OpenCloudOS-Kernel/drivers/ata/libata-core.c

6515 lines
158 KiB
C

/*
* libata-core.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/byteorder.h>
#include "libata.h"
#define DRV_VERSION "2.20" /* must be exactly four chars */
/* debounce timing parameters in msecs { interval, duration, timeout } */
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors);
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
static void ata_dev_xfermask(struct ata_device *dev);
static unsigned int ata_print_id = 1;
static struct workqueue_struct *ata_wq;
struct workqueue_struct *ata_aux_wq;
int atapi_enabled = 1;
module_param(atapi_enabled, int, 0444);
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
int atapi_dmadir = 0;
module_param(atapi_dmadir, int, 0444);
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
int libata_fua = 0;
module_param_named(fua, libata_fua, int, 0444);
MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
module_param(ata_probe_timeout, int, 0444);
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
int libata_noacpi = 1;
module_param_named(noacpi, libata_noacpi, int, 0444);
MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @fis: Buffer into which data will output
* @pmp: Port multiplier port
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
static const u8 ata_rw_cmds[] = {
/* pio multi */
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
0,
0,
0,
ATA_CMD_WRITE_MULTI_FUA_EXT,
/* pio */
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
0,
0,
0,
0,
/* dma */
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
0,
0,
0,
ATA_CMD_WRITE_FUA_EXT
};
/**
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
* @tf: command to examine and configure
* @dev: device tf belongs to
*
* Examine the device configuration and tf->flags to calculate
* the proper read/write commands and protocol to use.
*
* LOCKING:
* caller.
*/
static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
{
u8 cmd;
int index, fua, lba48, write;
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
if (dev->flags & ATA_DFLAG_PIO) {
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
/* Unable to use DMA due to host limitation */
tf->protocol = ATA_PROT_PIO;
index = dev->multi_count ? 0 : 8;
} else {
tf->protocol = ATA_PROT_DMA;
index = 16;
}
cmd = ata_rw_cmds[index + fua + lba48 + write];
if (cmd) {
tf->command = cmd;
return 0;
}
return -1;
}
/**
* ata_tf_read_block - Read block address from ATA taskfile
* @tf: ATA taskfile of interest
* @dev: ATA device @tf belongs to
*
* LOCKING:
* None.
*
* Read block address from @tf. This function can handle all
* three address formats - LBA, LBA48 and CHS. tf->protocol and
* flags select the address format to use.
*
* RETURNS:
* Block address read from @tf.
*/
u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
{
u64 block = 0;
if (tf->flags & ATA_TFLAG_LBA) {
if (tf->flags & ATA_TFLAG_LBA48) {
block |= (u64)tf->hob_lbah << 40;
block |= (u64)tf->hob_lbam << 32;
block |= tf->hob_lbal << 24;
} else
block |= (tf->device & 0xf) << 24;
block |= tf->lbah << 16;
block |= tf->lbam << 8;
block |= tf->lbal;
} else {
u32 cyl, head, sect;
cyl = tf->lbam | (tf->lbah << 8);
head = tf->device & 0xf;
sect = tf->lbal;
block = (cyl * dev->heads + head) * dev->sectors + sect;
}
return block;
}
/**
* ata_build_rw_tf - Build ATA taskfile for given read/write request
* @tf: Target ATA taskfile
* @dev: ATA device @tf belongs to
* @block: Block address
* @n_block: Number of blocks
* @tf_flags: RW/FUA etc...
* @tag: tag
*
* LOCKING:
* None.
*
* Build ATA taskfile @tf for read/write request described by
* @block, @n_block, @tf_flags and @tag on @dev.
*
* RETURNS:
*
* 0 on success, -ERANGE if the request is too large for @dev,
* -EINVAL if the request is invalid.
*/
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
u64 block, u32 n_block, unsigned int tf_flags,
unsigned int tag)
{
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf->flags |= tf_flags;
if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
/* yay, NCQ */
if (!lba_48_ok(block, n_block))
return -ERANGE;
tf->protocol = ATA_PROT_NCQ;
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
if (tf->flags & ATA_TFLAG_WRITE)
tf->command = ATA_CMD_FPDMA_WRITE;
else
tf->command = ATA_CMD_FPDMA_READ;
tf->nsect = tag << 3;
tf->hob_feature = (n_block >> 8) & 0xff;
tf->feature = n_block & 0xff;
tf->hob_lbah = (block >> 40) & 0xff;
tf->hob_lbam = (block >> 32) & 0xff;
tf->hob_lbal = (block >> 24) & 0xff;
tf->lbah = (block >> 16) & 0xff;
tf->lbam = (block >> 8) & 0xff;
tf->lbal = block & 0xff;
tf->device = 1 << 6;
if (tf->flags & ATA_TFLAG_FUA)
tf->device |= 1 << 7;
} else if (dev->flags & ATA_DFLAG_LBA) {
tf->flags |= ATA_TFLAG_LBA;
if (lba_28_ok(block, n_block)) {
/* use LBA28 */
tf->device |= (block >> 24) & 0xf;
} else if (lba_48_ok(block, n_block)) {
if (!(dev->flags & ATA_DFLAG_LBA48))
return -ERANGE;
/* use LBA48 */
tf->flags |= ATA_TFLAG_LBA48;
tf->hob_nsect = (n_block >> 8) & 0xff;
tf->hob_lbah = (block >> 40) & 0xff;
tf->hob_lbam = (block >> 32) & 0xff;
tf->hob_lbal = (block >> 24) & 0xff;
} else
/* request too large even for LBA48 */
return -ERANGE;
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
return -EINVAL;
tf->nsect = n_block & 0xff;
tf->lbah = (block >> 16) & 0xff;
tf->lbam = (block >> 8) & 0xff;
tf->lbal = block & 0xff;
tf->device |= ATA_LBA;
} else {
/* CHS */
u32 sect, head, cyl, track;
/* The request -may- be too large for CHS addressing. */
if (!lba_28_ok(block, n_block))
return -ERANGE;
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
return -EINVAL;
/* Convert LBA to CHS */
track = (u32)block / dev->sectors;
cyl = track / dev->heads;
head = track % dev->heads;
sect = (u32)block % dev->sectors + 1;
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
(u32)block, track, cyl, head, sect);
/* Check whether the converted CHS can fit.
Cylinder: 0-65535
Head: 0-15
Sector: 1-255*/
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
return -ERANGE;
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
tf->lbal = sect;
tf->lbam = cyl;
tf->lbah = cyl >> 8;
tf->device |= head;
}
return 0;
}
/**
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
* @pio_mask: pio_mask
* @mwdma_mask: mwdma_mask
* @udma_mask: udma_mask
*
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
* unsigned int xfer_mask.
*
* LOCKING:
* None.
*
* RETURNS:
* Packed xfer_mask.
*/
static unsigned int ata_pack_xfermask(unsigned int pio_mask,
unsigned int mwdma_mask,
unsigned int udma_mask)
{
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
}
/**
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
* @xfer_mask: xfer_mask to unpack
* @pio_mask: resulting pio_mask
* @mwdma_mask: resulting mwdma_mask
* @udma_mask: resulting udma_mask
*
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
* Any NULL distination masks will be ignored.
*/
static void ata_unpack_xfermask(unsigned int xfer_mask,
unsigned int *pio_mask,
unsigned int *mwdma_mask,
unsigned int *udma_mask)
{
if (pio_mask)
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
if (mwdma_mask)
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
if (udma_mask)
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
}
static const struct ata_xfer_ent {
int shift, bits;
u8 base;
} ata_xfer_tbl[] = {
{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
{ -1, },
};
/**
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
* @xfer_mask: xfer_mask of interest
*
* Return matching XFER_* value for @xfer_mask. Only the highest
* bit of @xfer_mask is considered.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching XFER_* value, 0 if no match found.
*/
static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
{
int highbit = fls(xfer_mask) - 1;
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
return ent->base + highbit - ent->shift;
return 0;
}
/**
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_mask for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_mask, 0 if no match found.
*/
static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return 1 << (ent->shift + xfer_mode - ent->base);
return 0;
}
/**
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
* @xfer_mode: XFER_* of interest
*
* Return matching xfer_shift for @xfer_mode.
*
* LOCKING:
* None.
*
* RETURNS:
* Matching xfer_shift, -1 if no match found.
*/
static int ata_xfer_mode2shift(unsigned int xfer_mode)
{
const struct ata_xfer_ent *ent;
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
return ent->shift;
return -1;
}
/**
* ata_mode_string - convert xfer_mask to string
* @xfer_mask: mask of bits supported; only highest bit counts.
*
* Determine string which represents the highest speed
* (highest bit in @modemask).
*
* LOCKING:
* None.
*
* RETURNS:
* Constant C string representing highest speed listed in
* @mode_mask, or the constant C string "<n/a>".
*/
static const char *ata_mode_string(unsigned int xfer_mask)
{
static const char * const xfer_mode_str[] = {
"PIO0",
"PIO1",
"PIO2",
"PIO3",
"PIO4",
"PIO5",
"PIO6",
"MWDMA0",
"MWDMA1",
"MWDMA2",
"MWDMA3",
"MWDMA4",
"UDMA/16",
"UDMA/25",
"UDMA/33",
"UDMA/44",
"UDMA/66",
"UDMA/100",
"UDMA/133",
"UDMA7",
};
int highbit;
highbit = fls(xfer_mask) - 1;
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
return xfer_mode_str[highbit];
return "<n/a>";
}
static const char *sata_spd_string(unsigned int spd)
{
static const char * const spd_str[] = {
"1.5 Gbps",
"3.0 Gbps",
};
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
return "<unknown>";
return spd_str[spd - 1];
}
void ata_dev_disable(struct ata_device *dev)
{
if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
ata_dev_printk(dev, KERN_WARNING, "disabled\n");
ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
ATA_DNXFER_QUIET);
dev->class++;
}
}
/**
* ata_devchk - PATA device presence detection
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
*
* This technique was originally described in
* Hale Landis's ATADRVR (www.ata-atapi.com), and
* later found its way into the ATA/ATAPI spec.
*
* Write a pattern to the ATA shadow registers,
* and if a device is present, it will respond by
* correctly storing and echoing back the
* ATA shadow register contents.
*
* LOCKING:
* caller.
*/
static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
ap->ops->dev_select(ap, device);
iowrite8(0x55, ioaddr->nsect_addr);
iowrite8(0xaa, ioaddr->lbal_addr);
iowrite8(0xaa, ioaddr->nsect_addr);
iowrite8(0x55, ioaddr->lbal_addr);
iowrite8(0x55, ioaddr->nsect_addr);
iowrite8(0xaa, ioaddr->lbal_addr);
nsect = ioread8(ioaddr->nsect_addr);
lbal = ioread8(ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/**
* ata_dev_classify - determine device type based on ATA-spec signature
* @tf: ATA taskfile register set for device to be identified
*
* Determine from taskfile register contents whether a device is
* ATA or ATAPI, as per "Signature and persistence" section
* of ATA/PI spec (volume 1, sect 5.14).
*
* LOCKING:
* None.
*
* RETURNS:
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
* the event of failure.
*/
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
{
/* Apple's open source Darwin code hints that some devices only
* put a proper signature into the LBA mid/high registers,
* So, we only check those. It's sufficient for uniqueness.
*/
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
DPRINTK("found ATA device by sig\n");
return ATA_DEV_ATA;
}
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
DPRINTK("found ATAPI device by sig\n");
return ATA_DEV_ATAPI;
}
DPRINTK("unknown device\n");
return ATA_DEV_UNKNOWN;
}
/**
* ata_dev_try_classify - Parse returned ATA device signature
* @ap: ATA channel to examine
* @device: Device to examine (starting at zero)
* @r_err: Value of error register on completion
*
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
* an ATA/ATAPI-defined set of values is placed in the ATA
* shadow registers, indicating the results of device detection
* and diagnostics.
*
* Select the ATA device, and read the values from the ATA shadow
* registers. Then parse according to the Error register value,
* and the spec-defined values examined by ata_dev_classify().
*
* LOCKING:
* caller.
*
* RETURNS:
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
*/
unsigned int
ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
{
struct ata_taskfile tf;
unsigned int class;
u8 err;
ap->ops->dev_select(ap, device);
memset(&tf, 0, sizeof(tf));
ap->ops->tf_read(ap, &tf);
err = tf.feature;
if (r_err)
*r_err = err;
/* see if device passed diags: if master then continue and warn later */
if (err == 0 && device == 0)
/* diagnostic fail : do nothing _YET_ */
ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
else if (err == 1)
/* do nothing */ ;
else if ((device == 0) && (err == 0x81))
/* do nothing */ ;
else
return ATA_DEV_NONE;
/* determine if device is ATA or ATAPI */
class = ata_dev_classify(&tf);
if (class == ATA_DEV_UNKNOWN)
return ATA_DEV_NONE;
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
return ATA_DEV_NONE;
return class;
}
/**
* ata_id_string - Convert IDENTIFY DEVICE page into string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an even number.
*
* The strings in the IDENTIFY DEVICE page are broken up into
* 16-bit chunks. Run through the string, and output each
* 8-bit chunk linearly, regardless of platform.
*
* LOCKING:
* caller.
*/
void ata_id_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned int c;
while (len > 0) {
c = id[ofs] >> 8;
*s = c;
s++;
c = id[ofs] & 0xff;
*s = c;
s++;
ofs++;
len -= 2;
}
}
/**
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
* @id: IDENTIFY DEVICE results we will examine
* @s: string into which data is output
* @ofs: offset into identify device page
* @len: length of string to return. must be an odd number.
*
* This function is identical to ata_id_string except that it
* trims trailing spaces and terminates the resulting string with
* null. @len must be actual maximum length (even number) + 1.
*
* LOCKING:
* caller.
*/
void ata_id_c_string(const u16 *id, unsigned char *s,
unsigned int ofs, unsigned int len)
{
unsigned char *p;
WARN_ON(!(len & 1));
ata_id_string(id, s, ofs, len - 1);
p = s + strnlen(s, len - 1);
while (p > s && p[-1] == ' ')
p--;
*p = '\0';
}
static u64 ata_id_n_sectors(const u16 *id)
{
if (ata_id_has_lba(id)) {
if (ata_id_has_lba48(id))
return ata_id_u64(id, 100);
else
return ata_id_u32(id, 60);
} else {
if (ata_id_current_chs_valid(id))
return ata_id_u32(id, 57);
else
return id[1] * id[3] * id[6];
}
}
/**
* ata_id_to_dma_mode - Identify DMA mode from id block
* @dev: device to identify
* @unknown: mode to assume if we cannot tell
*
* Set up the timing values for the device based upon the identify
* reported values for the DMA mode. This function is used by drivers
* which rely upon firmware configured modes, but wish to report the
* mode correctly when possible.
*
* In addition we emit similarly formatted messages to the default
* ata_dev_set_mode handler, in order to provide consistency of
* presentation.
*/
void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
{
unsigned int mask;
u8 mode;
/* Pack the DMA modes */
mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
if (dev->id[53] & 0x04)
mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
/* Select the mode in use */
mode = ata_xfer_mask2mode(mask);
if (mode != 0) {
ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
ata_mode_string(mask));
} else {
/* SWDMA perhaps ? */
mode = unknown;
ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
}
/* Configure the device reporting */
dev->xfer_mode = mode;
dev->xfer_shift = ata_xfer_mode2shift(mode);
}
/**
* ata_noop_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* This function performs no actual function.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
{
}
/**
* ata_std_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel. Works with both PIO and MMIO.
*
* May be used as the dev_select() entry in ata_port_operations.
*
* LOCKING:
* caller.
*/
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
{
u8 tmp;
if (device == 0)
tmp = ATA_DEVICE_OBS;
else
tmp = ATA_DEVICE_OBS | ATA_DEV1;
iowrite8(tmp, ap->ioaddr.device_addr);
ata_pause(ap); /* needed; also flushes, for mmio */
}
/**
* ata_dev_select - Select device 0/1 on ATA bus
* @ap: ATA channel to manipulate
* @device: ATA device (numbered from zero) to select
* @wait: non-zero to wait for Status register BSY bit to clear
* @can_sleep: non-zero if context allows sleeping
*
* Use the method defined in the ATA specification to
* make either device 0, or device 1, active on the
* ATA channel.
*
* This is a high-level version of ata_std_dev_select(),
* which additionally provides the services of inserting
* the proper pauses and status polling, where needed.
*
* LOCKING:
* caller.
*/
void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep)
{
if (ata_msg_probe(ap))
ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
"device %u, wait %u\n", device, wait);
if (wait)
ata_wait_idle(ap);
ap->ops->dev_select(ap, device);
if (wait) {
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
msleep(150);
ata_wait_idle(ap);
}
}
/**
* ata_dump_id - IDENTIFY DEVICE info debugging output
* @id: IDENTIFY DEVICE page to dump
*
* Dump selected 16-bit words from the given IDENTIFY DEVICE
* page.
*
* LOCKING:
* caller.
*/
static inline void ata_dump_id(const u16 *id)
{
DPRINTK("49==0x%04x "
"53==0x%04x "
"63==0x%04x "
"64==0x%04x "
"75==0x%04x \n",
id[49],
id[53],
id[63],
id[64],
id[75]);
DPRINTK("80==0x%04x "
"81==0x%04x "
"82==0x%04x "
"83==0x%04x "
"84==0x%04x \n",
id[80],
id[81],
id[82],
id[83],
id[84]);
DPRINTK("88==0x%04x "
"93==0x%04x\n",
id[88],
id[93]);
}
/**
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
* @id: IDENTIFY data to compute xfer mask from
*
* Compute the xfermask for this device. This is not as trivial
* as it seems if we must consider early devices correctly.
*
* FIXME: pre IDE drive timing (do we care ?).
*
* LOCKING:
* None.
*
* RETURNS:
* Computed xfermask
*/
static unsigned int ata_id_xfermask(const u16 *id)
{
unsigned int pio_mask, mwdma_mask, udma_mask;
/* Usual case. Word 53 indicates word 64 is valid */
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
pio_mask <<= 3;
pio_mask |= 0x7;
} else {
/* If word 64 isn't valid then Word 51 high byte holds
* the PIO timing number for the maximum. Turn it into
* a mask.
*/
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
if (mode < 5) /* Valid PIO range */
pio_mask = (2 << mode) - 1;
else
pio_mask = 1;
/* But wait.. there's more. Design your standards by
* committee and you too can get a free iordy field to
* process. However its the speeds not the modes that
* are supported... Note drivers using the timing API
* will get this right anyway
*/
}
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
if (ata_id_is_cfa(id)) {
/*
* Process compact flash extended modes
*/
int pio = id[163] & 0x7;
int dma = (id[163] >> 3) & 7;
if (pio)
pio_mask |= (1 << 5);
if (pio > 1)
pio_mask |= (1 << 6);
if (dma)
mwdma_mask |= (1 << 3);
if (dma > 1)
mwdma_mask |= (1 << 4);
}
udma_mask = 0;
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
}
/**
* ata_port_queue_task - Queue port_task
* @ap: The ata_port to queue port_task for
* @fn: workqueue function to be scheduled
* @data: data for @fn to use
* @delay: delay time for workqueue function
*
* Schedule @fn(@data) for execution after @delay jiffies using
* port_task. There is one port_task per port and it's the
* user(low level driver)'s responsibility to make sure that only
* one task is active at any given time.
*
* libata core layer takes care of synchronization between
* port_task and EH. ata_port_queue_task() may be ignored for EH
* synchronization.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
unsigned long delay)
{
int rc;
if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
return;
PREPARE_DELAYED_WORK(&ap->port_task, fn);
ap->port_task_data = data;
rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
/* rc == 0 means that another user is using port task */
WARN_ON(rc == 0);
}
/**
* ata_port_flush_task - Flush port_task
* @ap: The ata_port to flush port_task for
*
* After this function completes, port_task is guranteed not to
* be running or scheduled.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_port_flush_task(struct ata_port *ap)
{
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(ap->lock, flags);
ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(ap->lock, flags);
DPRINTK("flush #1\n");
flush_workqueue(ata_wq);
/*
* At this point, if a task is running, it's guaranteed to see
* the FLUSH flag; thus, it will never queue pio tasks again.
* Cancel and flush.
*/
if (!cancel_delayed_work(&ap->port_task)) {
if (ata_msg_ctl(ap))
ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
__FUNCTION__);
flush_workqueue(ata_wq);
}
spin_lock_irqsave(ap->lock, flags);
ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
spin_unlock_irqrestore(ap->lock, flags);
if (ata_msg_ctl(ap))
ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
}
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
{
struct completion *waiting = qc->private_data;
complete(waiting);
}
/**
* ata_exec_internal_sg - execute libata internal command
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @cdb: CDB for packet command
* @dma_dir: Data tranfer direction of the command
* @sg: sg list for the data buffer of the command
* @n_elem: Number of sg entries
*
* Executes libata internal command with timeout. @tf contains
* command on entry and result on return. Timeout and error
* conditions are reported via return value. No recovery action
* is taken after a command times out. It's caller's duty to
* clean up after timeout.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned ata_exec_internal_sg(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, struct scatterlist *sg,
unsigned int n_elem)
{
struct ata_port *ap = dev->ap;
u8 command = tf->command;
struct ata_queued_cmd *qc;
unsigned int tag, preempted_tag;
u32 preempted_sactive, preempted_qc_active;
DECLARE_COMPLETION_ONSTACK(wait);
unsigned long flags;
unsigned int err_mask;
int rc;
spin_lock_irqsave(ap->lock, flags);
/* no internal command while frozen */
if (ap->pflags & ATA_PFLAG_FROZEN) {
spin_unlock_irqrestore(ap->lock, flags);
return AC_ERR_SYSTEM;
}
/* initialize internal qc */
/* XXX: Tag 0 is used for drivers with legacy EH as some
* drivers choke if any other tag is given. This breaks
* ata_tag_internal() test for those drivers. Don't use new
* EH stuff without converting to it.
*/
if (ap->ops->error_handler)
tag = ATA_TAG_INTERNAL;
else
tag = 0;
if (test_and_set_bit(tag, &ap->qc_allocated))
BUG();
qc = __ata_qc_from_tag(ap, tag);
qc->tag = tag;
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
preempted_tag = ap->active_tag;
preempted_sactive = ap->sactive;
preempted_qc_active = ap->qc_active;
ap->active_tag = ATA_TAG_POISON;
ap->sactive = 0;
ap->qc_active = 0;
/* prepare & issue qc */
qc->tf = *tf;
if (cdb)
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
qc->flags |= ATA_QCFLAG_RESULT_TF;
qc->dma_dir = dma_dir;
if (dma_dir != DMA_NONE) {
unsigned int i, buflen = 0;
for (i = 0; i < n_elem; i++)
buflen += sg[i].length;
ata_sg_init(qc, sg, n_elem);
qc->nbytes = buflen;
}
qc->private_data = &wait;
qc->complete_fn = ata_qc_complete_internal;
ata_qc_issue(qc);
spin_unlock_irqrestore(ap->lock, flags);
rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
ata_port_flush_task(ap);
if (!rc) {
spin_lock_irqsave(ap->lock, flags);
/* We're racing with irq here. If we lose, the
* following test prevents us from completing the qc
* twice. If we win, the port is frozen and will be
* cleaned up by ->post_internal_cmd().
*/
if (qc->flags & ATA_QCFLAG_ACTIVE) {
qc->err_mask |= AC_ERR_TIMEOUT;
if (ap->ops->error_handler)
ata_port_freeze(ap);
else
ata_qc_complete(qc);
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING,
"qc timeout (cmd 0x%x)\n", command);
}
spin_unlock_irqrestore(ap->lock, flags);
}
/* do post_internal_cmd */
if (ap->ops->post_internal_cmd)
ap->ops->post_internal_cmd(qc);
if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING,
"zero err_mask for failed "
"internal command, assuming AC_ERR_OTHER\n");
qc->err_mask |= AC_ERR_OTHER;
}
/* finish up */
spin_lock_irqsave(ap->lock, flags);
*tf = qc->result_tf;
err_mask = qc->err_mask;
ata_qc_free(qc);
ap->active_tag = preempted_tag;
ap->sactive = preempted_sactive;
ap->qc_active = preempted_qc_active;
/* XXX - Some LLDDs (sata_mv) disable port on command failure.
* Until those drivers are fixed, we detect the condition
* here, fail the command with AC_ERR_SYSTEM and reenable the
* port.
*
* Note that this doesn't change any behavior as internal
* command failure results in disabling the device in the
* higher layer for LLDDs without new reset/EH callbacks.
*
* Kill the following code as soon as those drivers are fixed.
*/
if (ap->flags & ATA_FLAG_DISABLED) {
err_mask |= AC_ERR_SYSTEM;
ata_port_probe(ap);
}
spin_unlock_irqrestore(ap->lock, flags);
return err_mask;
}
/**
* ata_exec_internal - execute libata internal command
* @dev: Device to which the command is sent
* @tf: Taskfile registers for the command and the result
* @cdb: CDB for packet command
* @dma_dir: Data tranfer direction of the command
* @buf: Data buffer of the command
* @buflen: Length of data buffer
*
* Wrapper around ata_exec_internal_sg() which takes simple
* buffer instead of sg list.
*
* LOCKING:
* None. Should be called with kernel context, might sleep.
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned ata_exec_internal(struct ata_device *dev,
struct ata_taskfile *tf, const u8 *cdb,
int dma_dir, void *buf, unsigned int buflen)
{
struct scatterlist *psg = NULL, sg;
unsigned int n_elem = 0;
if (dma_dir != DMA_NONE) {
WARN_ON(!buf);
sg_init_one(&sg, buf, buflen);
psg = &sg;
n_elem++;
}
return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
}
/**
* ata_do_simple_cmd - execute simple internal command
* @dev: Device to which the command is sent
* @cmd: Opcode to execute
*
* Execute a 'simple' command, that only consists of the opcode
* 'cmd' itself, without filling any other registers
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
{
struct ata_taskfile tf;
ata_tf_init(dev, &tf);
tf.command = cmd;
tf.flags |= ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
}
/**
* ata_pio_need_iordy - check if iordy needed
* @adev: ATA device
*
* Check if the current speed of the device requires IORDY. Used
* by various controllers for chip configuration.
*/
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
{
int pio;
int speed = adev->pio_mode - XFER_PIO_0;
if (speed < 2)
return 0;
if (speed > 2)
return 1;
/* If we have no drive specific rule, then PIO 2 is non IORDY */
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
pio = adev->id[ATA_ID_EIDE_PIO];
/* Is the speed faster than the drive allows non IORDY ? */
if (pio) {
/* This is cycle times not frequency - watch the logic! */
if (pio > 240) /* PIO2 is 240nS per cycle */
return 1;
return 0;
}
}
return 0;
}
/**
* ata_dev_read_id - Read ID data from the specified device
* @dev: target device
* @p_class: pointer to class of the target device (may be changed)
* @flags: ATA_READID_* flags
* @id: buffer to read IDENTIFY data into
*
* Read ID data from the specified device. ATA_CMD_ID_ATA is
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
* for pre-ATA4 drives.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
unsigned int flags, u16 *id)
{
struct ata_port *ap = dev->ap;
unsigned int class = *p_class;
struct ata_taskfile tf;
unsigned int err_mask = 0;
const char *reason;
int rc;
if (ata_msg_ctl(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
retry:
ata_tf_init(dev, &tf);
switch (class) {
case ATA_DEV_ATA:
tf.command = ATA_CMD_ID_ATA;
break;
case ATA_DEV_ATAPI:
tf.command = ATA_CMD_ID_ATAPI;
break;
default:
rc = -ENODEV;
reason = "unsupported class";
goto err_out;
}
tf.protocol = ATA_PROT_PIO;
/* Some devices choke if TF registers contain garbage. Make
* sure those are properly initialized.
*/
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
/* Device presence detection is unreliable on some
* controllers. Always poll IDENTIFY if available.
*/
tf.flags |= ATA_TFLAG_POLLING;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
id, sizeof(id[0]) * ATA_ID_WORDS);
if (err_mask) {
if (err_mask & AC_ERR_NODEV_HINT) {
DPRINTK("ata%u.%d: NODEV after polling detection\n",
ap->print_id, dev->devno);
return -ENOENT;
}
rc = -EIO;
reason = "I/O error";
goto err_out;
}
swap_buf_le16(id, ATA_ID_WORDS);
/* sanity check */
rc = -EINVAL;
reason = "device reports illegal type";
if (class == ATA_DEV_ATA) {
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
goto err_out;
} else {
if (ata_id_is_ata(id))
goto err_out;
}
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
/*
* The exact sequence expected by certain pre-ATA4 drives is:
* SRST RESET
* IDENTIFY
* INITIALIZE DEVICE PARAMETERS
* anything else..
* Some drives were very specific about that exact sequence.
*/
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
err_mask = ata_dev_init_params(dev, id[3], id[6]);
if (err_mask) {
rc = -EIO;
reason = "INIT_DEV_PARAMS failed";
goto err_out;
}
/* current CHS translation info (id[53-58]) might be
* changed. reread the identify device info.
*/
flags &= ~ATA_READID_POSTRESET;
goto retry;
}
}
*p_class = class;
return 0;
err_out:
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
"(%s, err_mask=0x%x)\n", reason, err_mask);
return rc;
}
static inline u8 ata_dev_knobble(struct ata_device *dev)
{
return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
}
static void ata_dev_config_ncq(struct ata_device *dev,
char *desc, size_t desc_sz)
{
struct ata_port *ap = dev->ap;
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
if (!ata_id_has_ncq(dev->id)) {
desc[0] = '\0';
return;
}
if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
snprintf(desc, desc_sz, "NCQ (not used)");
return;
}
if (ap->flags & ATA_FLAG_NCQ) {
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
dev->flags |= ATA_DFLAG_NCQ;
}
if (hdepth >= ddepth)
snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
else
snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
}
/**
* ata_dev_configure - Configure the specified ATA/ATAPI device
* @dev: Target device to configure
*
* Configure @dev according to @dev->id. Generic and low-level
* driver specific fixups are also applied.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise
*/
int ata_dev_configure(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
const u16 *id = dev->id;
unsigned int xfer_mask;
char revbuf[7]; /* XYZ-99\0 */
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
char modelbuf[ATA_ID_PROD_LEN+1];
int rc;
if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
__FUNCTION__);
return 0;
}
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
/* set _SDD */
rc = ata_acpi_push_id(ap, dev->devno);
if (rc) {
ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
rc);
}
/* retrieve and execute the ATA task file of _GTF */
ata_acpi_exec_tfs(ap);
/* print device capabilities */
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
"85:%04x 86:%04x 87:%04x 88:%04x\n",
__FUNCTION__,
id[49], id[82], id[83], id[84],
id[85], id[86], id[87], id[88]);
/* initialize to-be-configured parameters */
dev->flags &= ~ATA_DFLAG_CFG_MASK;
dev->max_sectors = 0;
dev->cdb_len = 0;
dev->n_sectors = 0;
dev->cylinders = 0;
dev->heads = 0;
dev->sectors = 0;
/*
* common ATA, ATAPI feature tests
*/
/* find max transfer mode; for printk only */
xfer_mask = ata_id_xfermask(id);
if (ata_msg_probe(ap))
ata_dump_id(id);
/* ATA-specific feature tests */
if (dev->class == ATA_DEV_ATA) {
if (ata_id_is_cfa(id)) {
if (id[162] & 1) /* CPRM may make this media unusable */
ata_dev_printk(dev, KERN_WARNING,
"supports DRM functions and may "
"not be fully accessable.\n");
snprintf(revbuf, 7, "CFA");
}
else
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
dev->n_sectors = ata_id_n_sectors(id);
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
sizeof(fwrevbuf));
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
sizeof(modelbuf));
if (dev->id[59] & 0x100)
dev->multi_count = dev->id[59] & 0xff;
if (ata_id_has_lba(id)) {
const char *lba_desc;
char ncq_desc[20];
lba_desc = "LBA";
dev->flags |= ATA_DFLAG_LBA;
if (ata_id_has_lba48(id)) {
dev->flags |= ATA_DFLAG_LBA48;
lba_desc = "LBA48";
if (dev->n_sectors >= (1UL << 28) &&
ata_id_has_flush_ext(id))
dev->flags |= ATA_DFLAG_FLUSH_EXT;
}
/* config NCQ */
ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info) {
ata_dev_printk(dev, KERN_INFO,
"%s: %s, %s, max %s\n",
revbuf, modelbuf, fwrevbuf,
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_INFO,
"%Lu sectors, multi %u: %s %s\n",
(unsigned long long)dev->n_sectors,
dev->multi_count, lba_desc, ncq_desc);
}
} else {
/* CHS */
/* Default translation */
dev->cylinders = id[1];
dev->heads = id[3];
dev->sectors = id[6];
if (ata_id_current_chs_valid(id)) {
/* Current CHS translation is valid. */
dev->cylinders = id[54];
dev->heads = id[55];
dev->sectors = id[56];
}
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info) {
ata_dev_printk(dev, KERN_INFO,
"%s: %s, %s, max %s\n",
revbuf, modelbuf, fwrevbuf,
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_INFO,
"%Lu sectors, multi %u, CHS %u/%u/%u\n",
(unsigned long long)dev->n_sectors,
dev->multi_count, dev->cylinders,
dev->heads, dev->sectors);
}
}
dev->cdb_len = 16;
}
/* ATAPI-specific feature tests */
else if (dev->class == ATA_DEV_ATAPI) {
char *cdb_intr_string = "";
rc = atapi_cdb_len(id);
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
if (ata_msg_warn(ap))
ata_dev_printk(dev, KERN_WARNING,
"unsupported CDB len\n");
rc = -EINVAL;
goto err_out_nosup;
}
dev->cdb_len = (unsigned int) rc;
if (ata_id_cdb_intr(dev->id)) {
dev->flags |= ATA_DFLAG_CDB_INTR;
cdb_intr_string = ", CDB intr";
}
/* print device info to dmesg */
if (ata_msg_drv(ap) && print_info)
ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
ata_mode_string(xfer_mask),
cdb_intr_string);
}
/* determine max_sectors */
dev->max_sectors = ATA_MAX_SECTORS;
if (dev->flags & ATA_DFLAG_LBA48)
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
/* Let the user know. We don't want to disallow opens for
rescue purposes, or in case the vendor is just a blithering
idiot */
if (print_info) {
ata_dev_printk(dev, KERN_WARNING,
"Drive reports diagnostics failure. This may indicate a drive\n");
ata_dev_printk(dev, KERN_WARNING,
"fault or invalid emulation. Contact drive vendor for information.\n");
}
}
/* limit bridge transfers to udma5, 200 sectors */
if (ata_dev_knobble(dev)) {
if (ata_msg_drv(ap) && print_info)
ata_dev_printk(dev, KERN_INFO,
"applying bridge limits\n");
dev->udma_mask &= ATA_UDMA5;
dev->max_sectors = ATA_MAX_SECTORS;
}
if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
/* limit ATAPI DMA to R/W commands only */
if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
if (ap->ops->dev_config)
ap->ops->dev_config(dev);
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
__FUNCTION__, ata_chk_status(ap));
return 0;
err_out_nosup:
if (ata_msg_probe(ap))
ata_dev_printk(dev, KERN_DEBUG,
"%s: EXIT, err\n", __FUNCTION__);
return rc;
}
/**
* ata_cable_40wire - return 40 wire cable type
* @ap: port
*
* Helper method for drivers which want to hardwire 40 wire cable
* detection.
*/
int ata_cable_40wire(struct ata_port *ap)
{
return ATA_CBL_PATA40;
}
/**
* ata_cable_80wire - return 80 wire cable type
* @ap: port
*
* Helper method for drivers which want to hardwire 80 wire cable
* detection.
*/
int ata_cable_80wire(struct ata_port *ap)
{
return ATA_CBL_PATA80;
}
/**
* ata_cable_unknown - return unknown PATA cable.
* @ap: port
*
* Helper method for drivers which have no PATA cable detection.
*/
int ata_cable_unknown(struct ata_port *ap)
{
return ATA_CBL_PATA_UNK;
}
/**
* ata_cable_sata - return SATA cable type
* @ap: port
*
* Helper method for drivers which have SATA cables
*/
int ata_cable_sata(struct ata_port *ap)
{
return ATA_CBL_SATA;
}
/**
* ata_bus_probe - Reset and probe ATA bus
* @ap: Bus to probe
*
* Master ATA bus probing function. Initiates a hardware-dependent
* bus reset, then attempts to identify any devices found on
* the bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, negative errno otherwise.
*/
int ata_bus_probe(struct ata_port *ap)
{
unsigned int classes[ATA_MAX_DEVICES];
int tries[ATA_MAX_DEVICES];
int i, rc;
struct ata_device *dev;
ata_port_probe(ap);
for (i = 0; i < ATA_MAX_DEVICES; i++)
tries[i] = ATA_PROBE_MAX_TRIES;
retry:
/* reset and determine device classes */
ap->ops->phy_reset(ap);
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!(ap->flags & ATA_FLAG_DISABLED) &&
dev->class != ATA_DEV_UNKNOWN)
classes[dev->devno] = dev->class;
else
classes[dev->devno] = ATA_DEV_NONE;
dev->class = ATA_DEV_UNKNOWN;
}
ata_port_probe(ap);
/* after the reset the device state is PIO 0 and the controller
state is undefined. Record the mode */
for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->device[i].pio_mode = XFER_PIO_0;
/* read IDENTIFY page and configure devices. We have to do the identify
specific sequence bass-ackwards so that PDIAG- is released by
the slave device */
for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
dev = &ap->device[i];
if (tries[i])
dev->class = classes[i];
if (!ata_dev_enabled(dev))
continue;
rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
dev->id);
if (rc)
goto fail;
}
/* Now ask for the cable type as PDIAG- should have been released */
if (ap->ops->cable_detect)
ap->cbl = ap->ops->cable_detect(ap);
/* After the identify sequence we can now set up the devices. We do
this in the normal order so that the user doesn't get confused */
for(i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
rc = ata_dev_configure(dev);
ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
if (rc)
goto fail;
}
/* configure transfer mode */
rc = ata_set_mode(ap, &dev);
if (rc)
goto fail;
for (i = 0; i < ATA_MAX_DEVICES; i++)
if (ata_dev_enabled(&ap->device[i]))
return 0;
/* no device present, disable port */
ata_port_disable(ap);
ap->ops->port_disable(ap);
return -ENODEV;
fail:
tries[dev->devno]--;
switch (rc) {
case -EINVAL:
/* eeek, something went very wrong, give up */
tries[dev->devno] = 0;
break;
case -ENODEV:
/* give it just one more chance */
tries[dev->devno] = min(tries[dev->devno], 1);
case -EIO:
if (tries[dev->devno] == 1) {
/* This is the last chance, better to slow
* down than lose it.
*/
sata_down_spd_limit(ap);
ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
}
}
if (!tries[dev->devno])
ata_dev_disable(dev);
goto retry;
}
/**
* ata_port_probe - Mark port as enabled
* @ap: Port for which we indicate enablement
*
* Modify @ap data structure such that the system
* thinks that the entire port is enabled.
*
* LOCKING: host lock, or some other form of
* serialization.
*/
void ata_port_probe(struct ata_port *ap)
{
ap->flags &= ~ATA_FLAG_DISABLED;
}
/**
* sata_print_link_status - Print SATA link status
* @ap: SATA port to printk link status about
*
* This function prints link speed and status of a SATA link.
*
* LOCKING:
* None.
*/
void sata_print_link_status(struct ata_port *ap)
{
u32 sstatus, scontrol, tmp;
if (sata_scr_read(ap, SCR_STATUS, &sstatus))
return;
sata_scr_read(ap, SCR_CONTROL, &scontrol);
if (ata_port_online(ap)) {
tmp = (sstatus >> 4) & 0xf;
ata_port_printk(ap, KERN_INFO,
"SATA link up %s (SStatus %X SControl %X)\n",
sata_spd_string(tmp), sstatus, scontrol);
} else {
ata_port_printk(ap, KERN_INFO,
"SATA link down (SStatus %X SControl %X)\n",
sstatus, scontrol);
}
}
/**
* __sata_phy_reset - Wake/reset a low-level SATA PHY
* @ap: SATA port associated with target SATA PHY.
*
* This function issues commands to standard SATA Sxxx
* PHY registers, to wake up the phy (and device), and
* clear any reset condition.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void __sata_phy_reset(struct ata_port *ap)
{
u32 sstatus;
unsigned long timeout = jiffies + (HZ * 5);
if (ap->flags & ATA_FLAG_SATA_RESET) {
/* issue phy wake/reset */
sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
/* Couldn't find anything in SATA I/II specs, but
* AHCI-1.1 10.4.2 says at least 1 ms. */
mdelay(1);
}
/* phy wake/clear reset */
sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
/* wait for phy to become ready, if necessary */
do {
msleep(200);
sata_scr_read(ap, SCR_STATUS, &sstatus);
if ((sstatus & 0xf) != 1)
break;
} while (time_before(jiffies, timeout));
/* print link status */
sata_print_link_status(ap);
/* TODO: phy layer with polling, timeouts, etc. */
if (!ata_port_offline(ap))
ata_port_probe(ap);
else
ata_port_disable(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_disable(ap);
return;
}
ap->cbl = ATA_CBL_SATA;
}
/**
* sata_phy_reset - Reset SATA bus.
* @ap: SATA port associated with target SATA PHY.
*
* This function resets the SATA bus, and then probes
* the bus for devices.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void sata_phy_reset(struct ata_port *ap)
{
__sata_phy_reset(ap);
if (ap->flags & ATA_FLAG_DISABLED)
return;
ata_bus_reset(ap);
}
/**
* ata_dev_pair - return other device on cable
* @adev: device
*
* Obtain the other device on the same cable, or if none is
* present NULL is returned
*/
struct ata_device *ata_dev_pair(struct ata_device *adev)
{
struct ata_port *ap = adev->ap;
struct ata_device *pair = &ap->device[1 - adev->devno];
if (!ata_dev_enabled(pair))
return NULL;
return pair;
}
/**
* ata_port_disable - Disable port.
* @ap: Port to be disabled.
*
* Modify @ap data structure such that the system
* thinks that the entire port is disabled, and should
* never attempt to probe or communicate with devices
* on this port.
*
* LOCKING: host lock, or some other form of
* serialization.
*/
void ata_port_disable(struct ata_port *ap)
{
ap->device[0].class = ATA_DEV_NONE;
ap->device[1].class = ATA_DEV_NONE;
ap->flags |= ATA_FLAG_DISABLED;
}
/**
* sata_down_spd_limit - adjust SATA spd limit downward
* @ap: Port to adjust SATA spd limit for
*
* Adjust SATA spd limit of @ap downward. Note that this
* function only adjusts the limit. The change must be applied
* using sata_set_spd().
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int sata_down_spd_limit(struct ata_port *ap)
{
u32 sstatus, spd, mask;
int rc, highbit;
rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
if (rc)
return rc;
mask = ap->sata_spd_limit;
if (mask <= 1)
return -EINVAL;
highbit = fls(mask) - 1;
mask &= ~(1 << highbit);
spd = (sstatus >> 4) & 0xf;
if (spd <= 1)
return -EINVAL;
spd--;
mask &= (1 << spd) - 1;
if (!mask)
return -EINVAL;
ap->sata_spd_limit = mask;
ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
sata_spd_string(fls(mask)));
return 0;
}
static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
{
u32 spd, limit;
if (ap->sata_spd_limit == UINT_MAX)
limit = 0;
else
limit = fls(ap->sata_spd_limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
return spd != limit;
}
/**
* sata_set_spd_needed - is SATA spd configuration needed
* @ap: Port in question
*
* Test whether the spd limit in SControl matches
* @ap->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
int sata_set_spd_needed(struct ata_port *ap)
{
u32 scontrol;
if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
return 0;
return __sata_set_spd_needed(ap, &scontrol);
}
/**
* sata_set_spd - set SATA spd according to spd limit
* @ap: Port to set SATA spd for
*
* Set SATA spd of @ap according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. Negative errno if SCR registers are inaccessible.
*/
int sata_set_spd(struct ata_port *ap)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
if (!__sata_set_spd_needed(ap, &scontrol))
return 0;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
return rc;
return 1;
}
/*
* This mode timing computation functionality is ported over from
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
*/
/*
* PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for UDMA6, which is currently supported only by Maxtor drives.
*
* For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
*/
static const struct ata_timing ata_timing[] = {
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
{ XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
{ XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
{ XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
{ XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
{ 0xFF }
};
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
{
q->setup = EZ(t->setup * 1000, T);
q->act8b = EZ(t->act8b * 1000, T);
q->rec8b = EZ(t->rec8b * 1000, T);
q->cyc8b = EZ(t->cyc8b * 1000, T);
q->active = EZ(t->active * 1000, T);
q->recover = EZ(t->recover * 1000, T);
q->cycle = EZ(t->cycle * 1000, T);
q->udma = EZ(t->udma * 1000, UT);
}
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
struct ata_timing *m, unsigned int what)
{
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
}
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
{
const struct ata_timing *t;
for (t = ata_timing; t->mode != speed; t++)
if (t->mode == 0xFF)
return NULL;
return t;
}
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
struct ata_timing *t, int T, int UT)
{
const struct ata_timing *s;
struct ata_timing p;
/*
* Find the mode.
*/
if (!(s = ata_timing_find_mode(speed)))
return -EINVAL;
memcpy(t, s, sizeof(*s));
/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MW_DMA cycle timing.
*/
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
memset(&p, 0, sizeof(p));
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
}
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
}
/*
* Convert the timing to bus clock counts.
*/
ata_timing_quantize(t, t, T, UT);
/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
* S.M.A.R.T * and some other commands. We have to ensure that the
* DMA cycle timing is slower/equal than the fastest PIO timing.
*/
if (speed > XFER_PIO_6) {
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
}
/*
* Lengthen active & recovery time so that cycle time is correct.
*/
if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}
if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}
return 0;
}
/**
* ata_down_xfermask_limit - adjust dev xfer masks downward
* @dev: Device to adjust xfer masks
* @sel: ATA_DNXFER_* selector
*
* Adjust xfer masks of @dev downward. Note that this function
* does not apply the change. Invoking ata_set_mode() afterwards
* will apply the limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 on success, negative errno on failure
*/
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
{
char buf[32];
unsigned int orig_mask, xfer_mask;
unsigned int pio_mask, mwdma_mask, udma_mask;
int quiet, highbit;
quiet = !!(sel & ATA_DNXFER_QUIET);
sel &= ~ATA_DNXFER_QUIET;
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
dev->mwdma_mask,
dev->udma_mask);
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
switch (sel) {
case ATA_DNXFER_PIO:
highbit = fls(pio_mask) - 1;
pio_mask &= ~(1 << highbit);
break;
case ATA_DNXFER_DMA:
if (udma_mask) {
highbit = fls(udma_mask) - 1;
udma_mask &= ~(1 << highbit);
if (!udma_mask)
return -ENOENT;
} else if (mwdma_mask) {
highbit = fls(mwdma_mask) - 1;
mwdma_mask &= ~(1 << highbit);
if (!mwdma_mask)
return -ENOENT;
}
break;
case ATA_DNXFER_40C:
udma_mask &= ATA_UDMA_MASK_40C;
break;
case ATA_DNXFER_FORCE_PIO0:
pio_mask &= 1;
case ATA_DNXFER_FORCE_PIO:
mwdma_mask = 0;
udma_mask = 0;
break;
default:
BUG();
}
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
return -ENOENT;
if (!quiet) {
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
snprintf(buf, sizeof(buf), "%s:%s",
ata_mode_string(xfer_mask),
ata_mode_string(xfer_mask & ATA_MASK_PIO));
else
snprintf(buf, sizeof(buf), "%s",
ata_mode_string(xfer_mask));
ata_dev_printk(dev, KERN_WARNING,
"limiting speed to %s\n", buf);
}
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
&dev->udma_mask);
return 0;
}
static int ata_dev_set_mode(struct ata_device *dev)
{
struct ata_eh_context *ehc = &dev->ap->eh_context;
unsigned int err_mask;
int rc;
dev->flags &= ~ATA_DFLAG_PIO;
if (dev->xfer_shift == ATA_SHIFT_PIO)
dev->flags |= ATA_DFLAG_PIO;
err_mask = ata_dev_set_xfermode(dev);
/* Old CFA may refuse this command, which is just fine */
if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
err_mask &= ~AC_ERR_DEV;
if (err_mask) {
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
"(err_mask=0x%x)\n", err_mask);
return -EIO;
}
ehc->i.flags |= ATA_EHI_POST_SETMODE;
rc = ata_dev_revalidate(dev, 0);
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
if (rc)
return rc;
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
dev->xfer_shift, (int)dev->xfer_mode);
ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
return 0;
}
/**
* ata_set_mode - Program timings and issue SET FEATURES - XFER
* @ap: port on which timings will be programmed
* @r_failed_dev: out paramter for failed device
*
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
* ata_set_mode() fails, pointer to the failing device is
* returned in @r_failed_dev.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
{
struct ata_device *dev;
int i, rc = 0, used_dma = 0, found = 0;
/* has private set_mode? */
if (ap->ops->set_mode)
return ap->ops->set_mode(ap, r_failed_dev);
/* step 1: calculate xfer_mask */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
unsigned int pio_mask, dma_mask;
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
ata_dev_xfermask(dev);
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
found = 1;
if (dev->dma_mode)
used_dma = 1;
}
if (!found)
goto out;
/* step 2: always set host PIO timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev))
continue;
if (!dev->pio_mode) {
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
rc = -EINVAL;
goto out;
}
dev->xfer_mode = dev->pio_mode;
dev->xfer_shift = ATA_SHIFT_PIO;
if (ap->ops->set_piomode)
ap->ops->set_piomode(ap, dev);
}
/* step 3: set host DMA timings */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
if (!ata_dev_enabled(dev) || !dev->dma_mode)
continue;
dev->xfer_mode = dev->dma_mode;
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
if (ap->ops->set_dmamode)
ap->ops->set_dmamode(ap, dev);
}
/* step 4: update devices' xfer mode */
for (i = 0; i < ATA_MAX_DEVICES; i++) {
dev = &ap->device[i];
/* don't update suspended devices' xfer mode */
if (!ata_dev_ready(dev))
continue;
rc = ata_dev_set_mode(dev);
if (rc)
goto out;
}
/* Record simplex status. If we selected DMA then the other
* host channels are not permitted to do so.
*/
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
ap->host->simplex_claimed = ap;
/* step5: chip specific finalisation */
if (ap->ops->post_set_mode)
ap->ops->post_set_mode(ap);
out:
if (rc)
*r_failed_dev = dev;
return rc;
}
/**
* ata_tf_to_host - issue ATA taskfile to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues ATA taskfile register set to ATA host controller,
* with proper synchronization with interrupt handler and
* other threads.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static inline void ata_tf_to_host(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ap->ops->tf_load(ap, tf);
ap->ops->exec_command(ap, tf);
}
/**
* ata_busy_sleep - sleep until BSY clears, or timeout
* @ap: port containing status register to be polled
* @tmout_pat: impatience timeout
* @tmout: overall timeout
*
* Sleep until ATA Status register bit BSY clears,
* or a timeout occurs.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_busy_sleep(struct ata_port *ap,
unsigned long tmout_pat, unsigned long tmout)
{
unsigned long timer_start, timeout;
u8 status;
status = ata_busy_wait(ap, ATA_BUSY, 300);
timer_start = jiffies;
timeout = timer_start + tmout_pat;
while (status != 0xff && (status & ATA_BUSY) &&
time_before(jiffies, timeout)) {
msleep(50);
status = ata_busy_wait(ap, ATA_BUSY, 3);
}
if (status != 0xff && (status & ATA_BUSY))
ata_port_printk(ap, KERN_WARNING,
"port is slow to respond, please be patient "
"(Status 0x%x)\n", status);
timeout = timer_start + tmout;
while (status != 0xff && (status & ATA_BUSY) &&
time_before(jiffies, timeout)) {
msleep(50);
status = ata_chk_status(ap);
}
if (status == 0xff)
return -ENODEV;
if (status & ATA_BUSY) {
ata_port_printk(ap, KERN_ERR, "port failed to respond "
"(%lu secs, Status 0x%x)\n",
tmout / HZ, status);
return -EBUSY;
}
return 0;
}
static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int dev0 = devmask & (1 << 0);
unsigned int dev1 = devmask & (1 << 1);
unsigned long timeout;
/* if device 0 was found in ata_devchk, wait for its
* BSY bit to clear
*/
if (dev0)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* if device 1 was found in ata_devchk, wait for
* register access, then wait for BSY to clear
*/
timeout = jiffies + ATA_TMOUT_BOOT;
while (dev1) {
u8 nsect, lbal;
ap->ops->dev_select(ap, 1);
nsect = ioread8(ioaddr->nsect_addr);
lbal = ioread8(ioaddr->lbal_addr);
if ((nsect == 1) && (lbal == 1))
break;
if (time_after(jiffies, timeout)) {
dev1 = 0;
break;
}
msleep(50); /* give drive a breather */
}
if (dev1)
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
/* is all this really necessary? */
ap->ops->dev_select(ap, 0);
if (dev1)
ap->ops->dev_select(ap, 1);
if (dev0)
ap->ops->dev_select(ap, 0);
}
static unsigned int ata_bus_softreset(struct ata_port *ap,
unsigned int devmask)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
/* software reset. causes dev0 to be selected */
iowrite8(ap->ctl, ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(20); /* FIXME: flush */
iowrite8(ap->ctl, ioaddr->ctl_addr);
/* spec mandates ">= 2ms" before checking status.
* We wait 150ms, because that was the magic delay used for
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
* between when the ATA command register is written, and then
* status is checked. Because waiting for "a while" before
* checking status is fine, post SRST, we perform this magic
* delay here as well.
*
* Old drivers/ide uses the 2mS rule and then waits for ready
*/
msleep(150);
/* Before we perform post reset processing we want to see if
* the bus shows 0xFF because the odd clown forgets the D7
* pulldown resistor.
*/
if (ata_check_status(ap) == 0xFF)
return 0;
ata_bus_post_reset(ap, devmask);
return 0;
}
/**
* ata_bus_reset - reset host port and associated ATA channel
* @ap: port to reset
*
* This is typically the first time we actually start issuing
* commands to the ATA channel. We wait for BSY to clear, then
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
* result. Determine what devices, if any, are on the channel
* by looking at the device 0/1 error register. Look at the signature
* stored in each device's taskfile registers, to determine if
* the device is ATA or ATAPI.
*
* LOCKING:
* PCI/etc. bus probe sem.
* Obtains host lock.
*
* SIDE EFFECTS:
* Sets ATA_FLAG_DISABLED if bus reset fails.
*/
void ata_bus_reset(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
u8 err;
unsigned int dev0, dev1 = 0, devmask = 0;
DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
/* determine if device 0/1 are present */
if (ap->flags & ATA_FLAG_SATA_RESET)
dev0 = 1;
else {
dev0 = ata_devchk(ap, 0);
if (slave_possible)
dev1 = ata_devchk(ap, 1);
}
if (dev0)
devmask |= (1 << 0);
if (dev1)
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
if (ap->flags & ATA_FLAG_SRST)
if (ata_bus_softreset(ap, devmask))
goto err_out;
/*
* determine by signature whether we have ATA or ATAPI devices
*/
ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
if ((slave_possible) && (err != 0x81))
ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
/* re-enable interrupts */
ap->ops->irq_on(ap);
/* is double-select really necessary? */
if (ap->device[1].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (ap->device[0].class != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* if no devices were detected, disable this port */
if ((ap->device[0].class == ATA_DEV_NONE) &&
(ap->device[1].class == ATA_DEV_NONE))
goto err_out;
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
/* set up device control for ATA_FLAG_SATA_RESET */
iowrite8(ap->ctl, ioaddr->ctl_addr);
}
DPRINTK("EXIT\n");
return;
err_out:
ata_port_printk(ap, KERN_ERR, "disabling port\n");
ap->ops->port_disable(ap);
DPRINTK("EXIT\n");
}
/**
* sata_phy_debounce - debounce SATA phy status
* @ap: ATA port to debounce SATA phy status for
* @params: timing parameters { interval, duratinon, timeout } in msec
*
* Make sure SStatus of @ap reaches stable state, determined by
* holding the same value where DET is not 1 for @duration polled
* every @interval, before @timeout. Timeout constraints the
* beginning of the stable state. Because, after hot unplugging,
* DET gets stuck at 1 on some controllers, this functions waits
* until timeout then returns 0 if DET is stable at 1.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
{
unsigned long interval_msec = params[0];
unsigned long duration = params[1] * HZ / 1000;
unsigned long timeout = jiffies + params[2] * HZ / 1000;
unsigned long last_jiffies;
u32 last, cur;
int rc;
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
last = cur;
last_jiffies = jiffies;
while (1) {
msleep(interval_msec);
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
/* DET stable? */
if (cur == last) {
if (cur == 1 && time_before(jiffies, timeout))
continue;
if (time_after(jiffies, last_jiffies + duration))
return 0;
continue;
}
/* unstable, start over */
last = cur;
last_jiffies = jiffies;
/* check timeout */
if (time_after(jiffies, timeout))
return -EBUSY;
}
}
/**
* sata_phy_resume - resume SATA phy
* @ap: ATA port to resume SATA phy for
* @params: timing parameters { interval, duratinon, timeout } in msec
*
* Resume SATA phy of @ap and debounce it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
return rc;
scontrol = (scontrol & 0x0f0) | 0x300;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
return rc;
/* Some PHYs react badly if SStatus is pounded immediately
* after resuming. Delay 200ms before debouncing.
*/
msleep(200);
return sata_phy_debounce(ap, params);
}
static void ata_wait_spinup(struct ata_port *ap)
{
struct ata_eh_context *ehc = &ap->eh_context;
unsigned long end, secs;
int rc;
/* first, debounce phy if SATA */
if (ap->cbl == ATA_CBL_SATA) {
rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
/* if debounced successfully and offline, no need to wait */
if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
return;
}
/* okay, let's give the drive time to spin up */
end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
secs = ((end - jiffies) + HZ - 1) / HZ;
if (time_after(jiffies, end))
return;
if (secs > 5)
ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
"(%lu secs)\n", secs);
schedule_timeout_uninterruptible(end - jiffies);
}
/**
* ata_std_prereset - prepare for reset
* @ap: ATA port to be reset
*
* @ap is about to be reset. Initialize it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_prereset(struct ata_port *ap)
{
struct ata_eh_context *ehc = &ap->eh_context;
const unsigned long *timing = sata_ehc_deb_timing(ehc);
int rc;
/* handle link resume & hotplug spinup */
if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
(ap->flags & ATA_FLAG_HRST_TO_RESUME))
ehc->i.action |= ATA_EH_HARDRESET;
if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
(ap->flags & ATA_FLAG_SKIP_D2H_BSY))
ata_wait_spinup(ap);
/* if we're about to do hardreset, nothing more to do */
if (ehc->i.action & ATA_EH_HARDRESET)
return 0;
/* if SATA, resume phy */
if (ap->cbl == ATA_CBL_SATA) {
rc = sata_phy_resume(ap, timing);
if (rc && rc != -EOPNOTSUPP) {
/* phy resume failed */
ata_port_printk(ap, KERN_WARNING, "failed to resume "
"link for reset (errno=%d)\n", rc);
return rc;
}
}
/* Wait for !BSY if the controller can wait for the first D2H
* Reg FIS and we don't know that no device is attached.
*/
if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
return 0;
}
/**
* ata_std_softreset - reset host port via ATA SRST
* @ap: port to reset
* @classes: resulting classes of attached devices
*
* Reset host port using ATA SRST.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
{
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
unsigned int devmask = 0, err_mask;
u8 err;
DPRINTK("ENTER\n");
if (ata_port_offline(ap)) {
classes[0] = ATA_DEV_NONE;
goto out;
}
/* determine if device 0/1 are present */
if (ata_devchk(ap, 0))
devmask |= (1 << 0);
if (slave_possible && ata_devchk(ap, 1))
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->dev_select(ap, 0);
/* issue bus reset */
DPRINTK("about to softreset, devmask=%x\n", devmask);
err_mask = ata_bus_softreset(ap, devmask);
if (err_mask) {
ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
err_mask);
return -EIO;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_dev_try_classify(ap, 0, &err);
if (slave_possible && err != 0x81)
classes[1] = ata_dev_try_classify(ap, 1, &err);
out:
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
return 0;
}
/**
* sata_port_hardreset - reset port via SATA phy reset
* @ap: port to reset
* @timing: timing parameters { interval, duratinon, timeout } in msec
*
* SATA phy-reset host port using DET bits of SControl register.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
{
u32 scontrol;
int rc;
DPRINTK("ENTER\n");
if (sata_set_spd_needed(ap)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x304;
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
goto out;
sata_set_spd(ap);
}
/* issue phy wake/reset */
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x301;
if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
goto out;
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
msleep(1);
/* bring phy back */
rc = sata_phy_resume(ap, timing);
out:
DPRINTK("EXIT, rc=%d\n", rc);
return rc;
}
/**
* sata_std_hardreset - reset host port via SATA phy reset
* @ap: port to reset
* @class: resulting class of attached device
*
* SATA phy-reset host port using DET bits of SControl register,
* wait for !BSY and classify the attached device.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
{
const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
int rc;
DPRINTK("ENTER\n");
/* do hardreset */
rc = sata_port_hardreset(ap, timing);
if (rc) {
ata_port_printk(ap, KERN_ERR,
"COMRESET failed (errno=%d)\n", rc);
return rc;
}
/* TODO: phy layer with polling, timeouts, etc. */
if (ata_port_offline(ap)) {
*class = ATA_DEV_NONE;
DPRINTK("EXIT, link offline\n");
return 0;
}
/* wait a while before checking status, see SRST for more info */
msleep(150);
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
ata_port_printk(ap, KERN_ERR,
"COMRESET failed (device not ready)\n");
return -EIO;
}
ap->ops->dev_select(ap, 0); /* probably unnecessary */
*class = ata_dev_try_classify(ap, 0, NULL);
DPRINTK("EXIT, class=%u\n", *class);
return 0;
}
/**
* ata_std_postreset - standard postreset callback
* @ap: the target ata_port
* @classes: classes of attached devices
*
* This function is invoked after a successful reset. Note that
* the device might have been reset more than once using
* different reset methods before postreset is invoked.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
{
u32 serror;
DPRINTK("ENTER\n");
/* print link status */
sata_print_link_status(ap);
/* clear SError */
if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
sata_scr_write(ap, SCR_ERROR, serror);
/* re-enable interrupts */
if (!ap->ops->error_handler)
ap->ops->irq_on(ap);
/* is double-select really necessary? */
if (classes[0] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 1);
if (classes[1] != ATA_DEV_NONE)
ap->ops->dev_select(ap, 0);
/* bail out if no device is present */
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
DPRINTK("EXIT, no device\n");
return;
}
/* set up device control */
if (ap->ioaddr.ctl_addr)
iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
DPRINTK("EXIT\n");
}
/**
* ata_dev_same_device - Determine whether new ID matches configured device
* @dev: device to compare against
* @new_class: class of the new device
* @new_id: IDENTIFY page of the new device
*
* Compare @new_class and @new_id against @dev and determine
* whether @dev is the device indicated by @new_class and
* @new_id.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
*/
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
const u16 *new_id)
{
const u16 *old_id = dev->id;
unsigned char model[2][ATA_ID_PROD_LEN + 1];
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
u64 new_n_sectors;
if (dev->class != new_class) {
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
dev->class, new_class);
return 0;
}
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
new_n_sectors = ata_id_n_sectors(new_id);
if (strcmp(model[0], model[1])) {
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
"'%s' != '%s'\n", model[0], model[1]);
return 0;
}
if (strcmp(serial[0], serial[1])) {
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
"'%s' != '%s'\n", serial[0], serial[1]);
return 0;
}
if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
"%llu != %llu\n",
(unsigned long long)dev->n_sectors,
(unsigned long long)new_n_sectors);
return 0;
}
return 1;
}
/**
* ata_dev_revalidate - Revalidate ATA device
* @dev: device to revalidate
* @readid_flags: read ID flags
*
* Re-read IDENTIFY page and make sure @dev is still attached to
* the port.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, negative errno otherwise
*/
int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
{
unsigned int class = dev->class;
u16 *id = (void *)dev->ap->sector_buf;
int rc;
if (!ata_dev_enabled(dev)) {
rc = -ENODEV;
goto fail;
}
/* read ID data */
rc = ata_dev_read_id(dev, &class, readid_flags, id);
if (rc)
goto fail;
/* is the device still there? */
if (!ata_dev_same_device(dev, class, id)) {
rc = -ENODEV;
goto fail;
}
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
/* configure device according to the new ID */
rc = ata_dev_configure(dev);
if (rc == 0)
return 0;
fail:
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
return rc;
}
struct ata_blacklist_entry {
const char *model_num;
const char *model_rev;
unsigned long horkage;
};
static const struct ata_blacklist_entry ata_device_blacklist [] = {
/* Devices with DMA related problems under Linux */
{ "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
{ "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-84", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
{ "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
{ "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
{ "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
{ "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
{ "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
/* Weird ATAPI devices */
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
ATA_HORKAGE_DMA_RW_ONLY },
/* Devices we expect to fail diagnostics */
/* Devices where NCQ should be avoided */
/* NCQ is slow */
{ "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
/* http://thread.gmane.org/gmane.linux.ide/14907 */
{ "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
/* NCQ is broken */
{ "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
/* NCQ hard hangs device under heavier load, needs hard power cycle */
{ "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
/* Blacklist entries taken from Silicon Image 3124/3132
Windows driver .inf file - also several Linux problem reports */
{ "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
{ "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
{ "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
/* Devices with NCQ limits */
/* End Marker */
{ }
};
unsigned long ata_device_blacklisted(const struct ata_device *dev)
{
unsigned char model_num[ATA_ID_PROD_LEN + 1];
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
const struct ata_blacklist_entry *ad = ata_device_blacklist;
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
while (ad->model_num) {
if (!strcmp(ad->model_num, model_num)) {
if (ad->model_rev == NULL)
return ad->horkage;
if (!strcmp(ad->model_rev, model_rev))
return ad->horkage;
}
ad++;
}
return 0;
}
static int ata_dma_blacklisted(const struct ata_device *dev)
{
/* We don't support polling DMA.
* DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
* if the LLDD handles only interrupts in the HSM_ST_LAST state.
*/
if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
(dev->flags & ATA_DFLAG_CDB_INTR))
return 1;
return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
}
/**
* ata_dev_xfermask - Compute supported xfermask of the given device
* @dev: Device to compute xfermask for
*
* Compute supported xfermask of @dev and store it in
* dev->*_mask. This function is responsible for applying all
* known limits including host controller limits, device
* blacklist, etc...
*
* LOCKING:
* None.
*/
static void ata_dev_xfermask(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
struct ata_host *host = ap->host;
unsigned long xfer_mask;
/* controller modes available */
xfer_mask = ata_pack_xfermask(ap->pio_mask,
ap->mwdma_mask, ap->udma_mask);
/* drive modes available */
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
dev->mwdma_mask, dev->udma_mask);
xfer_mask &= ata_id_xfermask(dev->id);
/*
* CFA Advanced TrueIDE timings are not allowed on a shared
* cable
*/
if (ata_dev_pair(dev)) {
/* No PIO5 or PIO6 */
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
/* No MWDMA3 or MWDMA 4 */
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
}
if (ata_dma_blacklisted(dev)) {
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
ata_dev_printk(dev, KERN_WARNING,
"device is on DMA blacklist, disabling DMA\n");
}
if ((host->flags & ATA_HOST_SIMPLEX) &&
host->simplex_claimed && host->simplex_claimed != ap) {
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
"other device, disabling DMA\n");
}
if (ap->ops->mode_filter)
xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
/* Apply cable rule here. Don't apply it early because when
* we handle hot plug the cable type can itself change.
* Check this last so that we know if the transfer rate was
* solely limited by the cable.
* Unknown or 80 wire cables reported host side are checked
* drive side as well. Cases where we know a 40wire cable
* is used safely for 80 are not checked here.
*/
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
/* UDMA/44 or higher would be available */
if((ap->cbl == ATA_CBL_PATA40) ||
(ata_drive_40wire(dev->id) &&
(ap->cbl == ATA_CBL_PATA_UNK ||
ap->cbl == ATA_CBL_PATA80))) {
ata_dev_printk(dev, KERN_WARNING,
"limited to UDMA/33 due to 40-wire cable\n");
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
}
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
&dev->mwdma_mask, &dev->udma_mask);
}
/**
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
* @dev: Device to which command will be sent
*
* Issue SET FEATURES - XFER MODE command to device @dev
* on port @ap.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* set up set-features taskfile */
DPRINTK("set features - xfer mode\n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_SET_FEATURES;
tf.feature = SETFEATURES_XFER;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = dev->xfer_mode;
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_dev_init_params - Issue INIT DEV PARAMS command
* @dev: Device to which command will be sent
* @heads: Number of heads (taskfile parameter)
* @sectors: Number of sectors (taskfile parameter)
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, AC_ERR_* mask otherwise.
*/
static unsigned int ata_dev_init_params(struct ata_device *dev,
u16 heads, u16 sectors)
{
struct ata_taskfile tf;
unsigned int err_mask;
/* Number of sectors per track 1-255. Number of heads 1-16 */
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
return AC_ERR_INVALID;
/* set up init dev params taskfile */
DPRINTK("init dev params \n");
ata_tf_init(dev, &tf);
tf.command = ATA_CMD_INIT_DEV_PARAMS;
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf.protocol = ATA_PROT_NODATA;
tf.nsect = sectors;
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
DPRINTK("EXIT, err_mask=%x\n", err_mask);
return err_mask;
}
/**
* ata_sg_clean - Unmap DMA memory associated with command
* @qc: Command containing DMA memory to be released
*
* Unmap all mapped DMA memory associated with this command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_sg_clean(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
int dir = qc->dma_dir;
void *pad_buf = NULL;
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
WARN_ON(sg == NULL);
if (qc->flags & ATA_QCFLAG_SINGLE)
WARN_ON(qc->n_elem > 1);
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
/* if we padded the buffer out to 32-bit bound, and data
* xfer direction is from-device, we must copy from the
* pad buffer back into the supplied buffer
*/
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
if (qc->flags & ATA_QCFLAG_SG) {
if (qc->n_elem)
dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
/* restore last sg */
sg[qc->orig_n_elem - 1].length += qc->pad_len;
if (pad_buf) {
struct scatterlist *psg = &qc->pad_sgent;
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
} else {
if (qc->n_elem)
dma_unmap_single(ap->dev,
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
dir);
/* restore sg */
sg->length += qc->pad_len;
if (pad_buf)
memcpy(qc->buf_virt + sg->length - qc->pad_len,
pad_buf, qc->pad_len);
}
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->__sg = NULL;
}
/**
* ata_fill_sg - Fill PCI IDE PRD table
* @qc: Metadata associated with taskfile to be transferred
*
* Fill PCI IDE PRD (scatter-gather) table with segments
* associated with the current disk command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
*/
static void ata_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg;
unsigned int idx;
WARN_ON(qc->__sg == NULL);
WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
idx = 0;
ata_for_each_sg(sg, qc) {
u32 addr, offset;
u32 sg_len, len;
/* determine if physical DMA addr spans 64K boundary.
* Note h/w doesn't support 64-bit, so we unconditionally
* truncate dma_addr_t to u32.
*/
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & 0xffff;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
ap->prd[idx].addr = cpu_to_le32(addr);
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
idx++;
sg_len -= len;
addr += len;
}
}
if (idx)
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
}
/**
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
* @qc: Metadata associated with taskfile to check
*
* Allow low-level driver to filter ATA PACKET commands, returning
* a status indicating whether or not it is OK to use DMA for the
* supplied PACKET command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS: 0 when ATAPI DMA can be used
* nonzero otherwise
*/
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int rc = 0; /* Assume ATAPI DMA is OK by default */
/* some drives can only do ATAPI DMA on read/write */
if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
struct scsi_cmnd *cmd = qc->scsicmd;
u8 *scsicmd = cmd->cmnd;
switch (scsicmd[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
/* atapi dma maybe ok */
break;
default:
/* turn off atapi dma */
return 1;
}
}
if (ap->ops->check_atapi_dma)
rc = ap->ops->check_atapi_dma(qc);
return rc;
}
/**
* ata_qc_prep - Prepare taskfile for submission
* @qc: Metadata associated with taskfile to be prepared
*
* Prepare ATA taskfile for submission.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_prep(struct ata_queued_cmd *qc)
{
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
ata_fill_sg(qc);
}
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
/**
* ata_sg_init_one - Associate command with memory buffer
* @qc: Command to be associated
* @buf: Memory buffer
* @buflen: Length of memory buffer, in bytes.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a single memory buffer, @buf of byte length @buflen.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
{
qc->flags |= ATA_QCFLAG_SINGLE;
qc->__sg = &qc->sgent;
qc->n_elem = 1;
qc->orig_n_elem = 1;
qc->buf_virt = buf;
qc->nbytes = buflen;
sg_init_one(&qc->sgent, buf, buflen);
}
/**
* ata_sg_init - Associate command with scatter-gather table.
* @qc: Command to be associated
* @sg: Scatter-gather table.
* @n_elem: Number of elements in s/g table.
*
* Initialize the data-related elements of queued_cmd @qc
* to point to a scatter-gather table @sg, containing @n_elem
* elements.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
unsigned int n_elem)
{
qc->flags |= ATA_QCFLAG_SG;
qc->__sg = sg;
qc->n_elem = n_elem;
qc->orig_n_elem = n_elem;
}
/**
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
* @qc: Command with memory buffer to be mapped.
*
* DMA-map the memory buffer associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
int dir = qc->dma_dir;
struct scatterlist *sg = qc->__sg;
dma_addr_t dma_address;
int trim_sg = 0;
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = sg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
if (qc->tf.flags & ATA_TFLAG_WRITE)
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
qc->pad_len);
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim sg */
sg->length -= qc->pad_len;
if (sg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
sg->length, qc->pad_len);
}
if (trim_sg) {
qc->n_elem--;
goto skip_map;
}
dma_address = dma_map_single(ap->dev, qc->buf_virt,
sg->length, dir);
if (dma_mapping_error(dma_address)) {
/* restore sg */
sg->length += qc->pad_len;
return -1;
}
sg_dma_address(sg) = dma_address;
sg_dma_len(sg) = sg->length;
skip_map:
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
return 0;
}
/**
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
* @qc: Command with scatter-gather table to be mapped.
*
* DMA-map the scatter-gather table associated with queued_cmd @qc.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, negative on error.
*
*/
static int ata_sg_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg = qc->__sg;
struct scatterlist *lsg = &sg[qc->n_elem - 1];
int n_elem, pre_n_elem, dir, trim_sg = 0;
VPRINTK("ENTER, ata%u\n", ap->print_id);
WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
/* we must lengthen transfers to end on a 32-bit boundary */
qc->pad_len = lsg->length & 3;
if (qc->pad_len) {
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
struct scatterlist *psg = &qc->pad_sgent;
unsigned int offset;
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
/*
* psg->page/offset are used to copy to-be-written
* data in this function or read data in ata_sg_clean.
*/
offset = lsg->offset + lsg->length - qc->pad_len;
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
psg->offset = offset_in_page(offset);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
void *addr = kmap_atomic(psg->page, KM_IRQ0);
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
kunmap_atomic(addr, KM_IRQ0);
}
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
/* trim last sg */
lsg->length -= qc->pad_len;
if (lsg->length == 0)
trim_sg = 1;
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
qc->n_elem - 1, lsg->length, qc->pad_len);
}
pre_n_elem = qc->n_elem;
if (trim_sg && pre_n_elem)
pre_n_elem--;
if (!pre_n_elem) {
n_elem = 0;
goto skip_map;
}
dir = qc->dma_dir;
n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
if (n_elem < 1) {
/* restore last sg */
lsg->length += qc->pad_len;
return -1;
}
DPRINTK("%d sg elements mapped\n", n_elem);
skip_map:
qc->n_elem = n_elem;
return 0;
}
/**
* swap_buf_le16 - swap halves of 16-bit words in place
* @buf: Buffer to swap
* @buf_words: Number of 16-bit words in buffer.
*
* Swap halves of 16-bit words if needed to convert from
* little-endian byte order to native cpu byte order, or
* vice-versa.
*
* LOCKING:
* Inherited from caller.
*/
void swap_buf_le16(u16 *buf, unsigned int buf_words)
{
#ifdef __BIG_ENDIAN
unsigned int i;
for (i = 0; i < buf_words; i++)
buf[i] = le16_to_cpu(buf[i]);
#endif /* __BIG_ENDIAN */
}
/**
* ata_data_xfer - Transfer data by PIO
* @adev: device to target
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO.
*
* LOCKING:
* Inherited from caller.
*/
void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int write_data)
{
struct ata_port *ap = adev->ap;
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
if (write_data)
iowrite16_rep(ap->ioaddr.data_addr, buf, words);
else
ioread16_rep(ap->ioaddr.data_addr, buf, words);
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
u16 align_buf[1] = { 0 };
unsigned char *trailing_buf = buf + buflen - 1;
if (write_data) {
memcpy(align_buf, trailing_buf, 1);
iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
} else {
align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
memcpy(trailing_buf, align_buf, 1);
}
}
}
/**
* ata_data_xfer_noirq - Transfer data by PIO
* @adev: device to target
* @buf: data buffer
* @buflen: buffer length
* @write_data: read/write
*
* Transfer data from/to the device data register by PIO. Do the
* transfer with interrupts disabled.
*
* LOCKING:
* Inherited from caller.
*/
void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
unsigned int buflen, int write_data)
{
unsigned long flags;
local_irq_save(flags);
ata_data_xfer(adev, buf, buflen, write_data);
local_irq_restore(flags);
}
/**
* ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
* @qc: Command on going
*
* Transfer ATA_SECT_SIZE of data from/to the ATA device.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sector(struct ata_queued_cmd *qc)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned int offset;
unsigned char *buf;
if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
ap->hsm_task_state = HSM_ST_LAST;
page = sg[qc->cursg].page;
offset = sg[qc->cursg].offset + qc->cursg_ofs;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
if (PageHighMem(page)) {
unsigned long flags;
/* FIXME: use a bounce buffer */
local_irq_save(flags);
buf = kmap_atomic(page, KM_IRQ0);
/* do the actual data transfer */
ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
kunmap_atomic(buf, KM_IRQ0);
local_irq_restore(flags);
} else {
buf = page_address(page);
ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
}
qc->curbytes += ATA_SECT_SIZE;
qc->cursg_ofs += ATA_SECT_SIZE;
if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
}
/**
* ata_pio_sectors - Transfer one or many 512-byte sectors.
* @qc: Command on going
*
* Transfer one or many ATA_SECT_SIZE of data from/to the
* ATA device for the DRQ request.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_pio_sectors(struct ata_queued_cmd *qc)
{
if (is_multi_taskfile(&qc->tf)) {
/* READ/WRITE MULTIPLE */
unsigned int nsect;
WARN_ON(qc->dev->multi_count == 0);
nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
qc->dev->multi_count);
while (nsect--)
ata_pio_sector(qc);
} else
ata_pio_sector(qc);
}
/**
* atapi_send_cdb - Write CDB bytes to hardware
* @ap: Port to which ATAPI device is attached.
* @qc: Taskfile currently active
*
* When device has indicated its readiness to accept
* a CDB, this function is called. Send the CDB.
*
* LOCKING:
* caller.
*/
static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
{
/* send SCSI cdb */
DPRINTK("send cdb\n");
WARN_ON(qc->dev->cdb_len < 12);
ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
ata_altstatus(ap); /* flush */
switch (qc->tf.protocol) {
case ATA_PROT_ATAPI:
ap->hsm_task_state = HSM_ST;
break;
case ATA_PROT_ATAPI_NODATA:
ap->hsm_task_state = HSM_ST_LAST;
break;
case ATA_PROT_ATAPI_DMA:
ap->hsm_task_state = HSM_ST_LAST;
/* initiate bmdma */
ap->ops->bmdma_start(qc);
break;
}
}
/**
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
* @bytes: number of bytes
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*
*/
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
{
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct scatterlist *sg = qc->__sg;
struct ata_port *ap = qc->ap;
struct page *page;
unsigned char *buf;
unsigned int offset, count;
if (qc->curbytes + bytes >= qc->nbytes)
ap->hsm_task_state = HSM_ST_LAST;
next_sg:
if (unlikely(qc->cursg >= qc->n_elem)) {
/*
* The end of qc->sg is reached and the device expects
* more data to transfer. In order not to overrun qc->sg
* and fulfill length specified in the byte count register,
* - for read case, discard trailing data from the device
* - for write case, padding zero data to the device
*/
u16 pad_buf[1] = { 0 };
unsigned int words = bytes >> 1;
unsigned int i;
if (words) /* warning if bytes > 1 */
ata_dev_printk(qc->dev, KERN_WARNING,
"%u bytes trailing data\n", bytes);
for (i = 0; i < words; i++)
ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
ap->hsm_task_state = HSM_ST_LAST;
return;
}
sg = &qc->__sg[qc->cursg];
page = sg->page;
offset = sg->offset + qc->cursg_ofs;
/* get the current page and offset */
page = nth_page(page, (offset >> PAGE_SHIFT));
offset %= PAGE_SIZE;
/* don't overrun current sg */
count = min(sg->length - qc->cursg_ofs, bytes);
/* don't cross page boundaries */
count = min(count, (unsigned int)PAGE_SIZE - offset);
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
if (PageHighMem(page)) {
unsigned long flags;
/* FIXME: use bounce buffer */
local_irq_save(flags);
buf = kmap_atomic(page, KM_IRQ0);
/* do the actual data transfer */
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
kunmap_atomic(buf, KM_IRQ0);
local_irq_restore(flags);
} else {
buf = page_address(page);
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
}
bytes -= count;
qc->curbytes += count;
qc->cursg_ofs += count;
if (qc->cursg_ofs == sg->length) {
qc->cursg++;
qc->cursg_ofs = 0;
}
if (bytes)
goto next_sg;
}
/**
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
* @qc: Command on going
*
* Transfer Transfer data from/to the ATAPI device.
*
* LOCKING:
* Inherited from caller.
*/
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *dev = qc->dev;
unsigned int ireason, bc_lo, bc_hi, bytes;
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
/* Abuse qc->result_tf for temp storage of intermediate TF
* here to save some kernel stack usage.
* For normal completion, qc->result_tf is not relevant. For
* error, qc->result_tf is later overwritten by ata_qc_complete().
* So, the correctness of qc->result_tf is not affected.
*/
ap->ops->tf_read(ap, &qc->result_tf);
ireason = qc->result_tf.nsect;
bc_lo = qc->result_tf.lbam;
bc_hi = qc->result_tf.lbah;
bytes = (bc_hi << 8) | bc_lo;
/* shall be cleared to zero, indicating xfer of data */
if (ireason & (1 << 0))
goto err_out;
/* make sure transfer direction matches expected */
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
if (do_write != i_write)
goto err_out;
VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
__atapi_pio_bytes(qc, bytes);
return;
err_out:
ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
}
/**
* ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
* @ap: the target ata_port
* @qc: qc on going
*
* RETURNS:
* 1 if ok in workqueue, 0 otherwise.
*/
static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
{
if (qc->tf.flags & ATA_TFLAG_POLLING)
return 1;
if (ap->hsm_task_state == HSM_ST_FIRST) {
if (qc->tf.protocol == ATA_PROT_PIO &&
(qc->tf.flags & ATA_TFLAG_WRITE))
return 1;
if (is_atapi_taskfile(&qc->tf) &&
!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
return 1;
}
return 0;
}
/**
* ata_hsm_qc_complete - finish a qc running on standard HSM
* @qc: Command to complete
* @in_wq: 1 if called from workqueue, 0 otherwise
*
* Finish @qc which is running on standard HSM.
*
* LOCKING:
* If @in_wq is zero, spin_lock_irqsave(host lock).
* Otherwise, none on entry and grabs host lock.
*/
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
{
struct ata_port *ap = qc->ap;
unsigned long flags;
if (ap->ops->error_handler) {
if (in_wq) {
spin_lock_irqsave(ap->lock, flags);
/* EH might have kicked in while host lock is
* released.
*/
qc = ata_qc_from_tag(ap, qc->tag);
if (qc) {
if (likely(!(qc->err_mask & AC_ERR_HSM))) {
ap->ops->irq_on(ap);
ata_qc_complete(qc);
} else
ata_port_freeze(ap);
}
spin_unlock_irqrestore(ap->lock, flags);
} else {
if (likely(!(qc->err_mask & AC_ERR_HSM)))
ata_qc_complete(qc);
else
ata_port_freeze(ap);
}
} else {
if (in_wq) {
spin_lock_irqsave(ap->lock, flags);
ap->ops->irq_on(ap);
ata_qc_complete(qc);
spin_unlock_irqrestore(ap->lock, flags);
} else
ata_qc_complete(qc);
}
ata_altstatus(ap); /* flush */
}
/**
* ata_hsm_move - move the HSM to the next state.
* @ap: the target ata_port
* @qc: qc on going
* @status: current device status
* @in_wq: 1 if called from workqueue, 0 otherwise
*
* RETURNS:
* 1 when poll next status needed, 0 otherwise.
*/
int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
u8 status, int in_wq)
{
unsigned long flags = 0;
int poll_next;
WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
/* Make sure ata_qc_issue_prot() does not throw things
* like DMA polling into the workqueue. Notice that
* in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
*/
WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
fsm_start:
DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
switch (ap->hsm_task_state) {
case HSM_ST_FIRST:
/* Send first data block or PACKET CDB */
/* If polling, we will stay in the work queue after
* sending the data. Otherwise, interrupt handler
* takes over after sending the data.
*/
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
/* check device status */
if (unlikely((status & ATA_DRQ) == 0)) {
/* handle BSY=0, DRQ=0 as error */
if (likely(status & (ATA_ERR | ATA_DF)))
/* device stops HSM for abort/error */
qc->err_mask |= AC_ERR_DEV;
else
/* HSM violation. Let EH handle this */
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* Device should not ask for data transfer (DRQ=1)
* when it finds something wrong.
* We ignore DRQ here and stop the HSM by
* changing hsm_task_state to HSM_ST_ERR and
* let the EH abort the command or reset the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
"error, dev_stat 0x%X\n", status);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* Send the CDB (atapi) or the first data block (ata pio out).
* During the state transition, interrupt handler shouldn't
* be invoked before the data transfer is complete and
* hsm_task_state is changed. Hence, the following locking.
*/
if (in_wq)
spin_lock_irqsave(ap->lock, flags);
if (qc->tf.protocol == ATA_PROT_PIO) {
/* PIO data out protocol.
* send first data block.
*/
/* ata_pio_sectors() might change the state
* to HSM_ST_LAST. so, the state is changed here
* before ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST;
ata_pio_sectors(qc);
ata_altstatus(ap); /* flush */
} else
/* send CDB */
atapi_send_cdb(ap, qc);
if (in_wq)
spin_unlock_irqrestore(ap->lock, flags);
/* if polling, ata_pio_task() handles the rest.
* otherwise, interrupt handler takes over from here.
*/
break;
case HSM_ST:
/* complete command or read/write the data register */
if (qc->tf.protocol == ATA_PROT_ATAPI) {
/* ATAPI PIO protocol */
if ((status & ATA_DRQ) == 0) {
/* No more data to transfer or device error.
* Device error will be tagged in HSM_ST_LAST.
*/
ap->hsm_task_state = HSM_ST_LAST;
goto fsm_start;
}
/* Device should not ask for data transfer (DRQ=1)
* when it finds something wrong.
* We ignore DRQ here and stop the HSM by
* changing hsm_task_state to HSM_ST_ERR and
* let the EH abort the command or reset the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
"device error, dev_stat 0x%X\n",
status);
qc->err_mask |= AC_ERR_HSM;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
atapi_pio_bytes(qc);
if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
/* bad ireason reported by device */
goto fsm_start;
} else {
/* ATA PIO protocol */
if (unlikely((status & ATA_DRQ) == 0)) {
/* handle BSY=0, DRQ=0 as error */
if (likely(status & (ATA_ERR | ATA_DF)))
/* device stops HSM for abort/error */
qc->err_mask |= AC_ERR_DEV;
else
/* HSM violation. Let EH handle this.
* Phantom devices also trigger this
* condition. Mark hint.
*/
qc->err_mask |= AC_ERR_HSM |
AC_ERR_NODEV_HINT;
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* For PIO reads, some devices may ask for
* data transfer (DRQ=1) alone with ERR=1.
* We respect DRQ here and transfer one
* block of junk data before changing the
* hsm_task_state to HSM_ST_ERR.
*
* For PIO writes, ERR=1 DRQ=1 doesn't make
* sense since the data block has been
* transferred to the device.
*/
if (unlikely(status & (ATA_ERR | ATA_DF))) {
/* data might be corrputed */
qc->err_mask |= AC_ERR_DEV;
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
ata_pio_sectors(qc);
ata_altstatus(ap);
status = ata_wait_idle(ap);
}
if (status & (ATA_BUSY | ATA_DRQ))
qc->err_mask |= AC_ERR_HSM;
/* ata_pio_sectors() might change the
* state to HSM_ST_LAST. so, the state
* is changed after ata_pio_sectors().
*/
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
ata_pio_sectors(qc);
if (ap->hsm_task_state == HSM_ST_LAST &&
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* all data read */
ata_altstatus(ap);
status = ata_wait_idle(ap);
goto fsm_start;
}
}
ata_altstatus(ap); /* flush */
poll_next = 1;
break;
case HSM_ST_LAST:
if (unlikely(!ata_ok(status))) {
qc->err_mask |= __ac_err_mask(status);
ap->hsm_task_state = HSM_ST_ERR;
goto fsm_start;
}
/* no more data to transfer */
DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
ap->print_id, qc->dev->devno, status);
WARN_ON(qc->err_mask);
ap->hsm_task_state = HSM_ST_IDLE;
/* complete taskfile transaction */
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
case HSM_ST_ERR:
/* make sure qc->err_mask is available to
* know what's wrong and recover
*/
WARN_ON(qc->err_mask == 0);
ap->hsm_task_state = HSM_ST_IDLE;
/* complete taskfile transaction */
ata_hsm_qc_complete(qc, in_wq);
poll_next = 0;
break;
default:
poll_next = 0;
BUG();
}
return poll_next;
}
static void ata_pio_task(struct work_struct *work)
{
struct ata_port *ap =
container_of(work, struct ata_port, port_task.work);
struct ata_queued_cmd *qc = ap->port_task_data;
u8 status;
int poll_next;
fsm_start:
WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
/*
* This is purely heuristic. This is a fast path.
* Sometimes when we enter, BSY will be cleared in
* a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then
* chk-status again. If still busy, queue delayed work.
*/
status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) {
msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) {
ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
return;
}
}
/* move the HSM */
poll_next = ata_hsm_move(ap, qc, status, 1);
/* another command or interrupt handler
* may be running at this point.
*/
if (poll_next)
goto fsm_start;
}
/**
* ata_qc_new - Request an available ATA command, for queueing
* @ap: Port associated with device @dev
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
{
struct ata_queued_cmd *qc = NULL;
unsigned int i;
/* no command while frozen */
if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
return NULL;
/* the last tag is reserved for internal command. */
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
if (!test_and_set_bit(i, &ap->qc_allocated)) {
qc = __ata_qc_from_tag(ap, i);
break;
}
if (qc)
qc->tag = i;
return qc;
}
/**
* ata_qc_new_init - Request an available ATA command, and initialize it
* @dev: Device from whom we request an available command structure
*
* LOCKING:
* None.
*/
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
struct ata_queued_cmd *qc;
qc = ata_qc_new(ap);
if (qc) {
qc->scsicmd = NULL;
qc->ap = ap;
qc->dev = dev;
ata_qc_reinit(qc);
}
return qc;
}
/**
* ata_qc_free - free unused ata_queued_cmd
* @qc: Command to complete
*
* Designed to free unused ata_queued_cmd object
* in case something prevents using it.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_free(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int tag;
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
qc->flags = 0;
tag = qc->tag;
if (likely(ata_tag_valid(tag))) {
qc->tag = ATA_TAG_POISON;
clear_bit(tag, &ap->qc_allocated);
}
}
void __ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
ata_sg_clean(qc);
/* command should be marked inactive atomically with qc completion */
if (qc->tf.protocol == ATA_PROT_NCQ)
ap->sactive &= ~(1 << qc->tag);
else
ap->active_tag = ATA_TAG_POISON;
/* atapi: mark qc as inactive to prevent the interrupt handler
* from completing the command twice later, before the error handler
* is called. (when rc != 0 and atapi request sense is needed)
*/
qc->flags &= ~ATA_QCFLAG_ACTIVE;
ap->qc_active &= ~(1 << qc->tag);
/* call completion callback */
qc->complete_fn(qc);
}
static void fill_result_tf(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
qc->result_tf.flags = qc->tf.flags;
ap->ops->tf_read(ap, &qc->result_tf);
}
/**
* ata_qc_complete - Complete an active ATA command
* @qc: Command to complete
* @err_mask: ATA Status register contents
*
* Indicate to the mid and upper layers that an ATA
* command has completed, with either an ok or not-ok status.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_complete(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* XXX: New EH and old EH use different mechanisms to
* synchronize EH with regular execution path.
*
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
* Normal execution path is responsible for not accessing a
* failed qc. libata core enforces the rule by returning NULL
* from ata_qc_from_tag() for failed qcs.
*
* Old EH depends on ata_qc_complete() nullifying completion
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
* not synchronize with interrupt handler. Only PIO task is
* taken care of.
*/
if (ap->ops->error_handler) {
WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
if (unlikely(qc->err_mask))
qc->flags |= ATA_QCFLAG_FAILED;
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
if (!ata_tag_internal(qc->tag)) {
/* always fill result TF for failed qc */
fill_result_tf(qc);
ata_qc_schedule_eh(qc);
return;
}
}
/* read result TF if requested */
if (qc->flags & ATA_QCFLAG_RESULT_TF)
fill_result_tf(qc);
__ata_qc_complete(qc);
} else {
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
return;
/* read result TF if failed or requested */
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
fill_result_tf(qc);
__ata_qc_complete(qc);
}
}
/**
* ata_qc_complete_multiple - Complete multiple qcs successfully
* @ap: port in question
* @qc_active: new qc_active mask
* @finish_qc: LLDD callback invoked before completing a qc
*
* Complete in-flight commands. This functions is meant to be
* called from low-level driver's interrupt routine to complete
* requests normally. ap->qc_active and @qc_active is compared
* and commands are completed accordingly.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of completed commands on success, -errno otherwise.
*/
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
void (*finish_qc)(struct ata_queued_cmd *))
{
int nr_done = 0;
u32 done_mask;
int i;
done_mask = ap->qc_active ^ qc_active;
if (unlikely(done_mask & qc_active)) {
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
"(%08x->%08x)\n", ap->qc_active, qc_active);
return -EINVAL;
}
for (i = 0; i < ATA_MAX_QUEUE; i++) {
struct ata_queued_cmd *qc;
if (!(done_mask & (1 << i)))
continue;
if ((qc = ata_qc_from_tag(ap, i))) {
if (finish_qc)
finish_qc(qc);
ata_qc_complete(qc);
nr_done++;
}
}
return nr_done;
}
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
switch (qc->tf.protocol) {
case ATA_PROT_NCQ:
case ATA_PROT_DMA:
case ATA_PROT_ATAPI_DMA:
return 1;
case ATA_PROT_ATAPI:
case ATA_PROT_PIO:
if (ap->flags & ATA_FLAG_PIO_DMA)
return 1;
/* fall through */
default:
return 0;
}
/* never reached */
}
/**
* ata_qc_issue - issue taskfile to device
* @qc: command to issue to device
*
* Prepare an ATA command to submission to device.
* This includes mapping the data into a DMA-able
* area, filling in the S/G table, and finally
* writing the taskfile to hardware, starting the command.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* Make sure only one non-NCQ command is outstanding. The
* check is skipped for old EH because it reuses active qc to
* request ATAPI sense.
*/
WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
if (qc->tf.protocol == ATA_PROT_NCQ) {
WARN_ON(ap->sactive & (1 << qc->tag));
ap->sactive |= 1 << qc->tag;
} else {
WARN_ON(ap->sactive);
ap->active_tag = qc->tag;
}
qc->flags |= ATA_QCFLAG_ACTIVE;
ap->qc_active |= 1 << qc->tag;
if (ata_should_dma_map(qc)) {
if (qc->flags & ATA_QCFLAG_SG) {
if (ata_sg_setup(qc))
goto sg_err;
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
if (ata_sg_setup_one(qc))
goto sg_err;
}
} else {
qc->flags &= ~ATA_QCFLAG_DMAMAP;
}
ap->ops->qc_prep(qc);
qc->err_mask |= ap->ops->qc_issue(qc);
if (unlikely(qc->err_mask))
goto err;
return;
sg_err:
qc->flags &= ~ATA_QCFLAG_DMAMAP;
qc->err_mask |= AC_ERR_SYSTEM;
err:
ata_qc_complete(qc);
}
/**
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
* @qc: command to issue to device
*
* Using various libata functions and hooks, this function
* starts an ATA command. ATA commands are grouped into
* classes called "protocols", and issuing each type of protocol
* is slightly different.
*
* May be used as the qc_issue() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Zero on success, AC_ERR_* mask on failure
*/
unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
/* Use polling pio if the LLD doesn't handle
* interrupt driven pio and atapi CDB interrupt.
*/
if (ap->flags & ATA_FLAG_PIO_POLLING) {
switch (qc->tf.protocol) {
case ATA_PROT_PIO:
case ATA_PROT_NODATA:
case ATA_PROT_ATAPI:
case ATA_PROT_ATAPI_NODATA:
qc->tf.flags |= ATA_TFLAG_POLLING;
break;
case ATA_PROT_ATAPI_DMA:
if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
/* see ata_dma_blacklisted() */
BUG();
break;
default:
break;
}
}
/* Some controllers show flaky interrupt behavior after
* setting xfer mode. Use polling instead.
*/
if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
qc->tf.feature == SETFEATURES_XFER) &&
(ap->flags & ATA_FLAG_SETXFER_POLLING))
qc->tf.flags |= ATA_TFLAG_POLLING;
/* select the device */
ata_dev_select(ap, qc->dev->devno, 1, 0);
/* start the command */
switch (qc->tf.protocol) {
case ATA_PROT_NODATA:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST_LAST;
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
case ATA_PROT_DMA:
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->ops->bmdma_start(qc); /* initiate bmdma */
ap->hsm_task_state = HSM_ST_LAST;
break;
case ATA_PROT_PIO:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
if (qc->tf.flags & ATA_TFLAG_WRITE) {
/* PIO data out protocol */
ap->hsm_task_state = HSM_ST_FIRST;
ata_port_queue_task(ap, ata_pio_task, qc, 0);
/* always send first data block using
* the ata_pio_task() codepath.
*/
} else {
/* PIO data in protocol */
ap->hsm_task_state = HSM_ST;
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_port_queue_task(ap, ata_pio_task, qc, 0);
/* if polling, ata_pio_task() handles the rest.
* otherwise, interrupt handler takes over from here.
*/
}
break;
case ATA_PROT_ATAPI:
case ATA_PROT_ATAPI_NODATA:
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_qc_set_polling(qc);
ata_tf_to_host(ap, &qc->tf);
ap->hsm_task_state = HSM_ST_FIRST;
/* send cdb by polling if no cdb interrupt */
if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
(qc->tf.flags & ATA_TFLAG_POLLING))
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
case ATA_PROT_ATAPI_DMA:
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_setup(qc); /* set up bmdma */
ap->hsm_task_state = HSM_ST_FIRST;
/* send cdb by polling if no cdb interrupt */
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
ata_port_queue_task(ap, ata_pio_task, qc, 0);
break;
default:
WARN_ON(1);
return AC_ERR_SYSTEM;
}
return 0;
}
/**
* ata_host_intr - Handle host interrupt for given (port, task)
* @ap: Port on which interrupt arrived (possibly...)
* @qc: Taskfile currently active in engine
*
* Handle host interrupt for given queued command. Currently,
* only DMA interrupts are handled. All other commands are
* handled via polling with interrupts disabled (nIEN bit).
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* One if interrupt was handled, zero if not (shared irq).
*/
inline unsigned int ata_host_intr (struct ata_port *ap,
struct ata_queued_cmd *qc)
{
struct ata_eh_info *ehi = &ap->eh_info;
u8 status, host_stat = 0;
VPRINTK("ata%u: protocol %d task_state %d\n",
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
/* Check whether we are expecting interrupt in this state */
switch (ap->hsm_task_state) {
case HSM_ST_FIRST:
/* Some pre-ATAPI-4 devices assert INTRQ
* at this state when ready to receive CDB.
*/
/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
* The flag was turned on only for atapi devices.
* No need to check is_atapi_taskfile(&qc->tf) again.
*/
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
goto idle_irq;
break;
case HSM_ST_LAST:
if (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
/* check status of DMA engine */
host_stat = ap->ops->bmdma_status(ap);
VPRINTK("ata%u: host_stat 0x%X\n",
ap->print_id, host_stat);
/* if it's not our irq... */
if (!(host_stat & ATA_DMA_INTR))
goto idle_irq;
/* before we do anything else, clear DMA-Start bit */
ap->ops->bmdma_stop(qc);
if (unlikely(host_stat & ATA_DMA_ERR)) {
/* error when transfering data to/from memory */
qc->err_mask |= AC_ERR_HOST_BUS;
ap->hsm_task_state = HSM_ST_ERR;
}
}
break;
case HSM_ST:
break;
default:
goto idle_irq;
}
/* check altstatus */
status = ata_altstatus(ap);
if (status & ATA_BUSY)
goto idle_irq;
/* check main status, clearing INTRQ */
status = ata_chk_status(ap);
if (unlikely(status & ATA_BUSY))
goto idle_irq;
/* ack bmdma irq events */
ap->ops->irq_clear(ap);
ata_hsm_move(ap, qc, status, 0);
if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_DMA))
ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
return 1; /* irq handled */
idle_irq:
ap->stats.idle_irq++;
#ifdef ATA_IRQ_TRAP
if ((ap->stats.idle_irq % 1000) == 0) {
ap->ops->irq_ack(ap, 0); /* debug trap */
ata_port_printk(ap, KERN_WARNING, "irq trap\n");
return 1;
}
#endif
return 0; /* irq not handled */
}
/**
* ata_interrupt - Default ATA host interrupt handler
* @irq: irq line (unused)
* @dev_instance: pointer to our ata_host information structure
*
* Default interrupt handler for PCI IDE devices. Calls
* ata_host_intr() for each port that is not disabled.
*
* LOCKING:
* Obtains host lock during operation.
*
* RETURNS:
* IRQ_NONE or IRQ_HANDLED.
*/
irqreturn_t ata_interrupt (int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap;
ap = host->ports[i];
if (ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
(qc->flags & ATA_QCFLAG_ACTIVE))
handled |= ata_host_intr(ap, qc);
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
/**
* sata_scr_valid - test whether SCRs are accessible
* @ap: ATA port to test SCR accessibility for
*
* Test whether SCRs are accessible for @ap.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if SCRs are accessible, 0 otherwise.
*/
int sata_scr_valid(struct ata_port *ap)
{
return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
}
/**
* sata_scr_read - read SCR register of the specified port
* @ap: ATA port to read SCR for
* @reg: SCR to read
* @val: Place to store read value
*
* Read SCR register @reg of @ap into *@val. This function is
* guaranteed to succeed if the cable type of the port is SATA
* and the port implements ->scr_read.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
{
if (sata_scr_valid(ap)) {
*val = ap->ops->scr_read(ap, reg);
return 0;
}
return -EOPNOTSUPP;
}
/**
* sata_scr_write - write SCR register of the specified port
* @ap: ATA port to write SCR for
* @reg: SCR to write
* @val: value to write
*
* Write @val to SCR register @reg of @ap. This function is
* guaranteed to succeed if the cable type of the port is SATA
* and the port implements ->scr_read.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write(struct ata_port *ap, int reg, u32 val)
{
if (sata_scr_valid(ap)) {
ap->ops->scr_write(ap, reg, val);
return 0;
}
return -EOPNOTSUPP;
}
/**
* sata_scr_write_flush - write SCR register of the specified port and flush
* @ap: ATA port to write SCR for
* @reg: SCR to write
* @val: value to write
*
* This function is identical to sata_scr_write() except that this
* function performs flush after writing to the register.
*
* LOCKING:
* None.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
{
if (sata_scr_valid(ap)) {
ap->ops->scr_write(ap, reg, val);
ap->ops->scr_read(ap, reg);
return 0;
}
return -EOPNOTSUPP;
}
/**
* ata_port_online - test whether the given port is online
* @ap: ATA port to test
*
* Test whether @ap is online. Note that this function returns 0
* if online status of @ap cannot be obtained, so
* ata_port_online(ap) != !ata_port_offline(ap).
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if the port online status is available and online.
*/
int ata_port_online(struct ata_port *ap)
{
u32 sstatus;
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
return 1;
return 0;
}
/**
* ata_port_offline - test whether the given port is offline
* @ap: ATA port to test
*
* Test whether @ap is offline. Note that this function returns
* 0 if offline status of @ap cannot be obtained, so
* ata_port_online(ap) != !ata_port_offline(ap).
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if the port offline status is available and offline.
*/
int ata_port_offline(struct ata_port *ap)
{
u32 sstatus;
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
return 1;
return 0;
}
int ata_flush_cache(struct ata_device *dev)
{
unsigned int err_mask;
u8 cmd;
if (!ata_try_flush_cache(dev))
return 0;
if (dev->flags & ATA_DFLAG_FLUSH_EXT)
cmd = ATA_CMD_FLUSH_EXT;
else
cmd = ATA_CMD_FLUSH;
err_mask = ata_do_simple_cmd(dev, cmd);
if (err_mask) {
ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
return -EIO;
}
return 0;
}
#ifdef CONFIG_PM
static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
unsigned int action, unsigned int ehi_flags,
int wait)
{
unsigned long flags;
int i, rc;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
/* Previous resume operation might still be in
* progress. Wait for PM_PENDING to clear.
*/
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
ata_port_wait_eh(ap);
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
}
/* request PM ops to EH */
spin_lock_irqsave(ap->lock, flags);
ap->pm_mesg = mesg;
if (wait) {
rc = 0;
ap->pm_result = &rc;
}
ap->pflags |= ATA_PFLAG_PM_PENDING;
ap->eh_info.action |= action;
ap->eh_info.flags |= ehi_flags;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait and check result */
if (wait) {
ata_port_wait_eh(ap);
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
if (rc)
return rc;
}
}
return 0;
}
/**
* ata_host_suspend - suspend host
* @host: host to suspend
* @mesg: PM message
*
* Suspend @host. Actual operation is performed by EH. This
* function requests EH to perform PM operations and waits for EH
* to finish.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
{
int i, j, rc;
rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
if (rc)
goto fail;
/* EH is quiescent now. Fail if we have any ready device.
* This happens if hotplug occurs between completion of device
* suspension and here.
*/
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
for (j = 0; j < ATA_MAX_DEVICES; j++) {
struct ata_device *dev = &ap->device[j];
if (ata_dev_ready(dev)) {
ata_port_printk(ap, KERN_WARNING,
"suspend failed, device %d "
"still active\n", dev->devno);
rc = -EBUSY;
goto fail;
}
}
}
host->dev->power.power_state = mesg;
return 0;
fail:
ata_host_resume(host);
return rc;
}
/**
* ata_host_resume - resume host
* @host: host to resume
*
* Resume @host. Actual operation is performed by EH. This
* function requests EH to perform PM operations and returns.
* Note that all resume operations are performed parallely.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_host_resume(struct ata_host *host)
{
ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
host->dev->power.power_state = PMSG_ON;
}
#endif
/**
* ata_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized. Allocates space for PRD table.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_port_start(struct ata_port *ap)
{
struct device *dev = ap->dev;
int rc;
ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
GFP_KERNEL);
if (!ap->prd)
return -ENOMEM;
rc = ata_pad_alloc(ap, dev);
if (rc)
return rc;
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
(unsigned long long)ap->prd_dma);
return 0;
}
/**
* ata_dev_init - Initialize an ata_device structure
* @dev: Device structure to initialize
*
* Initialize @dev in preparation for probing.
*
* LOCKING:
* Inherited from caller.
*/
void ata_dev_init(struct ata_device *dev)
{
struct ata_port *ap = dev->ap;
unsigned long flags;
/* SATA spd limit is bound to the first device */
ap->sata_spd_limit = ap->hw_sata_spd_limit;
/* High bits of dev->flags are used to record warm plug
* requests which occur asynchronously. Synchronize using
* host lock.
*/
spin_lock_irqsave(ap->lock, flags);
dev->flags &= ~ATA_DFLAG_INIT_MASK;
spin_unlock_irqrestore(ap->lock, flags);
memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
dev->pio_mask = UINT_MAX;
dev->mwdma_mask = UINT_MAX;
dev->udma_mask = UINT_MAX;
}
/**
* ata_port_init - Initialize an ata_port structure
* @ap: Structure to initialize
* @host: Collection of hosts to which @ap belongs
* @ent: Probe information provided by low-level driver
* @port_no: Port number associated with this ata_port
*
* Initialize a new ata_port structure.
*
* LOCKING:
* Inherited from caller.
*/
void ata_port_init(struct ata_port *ap, struct ata_host *host,
const struct ata_probe_ent *ent, unsigned int port_no)
{
unsigned int i;
ap->lock = &host->lock;
ap->flags = ATA_FLAG_DISABLED;
ap->print_id = ata_print_id++;
ap->ctl = ATA_DEVCTL_OBS;
ap->host = host;
ap->dev = ent->dev;
ap->port_no = port_no;
if (port_no == 1 && ent->pinfo2) {
ap->pio_mask = ent->pinfo2->pio_mask;
ap->mwdma_mask = ent->pinfo2->mwdma_mask;
ap->udma_mask = ent->pinfo2->udma_mask;
ap->flags |= ent->pinfo2->flags;
ap->ops = ent->pinfo2->port_ops;
} else {
ap->pio_mask = ent->pio_mask;
ap->mwdma_mask = ent->mwdma_mask;
ap->udma_mask = ent->udma_mask;
ap->flags |= ent->port_flags;
ap->ops = ent->port_ops;
}
ap->hw_sata_spd_limit = UINT_MAX;
ap->active_tag = ATA_TAG_POISON;
ap->last_ctl = 0xFF;
#if defined(ATA_VERBOSE_DEBUG)
/* turn on all debugging levels */
ap->msg_enable = 0x00FF;
#elif defined(ATA_DEBUG)
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
#else
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
#endif
INIT_DELAYED_WORK(&ap->port_task, NULL);
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
INIT_LIST_HEAD(&ap->eh_done_q);
init_waitqueue_head(&ap->eh_wait_q);
/* set cable type */
ap->cbl = ATA_CBL_NONE;
if (ap->flags & ATA_FLAG_SATA)
ap->cbl = ATA_CBL_SATA;
for (i = 0; i < ATA_MAX_DEVICES; i++) {
struct ata_device *dev = &ap->device[i];
dev->ap = ap;
dev->devno = i;
ata_dev_init(dev);
}
#ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1;
ap->stats.idle_irq = 1;
#endif
memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
}
/**
* ata_port_init_shost - Initialize SCSI host associated with ATA port
* @ap: ATA port to initialize SCSI host for
* @shost: SCSI host associated with @ap
*
* Initialize SCSI host @shost associated with ATA port @ap.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
{
ap->scsi_host = shost;
shost->unique_id = ap->print_id;
shost->max_id = 16;
shost->max_lun = 1;
shost->max_channel = 1;
shost->max_cmd_len = 16;
}
/**
* ata_port_add - Attach low-level ATA driver to system
* @ent: Information provided by low-level driver
* @host: Collections of ports to which we add
* @port_no: Port number associated with this host
*
* Attach low-level ATA driver to system.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* New ata_port on success, for NULL on error.
*/
static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
struct ata_host *host,
unsigned int port_no)
{
struct Scsi_Host *shost;
struct ata_port *ap;
DPRINTK("ENTER\n");
if (!ent->port_ops->error_handler &&
!(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
printk(KERN_ERR "ata%u: no reset mechanism available\n",
port_no);
return NULL;
}
shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
if (!shost)
return NULL;
shost->transportt = &ata_scsi_transport_template;
ap = ata_shost_to_port(shost);
ata_port_init(ap, host, ent, port_no);
ata_port_init_shost(ap, shost);
return ap;
}
static void ata_host_release(struct device *gendev, void *res)
{
struct ata_host *host = dev_get_drvdata(gendev);
int i;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap && ap->ops->port_stop)
ap->ops->port_stop(ap);
}
if (host->ops->host_stop)
host->ops->host_stop(host);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap)
scsi_host_put(ap->scsi_host);
host->ports[i] = NULL;
}
dev_set_drvdata(gendev, NULL);
}
/**
* ata_sas_host_init - Initialize a host struct
* @host: host to initialize
* @dev: device host is attached to
* @flags: host flags
* @ops: port_ops
*
* LOCKING:
* PCI/etc. bus probe sem.
*
*/
void ata_host_init(struct ata_host *host, struct device *dev,
unsigned long flags, const struct ata_port_operations *ops)
{
spin_lock_init(&host->lock);
host->dev = dev;
host->flags = flags;
host->ops = ops;
}
/**
* ata_device_add - Register hardware device with ATA and SCSI layers
* @ent: Probe information describing hardware device to be registered
*
* This function processes the information provided in the probe
* information struct @ent, allocates the necessary ATA and SCSI
* host information structures, initializes them, and registers
* everything with requisite kernel subsystems.
*
* This function requests irqs, probes the ATA bus, and probes
* the SCSI bus.
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Number of ports registered. Zero on error (no ports registered).
*/
int ata_device_add(const struct ata_probe_ent *ent)
{
unsigned int i;
struct device *dev = ent->dev;
struct ata_host *host;
int rc;
DPRINTK("ENTER\n");
if (ent->irq == 0) {
dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
return 0;
}
if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
return 0;
/* alloc a container for our list of ATA ports (buses) */
host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
(ent->n_ports * sizeof(void *)), GFP_KERNEL);
if (!host)
goto err_out;
devres_add(dev, host);
dev_set_drvdata(dev, host);
ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
host->n_ports = ent->n_ports;
host->irq = ent->irq;
host->irq2 = ent->irq2;
host->iomap = ent->iomap;
host->private_data = ent->private_data;
/* register each port bound to this device */
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap;
unsigned long xfer_mode_mask;
int irq_line = ent->irq;
ap = ata_port_add(ent, host, i);
host->ports[i] = ap;
if (!ap)
goto err_out;
/* dummy? */
if (ent->dummy_port_mask & (1 << i)) {
ata_port_printk(ap, KERN_INFO, "DUMMY\n");
ap->ops = &ata_dummy_port_ops;
continue;
}
/* start port */
rc = ap->ops->port_start(ap);
if (rc) {
host->ports[i] = NULL;
scsi_host_put(ap->scsi_host);
goto err_out;
}
/* Report the secondary IRQ for second channel legacy */
if (i == 1 && ent->irq2)
irq_line = ent->irq2;
xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
(ap->pio_mask << ATA_SHIFT_PIO);
/* print per-port info to dmesg */
ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
"ctl 0x%p bmdma 0x%p irq %d\n",
ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
ata_mode_string(xfer_mode_mask),
ap->ioaddr.cmd_addr,
ap->ioaddr.ctl_addr,
ap->ioaddr.bmdma_addr,
irq_line);
/* freeze port before requesting IRQ */
ata_eh_freeze_port(ap);
}
/* obtain irq, that may be shared between channels */
rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
ent->irq_flags, DRV_NAME, host);
if (rc) {
dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
ent->irq, rc);
goto err_out;
}
/* do we have a second IRQ for the other channel, eg legacy mode */
if (ent->irq2) {
/* We will get weird core code crashes later if this is true
so trap it now */
BUG_ON(ent->irq == ent->irq2);
rc = devm_request_irq(dev, ent->irq2,
ent->port_ops->irq_handler, ent->irq_flags,
DRV_NAME, host);
if (rc) {
dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
ent->irq2, rc);
goto err_out;
}
}
/* resource acquisition complete */
devres_remove_group(dev, ata_device_add);
/* perform each probe synchronously */
DPRINTK("probe begin\n");
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
u32 scontrol;
int rc;
/* init sata_spd_limit to the current value */
if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
int spd = (scontrol >> 4) & 0xf;
ap->hw_sata_spd_limit &= (1 << spd) - 1;
}
ap->sata_spd_limit = ap->hw_sata_spd_limit;
rc = scsi_add_host(ap->scsi_host, dev);
if (rc) {
ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
/* FIXME: do something useful here */
/* FIXME: handle unconditional calls to
* scsi_scan_host and ata_host_remove, below,
* at the very least
*/
}
if (ap->ops->error_handler) {
struct ata_eh_info *ehi = &ap->eh_info;
unsigned long flags;
ata_port_probe(ap);
/* kick EH for boot probing */
spin_lock_irqsave(ap->lock, flags);
ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
ehi->action |= ATA_EH_SOFTRESET;
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
ap->pflags |= ATA_PFLAG_LOADING;
ata_port_schedule_eh(ap);
spin_unlock_irqrestore(ap->lock, flags);
/* wait for EH to finish */
ata_port_wait_eh(ap);
} else {
DPRINTK("ata%u: bus probe begin\n", ap->print_id);
rc = ata_bus_probe(ap);
DPRINTK("ata%u: bus probe end\n", ap->print_id);
if (rc) {
/* FIXME: do something useful here?
* Current libata behavior will
* tear down everything when
* the module is removed
* or the h/w is unplugged.
*/
}
}
}
/* probes are done, now scan each port's disk(s) */
DPRINTK("host probe begin\n");
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
ata_scsi_scan_host(ap);
}
VPRINTK("EXIT, returning %u\n", ent->n_ports);
return ent->n_ports; /* success */
err_out:
devres_release_group(dev, ata_device_add);
VPRINTK("EXIT, returning %d\n", rc);
return 0;
}
/**
* ata_port_detach - Detach ATA port in prepration of device removal
* @ap: ATA port to be detached
*
* Detach all ATA devices and the associated SCSI devices of @ap;
* then, remove the associated SCSI host. @ap is guaranteed to
* be quiescent on return from this function.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_port_detach(struct ata_port *ap)
{
unsigned long flags;
int i;
if (!ap->ops->error_handler)
goto skip_eh;
/* tell EH we're leaving & flush EH */
spin_lock_irqsave(ap->lock, flags);
ap->pflags |= ATA_PFLAG_UNLOADING;
spin_unlock_irqrestore(ap->lock, flags);
ata_port_wait_eh(ap);
/* EH is now guaranteed to see UNLOADING, so no new device
* will be attached. Disable all existing devices.
*/
spin_lock_irqsave(ap->lock, flags);
for (i = 0; i < ATA_MAX_DEVICES; i++)
ata_dev_disable(&ap->device[i]);
spin_unlock_irqrestore(ap->lock, flags);
/* Final freeze & EH. All in-flight commands are aborted. EH
* will be skipped and retrials will be terminated with bad
* target.
*/
spin_lock_irqsave(ap->lock, flags);
ata_port_freeze(ap); /* won't be thawed */
spin_unlock_irqrestore(ap->lock, flags);
ata_port_wait_eh(ap);
/* Flush hotplug task. The sequence is similar to
* ata_port_flush_task().
*/
flush_workqueue(ata_aux_wq);
cancel_delayed_work(&ap->hotplug_task);
flush_workqueue(ata_aux_wq);
skip_eh:
/* remove the associated SCSI host */
scsi_remove_host(ap->scsi_host);
}
/**
* ata_host_detach - Detach all ports of an ATA host
* @host: Host to detach
*
* Detach all ports of @host.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_host_detach(struct ata_host *host)
{
int i;
for (i = 0; i < host->n_ports; i++)
ata_port_detach(host->ports[i]);
}
struct ata_probe_ent *
ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
{
struct ata_probe_ent *probe_ent;
probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
if (!probe_ent) {
printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
kobject_name(&(dev->kobj)));
return NULL;
}
INIT_LIST_HEAD(&probe_ent->node);
probe_ent->dev = dev;
probe_ent->sht = port->sht;
probe_ent->port_flags = port->flags;
probe_ent->pio_mask = port->pio_mask;
probe_ent->mwdma_mask = port->mwdma_mask;
probe_ent->udma_mask = port->udma_mask;
probe_ent->port_ops = port->port_ops;
probe_ent->private_data = port->private_data;
return probe_ent;
}
/**
* ata_std_ports - initialize ioaddr with standard port offsets.
* @ioaddr: IO address structure to be initialized
*
* Utility function which initializes data_addr, error_addr,
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
* device_addr, status_addr, and command_addr to standard offsets
* relative to cmd_addr.
*
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
*/
void ata_std_ports(struct ata_ioports *ioaddr)
{
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
}
#ifdef CONFIG_PCI
/**
* ata_pci_remove_one - PCI layer callback for device removal
* @pdev: PCI device that was removed
*
* PCI layer indicates to libata via this hook that hot-unplug or
* module unload event has occurred. Detach all ports. Resource
* release is handled via devres.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*/
void ata_pci_remove_one(struct pci_dev *pdev)
{
struct device *dev = pci_dev_to_dev(pdev);
struct ata_host *host = dev_get_drvdata(dev);
ata_host_detach(host);
}
/* move to PCI subsystem */
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
{
unsigned long tmp = 0;
switch (bits->width) {
case 1: {
u8 tmp8 = 0;
pci_read_config_byte(pdev, bits->reg, &tmp8);
tmp = tmp8;
break;
}
case 2: {
u16 tmp16 = 0;
pci_read_config_word(pdev, bits->reg, &tmp16);
tmp = tmp16;
break;
}
case 4: {
u32 tmp32 = 0;
pci_read_config_dword(pdev, bits->reg, &tmp32);
tmp = tmp32;
break;
}
default:
return -EINVAL;
}
tmp &= bits->mask;
return (tmp == bits->val) ? 1 : 0;
}
#ifdef CONFIG_PM
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
pci_save_state(pdev);
pci_disable_device(pdev);
if (mesg.event == PM_EVENT_SUSPEND)
pci_set_power_state(pdev, PCI_D3hot);
}
int ata_pci_device_do_resume(struct pci_dev *pdev)
{
int rc;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
rc = pcim_enable_device(pdev);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to enable device after resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
return 0;
}
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc = 0;
rc = ata_host_suspend(host, mesg);
if (rc)
return rc;
ata_pci_device_do_suspend(pdev, mesg);
return 0;
}
int ata_pci_device_resume(struct pci_dev *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc == 0)
ata_host_resume(host);
return rc;
}
#endif /* CONFIG_PM */
#endif /* CONFIG_PCI */
static int __init ata_init(void)
{
ata_probe_timeout *= HZ;
ata_wq = create_workqueue("ata");
if (!ata_wq)
return -ENOMEM;
ata_aux_wq = create_singlethread_workqueue("ata_aux");
if (!ata_aux_wq) {
destroy_workqueue(ata_wq);
return -ENOMEM;
}
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0;
}
static void __exit ata_exit(void)
{
destroy_workqueue(ata_wq);
destroy_workqueue(ata_aux_wq);
}
subsys_initcall(ata_init);
module_exit(ata_exit);
static unsigned long ratelimit_time;
static DEFINE_SPINLOCK(ata_ratelimit_lock);
int ata_ratelimit(void)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&ata_ratelimit_lock, flags);
if (time_after(jiffies, ratelimit_time)) {
rc = 1;
ratelimit_time = jiffies + (HZ/5);
} else
rc = 0;
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
return rc;
}
/**
* ata_wait_register - wait until register value changes
* @reg: IO-mapped register
* @mask: Mask to apply to read register value
* @val: Wait condition
* @interval_msec: polling interval in milliseconds
* @timeout_msec: timeout in milliseconds
*
* Waiting for some bits of register to change is a common
* operation for ATA controllers. This function reads 32bit LE
* IO-mapped register @reg and tests for the following condition.
*
* (*@reg & mask) != val
*
* If the condition is met, it returns; otherwise, the process is
* repeated after @interval_msec until timeout.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* The final register value.
*/
u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
unsigned long interval_msec,
unsigned long timeout_msec)
{
unsigned long timeout;
u32 tmp;
tmp = ioread32(reg);
/* Calculate timeout _after_ the first read to make sure
* preceding writes reach the controller before starting to
* eat away the timeout.
*/
timeout = jiffies + (timeout_msec * HZ) / 1000;
while ((tmp & mask) == val && time_before(jiffies, timeout)) {
msleep(interval_msec);
tmp = ioread32(reg);
}
return tmp;
}
/*
* Dummy port_ops
*/
static void ata_dummy_noret(struct ata_port *ap) { }
static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
static u8 ata_dummy_check_status(struct ata_port *ap)
{
return ATA_DRDY;
}
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
{
return AC_ERR_SYSTEM;
}
const struct ata_port_operations ata_dummy_port_ops = {
.port_disable = ata_port_disable,
.check_status = ata_dummy_check_status,
.check_altstatus = ata_dummy_check_status,
.dev_select = ata_noop_dev_select,
.qc_prep = ata_noop_qc_prep,
.qc_issue = ata_dummy_qc_issue,
.freeze = ata_dummy_noret,
.thaw = ata_dummy_noret,
.error_handler = ata_dummy_noret,
.post_internal_cmd = ata_dummy_qc_noret,
.irq_clear = ata_dummy_noret,
.port_start = ata_dummy_ret0,
.port_stop = ata_dummy_noret,
};
/*
* libata is essentially a library of internal helper functions for
* low-level ATA host controller drivers. As such, the API/ABI is
* likely to change as new drivers are added and updated.
* Do not depend on ABI/API stability.
*/
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
EXPORT_SYMBOL_GPL(ata_std_bios_param);
EXPORT_SYMBOL_GPL(ata_std_ports);
EXPORT_SYMBOL_GPL(ata_host_init);
EXPORT_SYMBOL_GPL(ata_device_add);
EXPORT_SYMBOL_GPL(ata_host_detach);
EXPORT_SYMBOL_GPL(ata_sg_init);
EXPORT_SYMBOL_GPL(ata_sg_init_one);
EXPORT_SYMBOL_GPL(ata_hsm_move);
EXPORT_SYMBOL_GPL(ata_qc_complete);
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
EXPORT_SYMBOL_GPL(ata_tf_load);
EXPORT_SYMBOL_GPL(ata_tf_read);
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
EXPORT_SYMBOL_GPL(ata_std_dev_select);
EXPORT_SYMBOL_GPL(sata_print_link_status);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_check_status);
EXPORT_SYMBOL_GPL(ata_altstatus);
EXPORT_SYMBOL_GPL(ata_exec_command);
EXPORT_SYMBOL_GPL(ata_port_start);
EXPORT_SYMBOL_GPL(ata_interrupt);
EXPORT_SYMBOL_GPL(ata_data_xfer);
EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
EXPORT_SYMBOL_GPL(ata_qc_prep);
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
EXPORT_SYMBOL_GPL(ata_bmdma_start);
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
EXPORT_SYMBOL_GPL(ata_bmdma_status);
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
EXPORT_SYMBOL_GPL(ata_port_probe);
EXPORT_SYMBOL_GPL(ata_dev_disable);
EXPORT_SYMBOL_GPL(sata_set_spd);
EXPORT_SYMBOL_GPL(sata_phy_debounce);
EXPORT_SYMBOL_GPL(sata_phy_resume);
EXPORT_SYMBOL_GPL(sata_phy_reset);
EXPORT_SYMBOL_GPL(__sata_phy_reset);
EXPORT_SYMBOL_GPL(ata_bus_reset);
EXPORT_SYMBOL_GPL(ata_std_prereset);
EXPORT_SYMBOL_GPL(ata_std_softreset);
EXPORT_SYMBOL_GPL(sata_port_hardreset);
EXPORT_SYMBOL_GPL(sata_std_hardreset);
EXPORT_SYMBOL_GPL(ata_std_postreset);
EXPORT_SYMBOL_GPL(ata_dev_classify);
EXPORT_SYMBOL_GPL(ata_dev_pair);
EXPORT_SYMBOL_GPL(ata_port_disable);
EXPORT_SYMBOL_GPL(ata_ratelimit);
EXPORT_SYMBOL_GPL(ata_wait_register);
EXPORT_SYMBOL_GPL(ata_busy_sleep);
EXPORT_SYMBOL_GPL(ata_port_queue_task);
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
EXPORT_SYMBOL_GPL(ata_host_intr);
EXPORT_SYMBOL_GPL(sata_scr_valid);
EXPORT_SYMBOL_GPL(sata_scr_read);
EXPORT_SYMBOL_GPL(sata_scr_write);
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
EXPORT_SYMBOL_GPL(ata_port_online);
EXPORT_SYMBOL_GPL(ata_port_offline);
#ifdef CONFIG_PM
EXPORT_SYMBOL_GPL(ata_host_suspend);
EXPORT_SYMBOL_GPL(ata_host_resume);
#endif /* CONFIG_PM */
EXPORT_SYMBOL_GPL(ata_id_string);
EXPORT_SYMBOL_GPL(ata_id_c_string);
EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
EXPORT_SYMBOL_GPL(ata_device_blacklisted);
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
EXPORT_SYMBOL_GPL(ata_timing_compute);
EXPORT_SYMBOL_GPL(ata_timing_merge);
#ifdef CONFIG_PCI
EXPORT_SYMBOL_GPL(pci_test_config_bits);
EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
EXPORT_SYMBOL_GPL(ata_pci_init_one);
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
#ifdef CONFIG_PM
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
#endif /* CONFIG_PM */
EXPORT_SYMBOL_GPL(ata_pci_default_filter);
EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
#endif /* CONFIG_PCI */
#ifdef CONFIG_PM
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
#endif /* CONFIG_PM */
EXPORT_SYMBOL_GPL(ata_eng_timeout);
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
EXPORT_SYMBOL_GPL(ata_port_abort);
EXPORT_SYMBOL_GPL(ata_port_freeze);
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
EXPORT_SYMBOL_GPL(ata_do_eh);
EXPORT_SYMBOL_GPL(ata_irq_on);
EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
EXPORT_SYMBOL_GPL(ata_irq_ack);
EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
EXPORT_SYMBOL_GPL(ata_dev_try_classify);
EXPORT_SYMBOL_GPL(ata_cable_40wire);
EXPORT_SYMBOL_GPL(ata_cable_80wire);
EXPORT_SYMBOL_GPL(ata_cable_unknown);
EXPORT_SYMBOL_GPL(ata_cable_sata);