OpenCloudOS-Kernel/drivers/ata/sata_qstor.c

689 lines
19 KiB
C

/*
* sata_qstor.c - Pacific Digital Corporation QStor SATA
*
* Maintained by: Mark Lord <mlord@pobox.com>
*
* Copyright 2005 Pacific Digital Corporation.
* (OSL/GPL code release authorized by Jalil Fadavi).
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "sata_qstor"
#define DRV_VERSION "0.07"
enum {
QS_MMIO_BAR = 4,
QS_PORTS = 4,
QS_MAX_PRD = LIBATA_MAX_PRD,
QS_CPB_ORDER = 6,
QS_CPB_BYTES = (1 << QS_CPB_ORDER),
QS_PRD_BYTES = QS_MAX_PRD * 16,
QS_PKT_BYTES = QS_CPB_BYTES + QS_PRD_BYTES,
/* global register offsets */
QS_HCF_CNFG3 = 0x0003, /* host configuration offset */
QS_HID_HPHY = 0x0004, /* host physical interface info */
QS_HCT_CTRL = 0x00e4, /* global interrupt mask offset */
QS_HST_SFF = 0x0100, /* host status fifo offset */
QS_HVS_SERD3 = 0x0393, /* PHY enable offset */
/* global control bits */
QS_HPHY_64BIT = (1 << 1), /* 64-bit bus detected */
QS_CNFG3_GSRST = 0x01, /* global chip reset */
QS_SERD3_PHY_ENA = 0xf0, /* PHY detection ENAble*/
/* per-channel register offsets */
QS_CCF_CPBA = 0x0710, /* chan CPB base address */
QS_CCF_CSEP = 0x0718, /* chan CPB separation factor */
QS_CFC_HUFT = 0x0800, /* host upstream fifo threshold */
QS_CFC_HDFT = 0x0804, /* host downstream fifo threshold */
QS_CFC_DUFT = 0x0808, /* dev upstream fifo threshold */
QS_CFC_DDFT = 0x080c, /* dev downstream fifo threshold */
QS_CCT_CTR0 = 0x0900, /* chan control-0 offset */
QS_CCT_CTR1 = 0x0901, /* chan control-1 offset */
QS_CCT_CFF = 0x0a00, /* chan command fifo offset */
/* channel control bits */
QS_CTR0_REG = (1 << 1), /* register mode (vs. pkt mode) */
QS_CTR0_CLER = (1 << 2), /* clear channel errors */
QS_CTR1_RDEV = (1 << 1), /* sata phy/comms reset */
QS_CTR1_RCHN = (1 << 4), /* reset channel logic */
QS_CCF_RUN_PKT = 0x107, /* RUN a new dma PKT */
/* pkt sub-field headers */
QS_HCB_HDR = 0x01, /* Host Control Block header */
QS_DCB_HDR = 0x02, /* Device Control Block header */
/* pkt HCB flag bits */
QS_HF_DIRO = (1 << 0), /* data DIRection Out */
QS_HF_DAT = (1 << 3), /* DATa pkt */
QS_HF_IEN = (1 << 4), /* Interrupt ENable */
QS_HF_VLD = (1 << 5), /* VaLiD pkt */
/* pkt DCB flag bits */
QS_DF_PORD = (1 << 2), /* Pio OR Dma */
QS_DF_ELBA = (1 << 3), /* Extended LBA (lba48) */
/* PCI device IDs */
board_2068_idx = 0, /* QStor 4-port SATA/RAID */
};
enum {
QS_DMA_BOUNDARY = ~0UL
};
typedef enum { qs_state_idle, qs_state_pkt, qs_state_mmio } qs_state_t;
struct qs_port_priv {
u8 *pkt;
dma_addr_t pkt_dma;
qs_state_t state;
};
static u32 qs_scr_read (struct ata_port *ap, unsigned int sc_reg);
static void qs_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val);
static int qs_ata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
static irqreturn_t qs_intr (int irq, void *dev_instance);
static int qs_port_start(struct ata_port *ap);
static void qs_host_stop(struct ata_host *host);
static void qs_phy_reset(struct ata_port *ap);
static void qs_qc_prep(struct ata_queued_cmd *qc);
static unsigned int qs_qc_issue(struct ata_queued_cmd *qc);
static int qs_check_atapi_dma(struct ata_queued_cmd *qc);
static void qs_bmdma_stop(struct ata_queued_cmd *qc);
static u8 qs_bmdma_status(struct ata_port *ap);
static void qs_irq_clear(struct ata_port *ap);
static void qs_eng_timeout(struct ata_port *ap);
static struct scsi_host_template qs_ata_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = QS_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
//FIXME .use_clustering = ATA_SHT_USE_CLUSTERING,
.use_clustering = ENABLE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = QS_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations qs_ata_ops = {
.port_disable = ata_port_disable,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.check_atapi_dma = qs_check_atapi_dma,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.phy_reset = qs_phy_reset,
.qc_prep = qs_qc_prep,
.qc_issue = qs_qc_issue,
.data_xfer = ata_data_xfer,
.eng_timeout = qs_eng_timeout,
.irq_handler = qs_intr,
.irq_clear = qs_irq_clear,
.irq_on = ata_irq_on,
.irq_ack = ata_irq_ack,
.scr_read = qs_scr_read,
.scr_write = qs_scr_write,
.port_start = qs_port_start,
.host_stop = qs_host_stop,
.bmdma_stop = qs_bmdma_stop,
.bmdma_status = qs_bmdma_status,
};
static const struct ata_port_info qs_port_info[] = {
/* board_2068_idx */
{
.sht = &qs_ata_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SATA_RESET |
//FIXME ATA_FLAG_SRST |
ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
.pio_mask = 0x10, /* pio4 */
.udma_mask = 0x7f, /* udma0-6 */
.port_ops = &qs_ata_ops,
},
};
static const struct pci_device_id qs_ata_pci_tbl[] = {
{ PCI_VDEVICE(PDC, 0x2068), board_2068_idx },
{ } /* terminate list */
};
static struct pci_driver qs_ata_pci_driver = {
.name = DRV_NAME,
.id_table = qs_ata_pci_tbl,
.probe = qs_ata_init_one,
.remove = ata_pci_remove_one,
};
static void __iomem *qs_mmio_base(struct ata_host *host)
{
return host->iomap[QS_MMIO_BAR];
}
static int qs_check_atapi_dma(struct ata_queued_cmd *qc)
{
return 1; /* ATAPI DMA not supported */
}
static void qs_bmdma_stop(struct ata_queued_cmd *qc)
{
/* nothing */
}
static u8 qs_bmdma_status(struct ata_port *ap)
{
return 0;
}
static void qs_irq_clear(struct ata_port *ap)
{
/* nothing */
}
static inline void qs_enter_reg_mode(struct ata_port *ap)
{
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
readb(chan + QS_CCT_CTR0); /* flush */
}
static inline void qs_reset_channel_logic(struct ata_port *ap)
{
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
writeb(QS_CTR1_RCHN, chan + QS_CCT_CTR1);
readb(chan + QS_CCT_CTR0); /* flush */
qs_enter_reg_mode(ap);
}
static void qs_phy_reset(struct ata_port *ap)
{
struct qs_port_priv *pp = ap->private_data;
pp->state = qs_state_idle;
qs_reset_channel_logic(ap);
sata_phy_reset(ap);
}
static void qs_eng_timeout(struct ata_port *ap)
{
struct qs_port_priv *pp = ap->private_data;
if (pp->state != qs_state_idle) /* healthy paranoia */
pp->state = qs_state_mmio;
qs_reset_channel_logic(ap);
ata_eng_timeout(ap);
}
static u32 qs_scr_read (struct ata_port *ap, unsigned int sc_reg)
{
if (sc_reg > SCR_CONTROL)
return ~0U;
return readl(ap->ioaddr.scr_addr + (sc_reg * 8));
}
static void qs_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val)
{
if (sc_reg > SCR_CONTROL)
return;
writel(val, ap->ioaddr.scr_addr + (sc_reg * 8));
}
static unsigned int qs_fill_sg(struct ata_queued_cmd *qc)
{
struct scatterlist *sg;
struct ata_port *ap = qc->ap;
struct qs_port_priv *pp = ap->private_data;
unsigned int nelem;
u8 *prd = pp->pkt + QS_CPB_BYTES;
WARN_ON(qc->__sg == NULL);
WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
nelem = 0;
ata_for_each_sg(sg, qc) {
u64 addr;
u32 len;
addr = sg_dma_address(sg);
*(__le64 *)prd = cpu_to_le64(addr);
prd += sizeof(u64);
len = sg_dma_len(sg);
*(__le32 *)prd = cpu_to_le32(len);
prd += sizeof(u64);
VPRINTK("PRD[%u] = (0x%llX, 0x%X)\n", nelem,
(unsigned long long)addr, len);
nelem++;
}
return nelem;
}
static void qs_qc_prep(struct ata_queued_cmd *qc)
{
struct qs_port_priv *pp = qc->ap->private_data;
u8 dflags = QS_DF_PORD, *buf = pp->pkt;
u8 hflags = QS_HF_DAT | QS_HF_IEN | QS_HF_VLD;
u64 addr;
unsigned int nelem;
VPRINTK("ENTER\n");
qs_enter_reg_mode(qc->ap);
if (qc->tf.protocol != ATA_PROT_DMA) {
ata_qc_prep(qc);
return;
}
nelem = qs_fill_sg(qc);
if ((qc->tf.flags & ATA_TFLAG_WRITE))
hflags |= QS_HF_DIRO;
if ((qc->tf.flags & ATA_TFLAG_LBA48))
dflags |= QS_DF_ELBA;
/* host control block (HCB) */
buf[ 0] = QS_HCB_HDR;
buf[ 1] = hflags;
*(__le32 *)(&buf[ 4]) = cpu_to_le32(qc->nbytes);
*(__le32 *)(&buf[ 8]) = cpu_to_le32(nelem);
addr = ((u64)pp->pkt_dma) + QS_CPB_BYTES;
*(__le64 *)(&buf[16]) = cpu_to_le64(addr);
/* device control block (DCB) */
buf[24] = QS_DCB_HDR;
buf[28] = dflags;
/* frame information structure (FIS) */
ata_tf_to_fis(&qc->tf, &buf[32], 0);
}
static inline void qs_packet_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
VPRINTK("ENTER, ap %p\n", ap);
writeb(QS_CTR0_CLER, chan + QS_CCT_CTR0);
wmb(); /* flush PRDs and pkt to memory */
writel(QS_CCF_RUN_PKT, chan + QS_CCT_CFF);
readl(chan + QS_CCT_CFF); /* flush */
}
static unsigned int qs_qc_issue(struct ata_queued_cmd *qc)
{
struct qs_port_priv *pp = qc->ap->private_data;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
pp->state = qs_state_pkt;
qs_packet_start(qc);
return 0;
case ATA_PROT_ATAPI_DMA:
BUG();
break;
default:
break;
}
pp->state = qs_state_mmio;
return ata_qc_issue_prot(qc);
}
static inline unsigned int qs_intr_pkt(struct ata_host *host)
{
unsigned int handled = 0;
u8 sFFE;
u8 __iomem *mmio_base = qs_mmio_base(host);
do {
u32 sff0 = readl(mmio_base + QS_HST_SFF);
u32 sff1 = readl(mmio_base + QS_HST_SFF + 4);
u8 sEVLD = (sff1 >> 30) & 0x01; /* valid flag */
sFFE = sff1 >> 31; /* empty flag */
if (sEVLD) {
u8 sDST = sff0 >> 16; /* dev status */
u8 sHST = sff1 & 0x3f; /* host status */
unsigned int port_no = (sff1 >> 8) & 0x03;
struct ata_port *ap = host->ports[port_no];
DPRINTK("SFF=%08x%08x: sCHAN=%u sHST=%d sDST=%02x\n",
sff1, sff0, port_no, sHST, sDST);
handled = 1;
if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
struct qs_port_priv *pp = ap->private_data;
if (!pp || pp->state != qs_state_pkt)
continue;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
switch (sHST) {
case 0: /* successful CPB */
case 3: /* device error */
pp->state = qs_state_idle;
qs_enter_reg_mode(qc->ap);
qc->err_mask |= ac_err_mask(sDST);
ata_qc_complete(qc);
break;
default:
break;
}
}
}
}
} while (!sFFE);
return handled;
}
static inline unsigned int qs_intr_mmio(struct ata_host *host)
{
unsigned int handled = 0, port_no;
for (port_no = 0; port_no < host->n_ports; ++port_no) {
struct ata_port *ap;
ap = host->ports[port_no];
if (ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
struct qs_port_priv *pp = ap->private_data;
if (!pp || pp->state != qs_state_mmio)
continue;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
/* check main status, clearing INTRQ */
u8 status = ata_check_status(ap);
if ((status & ATA_BUSY))
continue;
DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
ap->print_id, qc->tf.protocol, status);
/* complete taskfile transaction */
pp->state = qs_state_idle;
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
handled = 1;
}
}
}
return handled;
}
static irqreturn_t qs_intr(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int handled = 0;
VPRINTK("ENTER\n");
spin_lock(&host->lock);
handled = qs_intr_pkt(host) | qs_intr_mmio(host);
spin_unlock(&host->lock);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void qs_ata_setup_port(struct ata_ioports *port, void __iomem *base)
{
port->cmd_addr =
port->data_addr = base + 0x400;
port->error_addr =
port->feature_addr = base + 0x408; /* hob_feature = 0x409 */
port->nsect_addr = base + 0x410; /* hob_nsect = 0x411 */
port->lbal_addr = base + 0x418; /* hob_lbal = 0x419 */
port->lbam_addr = base + 0x420; /* hob_lbam = 0x421 */
port->lbah_addr = base + 0x428; /* hob_lbah = 0x429 */
port->device_addr = base + 0x430;
port->status_addr =
port->command_addr = base + 0x438;
port->altstatus_addr =
port->ctl_addr = base + 0x440;
port->scr_addr = base + 0xc00;
}
static int qs_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct qs_port_priv *pp;
void __iomem *mmio_base = qs_mmio_base(ap->host);
void __iomem *chan = mmio_base + (ap->port_no * 0x4000);
u64 addr;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
qs_enter_reg_mode(ap);
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->pkt = dmam_alloc_coherent(dev, QS_PKT_BYTES, &pp->pkt_dma,
GFP_KERNEL);
if (!pp->pkt)
return -ENOMEM;
memset(pp->pkt, 0, QS_PKT_BYTES);
ap->private_data = pp;
addr = (u64)pp->pkt_dma;
writel((u32) addr, chan + QS_CCF_CPBA);
writel((u32)(addr >> 32), chan + QS_CCF_CPBA + 4);
return 0;
}
static void qs_host_stop(struct ata_host *host)
{
void __iomem *mmio_base = qs_mmio_base(host);
writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
}
static void qs_host_init(unsigned int chip_id, struct ata_probe_ent *pe)
{
void __iomem *mmio_base = pe->iomap[QS_MMIO_BAR];
unsigned int port_no;
writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
/* reset each channel in turn */
for (port_no = 0; port_no < pe->n_ports; ++port_no) {
u8 __iomem *chan = mmio_base + (port_no * 0x4000);
writeb(QS_CTR1_RDEV|QS_CTR1_RCHN, chan + QS_CCT_CTR1);
writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
readb(chan + QS_CCT_CTR0); /* flush */
}
writeb(QS_SERD3_PHY_ENA, mmio_base + QS_HVS_SERD3); /* enable phy */
for (port_no = 0; port_no < pe->n_ports; ++port_no) {
u8 __iomem *chan = mmio_base + (port_no * 0x4000);
/* set FIFO depths to same settings as Windows driver */
writew(32, chan + QS_CFC_HUFT);
writew(32, chan + QS_CFC_HDFT);
writew(10, chan + QS_CFC_DUFT);
writew( 8, chan + QS_CFC_DDFT);
/* set CPB size in bytes, as a power of two */
writeb(QS_CPB_ORDER, chan + QS_CCF_CSEP);
}
writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */
}
/*
* The QStor understands 64-bit buses, and uses 64-bit fields
* for DMA pointers regardless of bus width. We just have to
* make sure our DMA masks are set appropriately for whatever
* bridge lies between us and the QStor, and then the DMA mapping
* code will ensure we only ever "see" appropriate buffer addresses.
* If we're 32-bit limited somewhere, then our 64-bit fields will
* just end up with zeros in the upper 32-bits, without any special
* logic required outside of this routine (below).
*/
static int qs_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
{
u32 bus_info = readl(mmio_base + QS_HID_HPHY);
int rc, have_64bit_bus = (bus_info & QS_HPHY_64BIT);
if (have_64bit_bus &&
!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (rc) {
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"64-bit DMA enable failed\n");
return rc;
}
}
} else {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit DMA enable failed\n");
return rc;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
}
return 0;
}
static int qs_ata_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version;
struct ata_probe_ent *probe_ent;
void __iomem * const *iomap;
unsigned int board_idx = (unsigned int) ent->driver_data;
int rc, port_no;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
rc = pcim_enable_device(pdev);
if (rc)
return rc;
if ((pci_resource_flags(pdev, QS_MMIO_BAR) & IORESOURCE_MEM) == 0)
return -ENODEV;
rc = pcim_iomap_regions(pdev, 1 << QS_MMIO_BAR, DRV_NAME);
if (rc)
return rc;
iomap = pcim_iomap_table(pdev);
rc = qs_set_dma_masks(pdev, iomap[QS_MMIO_BAR]);
if (rc)
return rc;
probe_ent = devm_kzalloc(&pdev->dev, sizeof(*probe_ent), GFP_KERNEL);
if (probe_ent == NULL)
return -ENOMEM;
probe_ent->dev = pci_dev_to_dev(pdev);
INIT_LIST_HEAD(&probe_ent->node);
probe_ent->sht = qs_port_info[board_idx].sht;
probe_ent->port_flags = qs_port_info[board_idx].flags;
probe_ent->pio_mask = qs_port_info[board_idx].pio_mask;
probe_ent->mwdma_mask = qs_port_info[board_idx].mwdma_mask;
probe_ent->udma_mask = qs_port_info[board_idx].udma_mask;
probe_ent->port_ops = qs_port_info[board_idx].port_ops;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = IRQF_SHARED;
probe_ent->iomap = iomap;
probe_ent->n_ports = QS_PORTS;
for (port_no = 0; port_no < probe_ent->n_ports; ++port_no) {
void __iomem *chan =
probe_ent->iomap[QS_MMIO_BAR] + (port_no * 0x4000);
qs_ata_setup_port(&probe_ent->port[port_no], chan);
}
pci_set_master(pdev);
/* initialize adapter */
qs_host_init(board_idx, probe_ent);
if (ata_device_add(probe_ent) != QS_PORTS)
return -EIO;
devm_kfree(&pdev->dev, probe_ent);
return 0;
}
static int __init qs_ata_init(void)
{
return pci_register_driver(&qs_ata_pci_driver);
}
static void __exit qs_ata_exit(void)
{
pci_unregister_driver(&qs_ata_pci_driver);
}
MODULE_AUTHOR("Mark Lord");
MODULE_DESCRIPTION("Pacific Digital Corporation QStor SATA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, qs_ata_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_init(qs_ata_init);
module_exit(qs_ata_exit);