCT301 values - ignore RID */
|
|
if (memcmp(&temp, vid_did_rid_value, sizeof(vid_did_rid_value))) {
|
|
/*
|
|
* f/w rev 2.81 has an issue where the VID_DID_RID is not
|
|
* reporting the right value. so give it another chance at
|
|
* offset 0x20 (FIFO_W).
|
|
*/
|
|
rc = i2c_nuvoton_read_buf(client, TPM_DATA_FIFO_W, 4,
|
|
(u8 *) (&temp));
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* check WPCT301 values - ignore RID */
|
|
if (memcmp(&temp, vid_did_rid_value,
|
|
sizeof(vid_did_rid_value)))
|
|
return -ENODEV;
|
|
}
|
|
|
|
*res = temp;
|
|
return 0;
|
|
}
|
|
|
|
static int i2c_nuvoton_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
int rc;
|
|
struct tpm_chip *chip;
|
|
struct device *dev = &client->dev;
|
|
struct priv_data *priv;
|
|
u32 vid = 0;
|
|
|
|
rc = get_vid(client, &vid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
dev_info(dev, "VID: %04X DID: %02X RID: %02X\n", (u16) vid,
|
|
(u8) (vid >> 16), (u8) (vid >> 24));
|
|
|
|
chip = tpmm_chip_alloc(dev, &tpm_i2c);
|
|
if (IS_ERR(chip))
|
|
return PTR_ERR(chip);
|
|
|
|
priv = devm_kzalloc(dev, sizeof(struct priv_data), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
if (dev->of_node) {
|
|
const struct of_device_id *of_id;
|
|
|
|
of_id = of_match_device(dev->driver->of_match_table, dev);
|
|
if (of_id && of_id->data == OF_IS_TPM2)
|
|
chip->flags |= TPM_CHIP_FLAG_TPM2;
|
|
} else
|
|
if (id->driver_data == I2C_IS_TPM2)
|
|
chip->flags |= TPM_CHIP_FLAG_TPM2;
|
|
|
|
init_waitqueue_head(&priv->read_queue);
|
|
|
|
/* Default timeouts */
|
|
chip->timeout_a = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
|
|
chip->timeout_b = msecs_to_jiffies(TPM_I2C_LONG_TIMEOUT);
|
|
chip->timeout_c = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
|
|
chip->timeout_d = msecs_to_jiffies(TPM_I2C_SHORT_TIMEOUT);
|
|
|
|
dev_set_drvdata(&chip->dev, priv);
|
|
|
|
/*
|
|
* I2C intfcaps (interrupt capabilitieis) in the chip are hard coded to:
|
|
* TPM_INTF_INT_LEVEL_LOW | TPM_INTF_DATA_AVAIL_INT
|
|
* The IRQ should be set in the i2c_board_info (which is done
|
|
* automatically in of_i2c_register_devices, for device tree users */
|
|
priv->irq = client->irq;
|
|
if (client->irq) {
|
|
dev_dbg(dev, "%s() priv->irq\n", __func__);
|
|
rc = devm_request_irq(dev, client->irq,
|
|
i2c_nuvoton_int_handler,
|
|
IRQF_TRIGGER_LOW,
|
|
dev_name(&chip->dev),
|
|
chip);
|
|
if (rc) {
|
|
dev_err(dev, "%s() Unable to request irq: %d for use\n",
|
|
__func__, priv->irq);
|
|
priv->irq = 0;
|
|
} else {
|
|
chip->flags |= TPM_CHIP_FLAG_IRQ;
|
|
/* Clear any pending interrupt */
|
|
i2c_nuvoton_ready(chip);
|
|
/* - wait for TPM_STS==0xA0 (stsValid, commandReady) */
|
|
rc = i2c_nuvoton_wait_for_stat(chip,
|
|
TPM_STS_COMMAND_READY,
|
|
TPM_STS_COMMAND_READY,
|
|
chip->timeout_b,
|
|
NULL);
|
|
if (rc == 0) {
|
|
/*
|
|
* TIS is in ready state
|
|
* write dummy byte to enter reception state
|
|
* TPM_DATA_FIFO_W <- rc (0)
|
|
*/
|
|
rc = i2c_nuvoton_write_buf(client,
|
|
TPM_DATA_FIFO_W,
|
|
1, (u8 *) (&rc));
|
|
if (rc < 0)
|
|
return rc;
|
|
/* TPM_STS <- 0x40 (commandReady) */
|
|
i2c_nuvoton_ready(chip);
|
|
} else {
|
|
/*
|
|
* timeout_b reached - command was
|
|
* aborted. TIS should now be in idle state -
|
|
* only TPM_STS_VALID should be set
|
|
*/
|
|
if (i2c_nuvoton_read_status(chip) !=
|
|
TPM_STS_VALID)
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
return tpm_chip_register(chip);
|
|
}
|
|
|
|
static int i2c_nuvoton_remove(struct i2c_client *client)
|
|
{
|
|
struct tpm_chip *chip = i2c_get_clientdata(client);
|
|
|
|
tpm_chip_unregister(chip);
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2c_device_id i2c_nuvoton_id[] = {
|
|
{"tpm_i2c_nuvoton"},
|
|
{"tpm2_i2c_nuvoton", .driver_data = I2C_IS_TPM2},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, i2c_nuvoton_id);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id i2c_nuvoton_of_match[] = {
|
|
{.compatible = "nuvoton,npct501"},
|
|
{.compatible = "winbond,wpct301"},
|
|
{.compatible = "nuvoton,npct601", .data = OF_IS_TPM2},
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, i2c_nuvoton_of_match);
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(i2c_nuvoton_pm_ops, tpm_pm_suspend, tpm_pm_resume);
|
|
|
|
static struct i2c_driver i2c_nuvoton_driver = {
|
|
.id_table = i2c_nuvoton_id,
|
|
.probe = i2c_nuvoton_probe,
|
|
.remove = i2c_nuvoton_remove,
|
|
.driver = {
|
|
.name = "tpm_i2c_nuvoton",
|
|
.pm = &i2c_nuvoton_pm_ops,
|
|
.of_match_table = of_match_ptr(i2c_nuvoton_of_match),
|
|
},
|
|
};
|
|
|
|
module_i2c_driver(i2c_nuvoton_driver);
|
|
|
|
MODULE_AUTHOR("Dan Morav (dan.morav@nuvoton.com)");
|
|
MODULE_DESCRIPTION("Nuvoton TPM I2C Driver");
|
|
MODULE_LICENSE("GPL");
|