OpenCloudOS-Kernel/drivers/net/wireless/mediatek/mt76/mt76x2_eeprom.c

661 lines
16 KiB
C

/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include "mt76x2.h"
#include "mt76x2_eeprom.h"
#define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1
static int
mt76x2_eeprom_copy(struct mt76x2_dev *dev, enum mt76x2_eeprom_field field,
void *dest, int len)
{
if (field + len > dev->mt76.eeprom.size)
return -1;
memcpy(dest, dev->mt76.eeprom.data + field, len);
return 0;
}
static int
mt76x2_eeprom_get_macaddr(struct mt76x2_dev *dev)
{
void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR;
memcpy(dev->mt76.macaddr, src, ETH_ALEN);
return 0;
}
static void
mt76x2_eeprom_parse_hw_cap(struct mt76x2_dev *dev)
{
u16 val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0);
switch (FIELD_GET(MT_EE_NIC_CONF_0_BOARD_TYPE, val)) {
case BOARD_TYPE_5GHZ:
dev->mt76.cap.has_5ghz = true;
break;
case BOARD_TYPE_2GHZ:
dev->mt76.cap.has_2ghz = true;
break;
default:
dev->mt76.cap.has_2ghz = true;
dev->mt76.cap.has_5ghz = true;
break;
}
}
static int
mt76x2_efuse_read(struct mt76x2_dev *dev, u16 addr, u8 *data)
{
u32 val;
int i;
val = mt76_rr(dev, MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN |
MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf);
val |= MT_EFUSE_CTRL_KICK;
mt76_wr(dev, MT_EFUSE_CTRL, val);
if (!mt76_poll(dev, MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
udelay(2);
val = mt76_rr(dev, MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT) {
memset(data, 0xff, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, MT_EFUSE_DATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
static int
mt76x2_get_efuse_data(struct mt76x2_dev *dev, void *buf, int len)
{
int ret, i;
for (i = 0; i + 16 <= len; i += 16) {
ret = mt76x2_efuse_read(dev, i, buf + i);
if (ret)
return ret;
}
return 0;
}
static bool
mt76x2_has_cal_free_data(struct mt76x2_dev *dev, u8 *efuse)
{
u16 *efuse_w = (u16 *) efuse;
if (efuse_w[MT_EE_NIC_CONF_0] != 0)
return false;
if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff)
return false;
return true;
}
static void
mt76x2_apply_cal_free_data(struct mt76x2_dev *dev, u8 *efuse)
{
#define GROUP_5G(_id) \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1
static const u8 cal_free_bytes[] = {
MT_EE_XTAL_TRIM_1,
MT_EE_TX_POWER_EXT_PA_5G + 1,
MT_EE_TX_POWER_0_START_2G,
MT_EE_TX_POWER_0_START_2G + 1,
MT_EE_TX_POWER_1_START_2G,
MT_EE_TX_POWER_1_START_2G + 1,
GROUP_5G(0),
GROUP_5G(1),
GROUP_5G(2),
GROUP_5G(3),
GROUP_5G(4),
GROUP_5G(5),
MT_EE_RF_2G_TSSI_OFF_TXPOWER,
MT_EE_RF_2G_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1,
};
u8 *eeprom = dev->mt76.eeprom.data;
u8 prev_grp0[4] = {
eeprom[MT_EE_TX_POWER_0_START_5G],
eeprom[MT_EE_TX_POWER_0_START_5G + 1],
eeprom[MT_EE_TX_POWER_1_START_5G],
eeprom[MT_EE_TX_POWER_1_START_5G + 1]
};
u16 val;
int i;
if (!mt76x2_has_cal_free_data(dev, efuse))
return;
for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) {
int offset = cal_free_bytes[i];
eeprom[offset] = efuse[offset];
}
if (!(efuse[MT_EE_TX_POWER_0_START_5G] |
efuse[MT_EE_TX_POWER_0_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2);
if (!(efuse[MT_EE_TX_POWER_1_START_5G] |
efuse[MT_EE_TX_POWER_1_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2);
val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT);
if (val != 0xffff)
eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff;
val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION);
if (val != 0xffff)
eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8;
val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG);
if (val != 0xffff)
eeprom[MT_EE_BT_PMUCFG] = val & 0xff;
}
static int mt76x2_check_eeprom(struct mt76x2_dev *dev)
{
u16 val = get_unaligned_le16(dev->mt76.eeprom.data);
if (!val)
val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID);
switch (val) {
case 0x7662:
case 0x7612:
return 0;
default:
dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val);
return -EINVAL;
}
}
static int
mt76x2_eeprom_load(struct mt76x2_dev *dev)
{
void *efuse;
bool found;
int ret;
ret = mt76_eeprom_init(&dev->mt76, MT7662_EEPROM_SIZE);
if (ret < 0)
return ret;
found = ret;
if (found)
found = !mt76x2_check_eeprom(dev);
dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, MT7662_EEPROM_SIZE,
GFP_KERNEL);
dev->mt76.otp.size = MT7662_EEPROM_SIZE;
if (!dev->mt76.otp.data)
return -ENOMEM;
efuse = dev->mt76.otp.data;
if (mt76x2_get_efuse_data(dev, efuse, MT7662_EEPROM_SIZE))
goto out;
if (found) {
mt76x2_apply_cal_free_data(dev, efuse);
} else {
/* FIXME: check if efuse data is complete */
found = true;
memcpy(dev->mt76.eeprom.data, efuse, MT7662_EEPROM_SIZE);
}
out:
if (!found)
return -ENOENT;
return 0;
}
static inline int
mt76x2_sign_extend(u32 val, unsigned int size)
{
bool sign = val & BIT(size - 1);
val &= BIT(size - 1) - 1;
return sign ? val : -val;
}
static inline int
mt76x2_sign_extend_optional(u32 val, unsigned int size)
{
bool enable = val & BIT(size);
return enable ? mt76x2_sign_extend(val, size) : 0;
}
static bool
field_valid(u8 val)
{
return val != 0 && val != 0xff;
}
static void
mt76x2_set_rx_gain_group(struct mt76x2_dev *dev, u8 val)
{
s8 *dest = dev->cal.rx.high_gain;
if (!field_valid(val)) {
dest[0] = 0;
dest[1] = 0;
return;
}
dest[0] = mt76x2_sign_extend(val, 4);
dest[1] = mt76x2_sign_extend(val >> 4, 4);
}
static void
mt76x2_set_rssi_offset(struct mt76x2_dev *dev, int chain, u8 val)
{
s8 *dest = dev->cal.rx.rssi_offset;
if (!field_valid(val)) {
dest[chain] = 0;
return;
}
dest[chain] = mt76x2_sign_extend_optional(val, 7);
}
static enum mt76x2_cal_channel_group
mt76x2_get_cal_channel_group(int channel)
{
if (channel >= 184 && channel <= 196)
return MT_CH_5G_JAPAN;
if (channel <= 48)
return MT_CH_5G_UNII_1;
if (channel <= 64)
return MT_CH_5G_UNII_2;
if (channel <= 114)
return MT_CH_5G_UNII_2E_1;
if (channel <= 144)
return MT_CH_5G_UNII_2E_2;
return MT_CH_5G_UNII_3;
}
static u8
mt76x2_get_5g_rx_gain(struct mt76x2_dev *dev, u8 channel)
{
enum mt76x2_cal_channel_group group;
group = mt76x2_get_cal_channel_group(channel);
switch (group) {
case MT_CH_5G_JAPAN:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN);
case MT_CH_5G_UNII_1:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN);
case MT_CH_5G_UNII_2E_1:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2E_2:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN);
default:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8;
}
}
void mt76x2_read_rx_gain(struct mt76x2_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
int channel = chan->hw_value;
s8 lna_5g[3], lna_2g;
u8 lna;
u16 val;
if (chan->band == NL80211_BAND_2GHZ)
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8;
else
val = mt76x2_get_5g_rx_gain(dev, channel);
mt76x2_set_rx_gain_group(dev, val);
if (chan->band == NL80211_BAND_2GHZ) {
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_0);
mt76x2_set_rssi_offset(dev, 0, val);
mt76x2_set_rssi_offset(dev, 1, val >> 8);
} else {
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_0);
mt76x2_set_rssi_offset(dev, 0, val);
mt76x2_set_rssi_offset(dev, 1, val >> 8);
}
val = mt76x2_eeprom_get(dev, MT_EE_LNA_GAIN);
lna_2g = val & 0xff;
lna_5g[0] = val >> 8;
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_1);
lna_5g[1] = val >> 8;
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_1);
lna_5g[2] = val >> 8;
if (!field_valid(lna_5g[1]))
lna_5g[1] = lna_5g[0];
if (!field_valid(lna_5g[2]))
lna_5g[2] = lna_5g[0];
dev->cal.rx.mcu_gain = (lna_2g & 0xff);
dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8;
dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16;
dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24;
val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (val & MT_EE_NIC_CONF_1_LNA_EXT_2G)
lna_2g = 0;
if (val & MT_EE_NIC_CONF_1_LNA_EXT_5G)
memset(lna_5g, 0, sizeof(lna_5g));
if (chan->band == NL80211_BAND_2GHZ)
lna = lna_2g;
else if (channel <= 64)
lna = lna_5g[0];
else if (channel <= 128)
lna = lna_5g[1];
else
lna = lna_5g[2];
if (lna == 0xff)
lna = 0;
dev->cal.rx.lna_gain = mt76x2_sign_extend(lna, 8);
}
static s8
mt76x2_rate_power_val(u8 val)
{
if (!field_valid(val))
return 0;
return mt76x2_sign_extend_optional(val, 7);
}
void mt76x2_get_rate_power(struct mt76x2_dev *dev, struct mt76_rate_power *t,
struct ieee80211_channel *chan)
{
bool is_5ghz;
u16 val;
is_5ghz = chan->band == NL80211_BAND_5GHZ;
memset(t, 0, sizeof(*t));
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_CCK);
t->cck[0] = t->cck[1] = mt76x2_rate_power_val(val);
t->cck[2] = t->cck[3] = mt76x2_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M);
else
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M);
t->ofdm[0] = t->ofdm[1] = mt76x2_rate_power_val(val);
t->ofdm[2] = t->ofdm[3] = mt76x2_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M);
else
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M);
t->ofdm[4] = t->ofdm[5] = mt76x2_rate_power_val(val);
t->ofdm[6] = t->ofdm[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0);
t->ht[0] = t->ht[1] = mt76x2_rate_power_val(val);
t->ht[2] = t->ht[3] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4);
t->ht[4] = t->ht[5] = mt76x2_rate_power_val(val);
t->ht[6] = t->ht[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8);
t->ht[8] = t->ht[9] = mt76x2_rate_power_val(val);
t->ht[10] = t->ht[11] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12);
t->ht[12] = t->ht[13] = mt76x2_rate_power_val(val);
t->ht[14] = t->ht[15] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS0);
t->vht[0] = t->vht[1] = mt76x2_rate_power_val(val);
t->vht[2] = t->vht[3] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS4);
t->vht[4] = t->vht[5] = mt76x2_rate_power_val(val);
t->vht[6] = t->vht[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8);
if (!is_5ghz)
val >>= 8;
t->vht[8] = t->vht[9] = mt76x2_rate_power_val(val >> 8);
}
int mt76x2_get_max_rate_power(struct mt76_rate_power *r)
{
int i;
s8 ret = 0;
for (i = 0; i < sizeof(r->all); i++)
ret = max(ret, r->all[i]);
return ret;
}
static void
mt76x2_get_power_info_2g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan, int chain, int offset)
{
int channel = chan->hw_value;
int delta_idx;
u8 data[6];
u16 val;
if (channel < 6)
delta_idx = 3;
else if (channel < 11)
delta_idx = 4;
else
delta_idx = 5;
mt76x2_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7);
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER);
t->target_power = val >> 8;
}
static void
mt76x2_get_power_info_5g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan, int chain, int offset)
{
int channel = chan->hw_value;
enum mt76x2_cal_channel_group group;
int delta_idx;
u16 val;
u8 data[5];
group = mt76x2_get_cal_channel_group(channel);
offset += group * MT_TX_POWER_GROUP_SIZE_5G;
if (channel >= 192)
delta_idx = 4;
else if (channel >= 184)
delta_idx = 3;
else if (channel < 44)
delta_idx = 3;
else if (channel < 52)
delta_idx = 4;
else if (channel < 58)
delta_idx = 3;
else if (channel < 98)
delta_idx = 4;
else if (channel < 106)
delta_idx = 3;
else if (channel < 116)
delta_idx = 4;
else if (channel < 130)
delta_idx = 3;
else if (channel < 149)
delta_idx = 4;
else if (channel < 157)
delta_idx = 3;
else
delta_idx = 4;
mt76x2_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7);
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN);
t->target_power = val & 0xff;
}
void mt76x2_get_power_info(struct mt76x2_dev *dev,
struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan)
{
u16 bw40, bw80;
memset(t, 0, sizeof(*t));
bw40 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40);
bw80 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80);
if (chan->band == NL80211_BAND_5GHZ) {
bw40 >>= 8;
mt76x2_get_power_info_5g(dev, t, chan, 0,
MT_EE_TX_POWER_0_START_5G);
mt76x2_get_power_info_5g(dev, t, chan, 1,
MT_EE_TX_POWER_1_START_5G);
} else {
mt76x2_get_power_info_2g(dev, t, chan, 0,
MT_EE_TX_POWER_0_START_2G);
mt76x2_get_power_info_2g(dev, t, chan, 1,
MT_EE_TX_POWER_1_START_2G);
}
if (mt76x2_tssi_enabled(dev) || !field_valid(t->target_power))
t->target_power = t->chain[0].target_power;
t->delta_bw40 = mt76x2_rate_power_val(bw40);
t->delta_bw80 = mt76x2_rate_power_val(bw80);
}
int mt76x2_get_temp_comp(struct mt76x2_dev *dev, struct mt76x2_temp_comp *t)
{
enum nl80211_band band = dev->mt76.chandef.chan->band;
u16 val, slope;
u8 bounds;
memset(t, 0, sizeof(*t));
if (!mt76x2_temp_tx_alc_enabled(dev))
return -EINVAL;
if (!mt76x2_ext_pa_enabled(dev, band))
return -EINVAL;
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8;
t->temp_25_ref = val & 0x7f;
if (band == NL80211_BAND_5GHZ) {
slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G);
bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G);
} else {
slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G);
bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80) >> 8;
}
t->high_slope = slope & 0xff;
t->low_slope = slope >> 8;
t->lower_bound = 0 - (bounds & 0xf);
t->upper_bound = (bounds >> 4) & 0xf;
return 0;
}
bool mt76x2_ext_pa_enabled(struct mt76x2_dev *dev, enum nl80211_band band)
{
u16 conf0 = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0);
if (band == NL80211_BAND_5GHZ)
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_5G);
else
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_2G);
}
int mt76x2_eeprom_init(struct mt76x2_dev *dev)
{
int ret;
ret = mt76x2_eeprom_load(dev);
if (ret)
return ret;
mt76x2_eeprom_parse_hw_cap(dev);
mt76x2_eeprom_get_macaddr(dev);
mt76_eeprom_override(&dev->mt76);
dev->mt76.macaddr[0] &= ~BIT(1);
return 0;
}