OpenCloudOS-Kernel/arch/arm/mach-spear/time.c

253 lines
5.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* arch/arm/plat-spear/time.c
*
* Copyright (C) 2010 ST Microelectronics
* Shiraz Hashim<shiraz.linux.kernel@gmail.com>
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/time.h>
#include <linux/irq.h>
#include <asm/mach/time.h>
#include "generic.h"
/*
* We would use TIMER0 and TIMER1 as clockevent and clocksource.
* Timer0 and Timer1 both belong to same gpt block in cpu subbsystem. Further
* they share same functional clock. Any change in one's functional clock will
* also affect other timer.
*/
#define CLKEVT 0 /* gpt0, channel0 as clockevent */
#define CLKSRC 1 /* gpt0, channel1 as clocksource */
/* Register offsets, x is channel number */
#define CR(x) ((x) * 0x80 + 0x80)
#define IR(x) ((x) * 0x80 + 0x84)
#define LOAD(x) ((x) * 0x80 + 0x88)
#define COUNT(x) ((x) * 0x80 + 0x8C)
/* Reg bit definitions */
#define CTRL_INT_ENABLE 0x0100
#define CTRL_ENABLE 0x0020
#define CTRL_ONE_SHOT 0x0010
#define CTRL_PRESCALER1 0x0
#define CTRL_PRESCALER2 0x1
#define CTRL_PRESCALER4 0x2
#define CTRL_PRESCALER8 0x3
#define CTRL_PRESCALER16 0x4
#define CTRL_PRESCALER32 0x5
#define CTRL_PRESCALER64 0x6
#define CTRL_PRESCALER128 0x7
#define CTRL_PRESCALER256 0x8
#define INT_STATUS 0x1
/*
* Minimum clocksource/clockevent timer range in seconds
*/
#define SPEAR_MIN_RANGE 4
static __iomem void *gpt_base;
static struct clk *gpt_clk;
static int clockevent_next_event(unsigned long evt,
struct clock_event_device *clk_event_dev);
static void __init spear_clocksource_init(void)
{
u32 tick_rate;
u16 val;
/* program the prescaler (/256)*/
writew(CTRL_PRESCALER256, gpt_base + CR(CLKSRC));
/* find out actual clock driving Timer */
tick_rate = clk_get_rate(gpt_clk);
tick_rate >>= CTRL_PRESCALER256;
writew(0xFFFF, gpt_base + LOAD(CLKSRC));
val = readw(gpt_base + CR(CLKSRC));
val &= ~CTRL_ONE_SHOT; /* autoreload mode */
val |= CTRL_ENABLE ;
writew(val, gpt_base + CR(CLKSRC));
/* register the clocksource */
clocksource_mmio_init(gpt_base + COUNT(CLKSRC), "tmr1", tick_rate,
200, 16, clocksource_mmio_readw_up);
}
static inline void timer_shutdown(struct clock_event_device *evt)
{
u16 val = readw(gpt_base + CR(CLKEVT));
/* stop the timer */
val &= ~CTRL_ENABLE;
writew(val, gpt_base + CR(CLKEVT));
}
static int spear_shutdown(struct clock_event_device *evt)
{
timer_shutdown(evt);
return 0;
}
static int spear_set_oneshot(struct clock_event_device *evt)
{
u16 val;
/* stop the timer */
timer_shutdown(evt);
val = readw(gpt_base + CR(CLKEVT));
val |= CTRL_ONE_SHOT;
writew(val, gpt_base + CR(CLKEVT));
return 0;
}
static int spear_set_periodic(struct clock_event_device *evt)
{
u32 period;
u16 val;
/* stop the timer */
timer_shutdown(evt);
period = clk_get_rate(gpt_clk) / HZ;
period >>= CTRL_PRESCALER16;
writew(period, gpt_base + LOAD(CLKEVT));
val = readw(gpt_base + CR(CLKEVT));
val &= ~CTRL_ONE_SHOT;
val |= CTRL_ENABLE | CTRL_INT_ENABLE;
writew(val, gpt_base + CR(CLKEVT));
return 0;
}
static struct clock_event_device clkevt = {
.name = "tmr0",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_state_shutdown = spear_shutdown,
.set_state_periodic = spear_set_periodic,
.set_state_oneshot = spear_set_oneshot,
.tick_resume = spear_shutdown,
.set_next_event = clockevent_next_event,
.shift = 0, /* to be computed */
};
static int clockevent_next_event(unsigned long cycles,
struct clock_event_device *clk_event_dev)
{
u16 val = readw(gpt_base + CR(CLKEVT));
if (val & CTRL_ENABLE)
writew(val & ~CTRL_ENABLE, gpt_base + CR(CLKEVT));
writew(cycles, gpt_base + LOAD(CLKEVT));
val |= CTRL_ENABLE | CTRL_INT_ENABLE;
writew(val, gpt_base + CR(CLKEVT));
return 0;
}
static irqreturn_t spear_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = &clkevt;
writew(INT_STATUS, gpt_base + IR(CLKEVT));
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void __init spear_clockevent_init(int irq)
{
u32 tick_rate;
/* program the prescaler */
writew(CTRL_PRESCALER16, gpt_base + CR(CLKEVT));
tick_rate = clk_get_rate(gpt_clk);
tick_rate >>= CTRL_PRESCALER16;
clkevt.cpumask = cpumask_of(0);
clockevents_config_and_register(&clkevt, tick_rate, 3, 0xfff0);
if (request_irq(irq, spear_timer_interrupt, IRQF_TIMER, "timer", NULL))
pr_err("Failed to request irq %d (timer)\n", irq);
}
static const struct of_device_id timer_of_match[] __initconst = {
{ .compatible = "st,spear-timer", },
{ },
};
void __init spear_setup_of_timer(void)
{
struct device_node *np;
int irq, ret;
np = of_find_matching_node(NULL, timer_of_match);
if (!np) {
pr_err("%s: No timer passed via DT\n", __func__);
return;
}
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
pr_err("%s: No irq passed for timer via DT\n", __func__);
goto err_put_np;
}
gpt_base = of_iomap(np, 0);
if (!gpt_base) {
pr_err("%s: of iomap failed\n", __func__);
goto err_put_np;
}
gpt_clk = clk_get_sys("gpt0", NULL);
if (IS_ERR(gpt_clk)) {
pr_err("%s:couldn't get clk for gpt\n", __func__);
goto err_iomap;
}
ret = clk_prepare_enable(gpt_clk);
if (ret < 0) {
pr_err("%s:couldn't prepare-enable gpt clock\n", __func__);
goto err_prepare_enable_clk;
}
of_node_put(np);
spear_clockevent_init(irq);
spear_clocksource_init();
return;
err_prepare_enable_clk:
clk_put(gpt_clk);
err_iomap:
iounmap(gpt_base);
err_put_np:
of_node_put(np);
}