620 lines
16 KiB
C
620 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Virtual Memory Map support
|
|
*
|
|
* (C) 2007 sgi. Christoph Lameter.
|
|
*
|
|
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
|
|
* virt_to_page, page_address() to be implemented as a base offset
|
|
* calculation without memory access.
|
|
*
|
|
* However, virtual mappings need a page table and TLBs. Many Linux
|
|
* architectures already map their physical space using 1-1 mappings
|
|
* via TLBs. For those arches the virtual memory map is essentially
|
|
* for free if we use the same page size as the 1-1 mappings. In that
|
|
* case the overhead consists of a few additional pages that are
|
|
* allocated to create a view of memory for vmemmap.
|
|
*
|
|
* The architecture is expected to provide a vmemmap_populate() function
|
|
* to instantiate the mapping.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/bootmem_info.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
/**
|
|
* struct vmemmap_remap_walk - walk vmemmap page table
|
|
*
|
|
* @remap_pte: called for each lowest-level entry (PTE).
|
|
* @nr_walked: the number of walked pte.
|
|
* @reuse_page: the page which is reused for the tail vmemmap pages.
|
|
* @reuse_addr: the virtual address of the @reuse_page page.
|
|
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
|
|
* or is mapped from.
|
|
*/
|
|
struct vmemmap_remap_walk {
|
|
void (*remap_pte)(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk);
|
|
unsigned long nr_walked;
|
|
struct page *reuse_page;
|
|
unsigned long reuse_addr;
|
|
struct list_head *vmemmap_pages;
|
|
};
|
|
|
|
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pmd_t __pmd;
|
|
int i;
|
|
unsigned long addr = start;
|
|
struct page *page = pmd_page(*pmd);
|
|
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
|
|
|
|
if (!pgtable)
|
|
return -ENOMEM;
|
|
|
|
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
|
|
|
|
for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
|
|
pte_t entry, *pte;
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
|
|
entry = mk_pte(page + i, pgprot);
|
|
pte = pte_offset_kernel(&__pmd, addr);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
|
|
/* Make pte visible before pmd. See comment in pmd_install(). */
|
|
smp_wmb();
|
|
pmd_populate_kernel(&init_mm, pmd, pgtable);
|
|
|
|
flush_tlb_kernel_range(start, start + PMD_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
|
|
/*
|
|
* The reuse_page is found 'first' in table walk before we start
|
|
* remapping (which is calling @walk->remap_pte).
|
|
*/
|
|
if (!walk->reuse_page) {
|
|
walk->reuse_page = pte_page(*pte);
|
|
/*
|
|
* Because the reuse address is part of the range that we are
|
|
* walking, skip the reuse address range.
|
|
*/
|
|
addr += PAGE_SIZE;
|
|
pte++;
|
|
walk->nr_walked++;
|
|
}
|
|
|
|
for (; addr != end; addr += PAGE_SIZE, pte++) {
|
|
walk->remap_pte(pte, addr, walk);
|
|
walk->nr_walked++;
|
|
}
|
|
}
|
|
|
|
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
if (pmd_leaf(*pmd)) {
|
|
int ret;
|
|
|
|
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
next = pmd_addr_end(addr, end);
|
|
vmemmap_pte_range(pmd, addr, next, walk);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = pud_addr_end(addr, end);
|
|
ret = vmemmap_pmd_range(pud, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
ret = vmemmap_pud_range(p4d, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmemmap_remap_range(unsigned long start, unsigned long end,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
unsigned long addr = start;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
|
|
VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
|
|
VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
int ret;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
ret = vmemmap_p4d_range(pgd, addr, next, walk);
|
|
if (ret)
|
|
return ret;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
/*
|
|
* We only change the mapping of the vmemmap virtual address range
|
|
* [@start + PAGE_SIZE, end), so we only need to flush the TLB which
|
|
* belongs to the range.
|
|
*/
|
|
flush_tlb_kernel_range(start + PAGE_SIZE, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
|
|
* allocator or buddy allocator. If the PG_reserved flag is set, it means
|
|
* that it allocated from the memblock allocator, just free it via the
|
|
* free_bootmem_page(). Otherwise, use __free_page().
|
|
*/
|
|
static inline void free_vmemmap_page(struct page *page)
|
|
{
|
|
if (PageReserved(page))
|
|
free_bootmem_page(page);
|
|
else
|
|
__free_page(page);
|
|
}
|
|
|
|
/* Free a list of the vmemmap pages */
|
|
static void free_vmemmap_page_list(struct list_head *list)
|
|
{
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
|
list_del(&page->lru);
|
|
free_vmemmap_page(page);
|
|
}
|
|
}
|
|
|
|
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
/*
|
|
* Remap the tail pages as read-only to catch illegal write operation
|
|
* to the tail pages.
|
|
*/
|
|
pgprot_t pgprot = PAGE_KERNEL_RO;
|
|
pte_t entry = mk_pte(walk->reuse_page, pgprot);
|
|
struct page *page = pte_page(*pte);
|
|
|
|
list_add_tail(&page->lru, walk->vmemmap_pages);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
|
|
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
|
|
struct vmemmap_remap_walk *walk)
|
|
{
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
struct page *page;
|
|
void *to;
|
|
|
|
BUG_ON(pte_page(*pte) != walk->reuse_page);
|
|
|
|
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
|
|
list_del(&page->lru);
|
|
to = page_to_virt(page);
|
|
copy_page(to, (void *)walk->reuse_addr);
|
|
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
|
|
}
|
|
|
|
/**
|
|
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
|
|
* to the page which @reuse is mapped to, then free vmemmap
|
|
* which the range are mapped to.
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
* to remap.
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
* remap.
|
|
* @reuse: reuse address.
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
int vmemmap_remap_free(unsigned long start, unsigned long end,
|
|
unsigned long reuse)
|
|
{
|
|
int ret;
|
|
LIST_HEAD(vmemmap_pages);
|
|
struct vmemmap_remap_walk walk = {
|
|
.remap_pte = vmemmap_remap_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
|
|
/*
|
|
* In order to make remapping routine most efficient for the huge pages,
|
|
* the routine of vmemmap page table walking has the following rules
|
|
* (see more details from the vmemmap_pte_range()):
|
|
*
|
|
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
|
|
* should be continuous.
|
|
* - The @reuse address is part of the range [@reuse, @end) that we are
|
|
* walking which is passed to vmemmap_remap_range().
|
|
* - The @reuse address is the first in the complete range.
|
|
*
|
|
* So we need to make sure that @start and @reuse meet the above rules.
|
|
*/
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
mmap_write_lock(&init_mm);
|
|
ret = vmemmap_remap_range(reuse, end, &walk);
|
|
mmap_write_downgrade(&init_mm);
|
|
|
|
if (ret && walk.nr_walked) {
|
|
end = reuse + walk.nr_walked * PAGE_SIZE;
|
|
/*
|
|
* vmemmap_pages contains pages from the previous
|
|
* vmemmap_remap_range call which failed. These
|
|
* are pages which were removed from the vmemmap.
|
|
* They will be restored in the following call.
|
|
*/
|
|
walk = (struct vmemmap_remap_walk) {
|
|
.remap_pte = vmemmap_restore_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
}
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
free_vmemmap_page_list(&vmemmap_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
|
|
gfp_t gfp_mask, struct list_head *list)
|
|
{
|
|
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
|
|
int nid = page_to_nid((struct page *)start);
|
|
struct page *page, *next;
|
|
|
|
while (nr_pages--) {
|
|
page = alloc_pages_node(nid, gfp_mask, 0);
|
|
if (!page)
|
|
goto out;
|
|
list_add_tail(&page->lru, list);
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
list_for_each_entry_safe(page, next, list, lru)
|
|
__free_pages(page, 0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
|
|
* to the page which is from the @vmemmap_pages
|
|
* respectively.
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
* to remap.
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
* remap.
|
|
* @reuse: reuse address.
|
|
* @gfp_mask: GFP flag for allocating vmemmap pages.
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
int vmemmap_remap_alloc(unsigned long start, unsigned long end,
|
|
unsigned long reuse, gfp_t gfp_mask)
|
|
{
|
|
LIST_HEAD(vmemmap_pages);
|
|
struct vmemmap_remap_walk walk = {
|
|
.remap_pte = vmemmap_restore_pte,
|
|
.reuse_addr = reuse,
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
};
|
|
|
|
/* See the comment in the vmemmap_remap_free(). */
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
|
|
return -ENOMEM;
|
|
|
|
mmap_read_lock(&init_mm);
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a block of memory to be used to back the virtual memory map
|
|
* or to back the page tables that are used to create the mapping.
|
|
* Uses the main allocators if they are available, else bootmem.
|
|
*/
|
|
|
|
static void * __ref __earlyonly_bootmem_alloc(int node,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return memblock_alloc_try_nid_raw(size, align, goal,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
|
}
|
|
|
|
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
|
|
{
|
|
/* If the main allocator is up use that, fallback to bootmem. */
|
|
if (slab_is_available()) {
|
|
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
|
|
int order = get_order(size);
|
|
static bool warned;
|
|
struct page *page;
|
|
|
|
page = alloc_pages_node(node, gfp_mask, order);
|
|
if (page)
|
|
return page_address(page);
|
|
|
|
if (!warned) {
|
|
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
|
|
"vmemmap alloc failure: order:%u", order);
|
|
warned = true;
|
|
}
|
|
return NULL;
|
|
} else
|
|
return __earlyonly_bootmem_alloc(node, size, size,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap);
|
|
|
|
/* need to make sure size is all the same during early stage */
|
|
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
void *ptr;
|
|
|
|
if (altmap)
|
|
return altmap_alloc_block_buf(size, altmap);
|
|
|
|
ptr = sparse_buffer_alloc(size);
|
|
if (!ptr)
|
|
ptr = vmemmap_alloc_block(size, node);
|
|
return ptr;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
|
|
{
|
|
return altmap->base_pfn + altmap->reserve + altmap->alloc
|
|
+ altmap->align;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long allocated = altmap->alloc + altmap->align;
|
|
|
|
if (altmap->free > allocated)
|
|
return altmap->free - allocated;
|
|
return 0;
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long pfn, nr_pfns, nr_align;
|
|
|
|
if (size & ~PAGE_MASK) {
|
|
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
|
|
__func__, size);
|
|
return NULL;
|
|
}
|
|
|
|
pfn = vmem_altmap_next_pfn(altmap);
|
|
nr_pfns = size >> PAGE_SHIFT;
|
|
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
|
|
nr_align = ALIGN(pfn, nr_align) - pfn;
|
|
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
|
|
return NULL;
|
|
|
|
altmap->alloc += nr_pfns;
|
|
altmap->align += nr_align;
|
|
pfn += nr_align;
|
|
|
|
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
|
|
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
|
|
return __va(__pfn_to_phys(pfn));
|
|
}
|
|
|
|
void __meminit vmemmap_verify(pte_t *pte, int node,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn = pte_pfn(*pte);
|
|
int actual_node = early_pfn_to_nid(pfn);
|
|
|
|
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
|
|
pr_warn("[%lx-%lx] potential offnode page_structs\n",
|
|
start, end - 1);
|
|
}
|
|
|
|
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte)) {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
|
|
if (!p)
|
|
return NULL;
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
|
|
{
|
|
void *p = vmemmap_alloc_block(size, node);
|
|
|
|
if (!p)
|
|
return NULL;
|
|
memset(p, 0, size);
|
|
|
|
return p;
|
|
}
|
|
|
|
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
return pmd;
|
|
}
|
|
|
|
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
|
|
{
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pud_populate(&init_mm, pud, p);
|
|
}
|
|
return pud;
|
|
}
|
|
|
|
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
|
|
{
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
p4d_populate(&init_mm, p4d, p);
|
|
}
|
|
return p4d;
|
|
}
|
|
|
|
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
return pgd;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr = start;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
pmd = vmemmap_pmd_populate(pud, addr, node);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
pte = vmemmap_pte_populate(pmd, addr, node, altmap);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct page * __meminit __populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start = (unsigned long) pfn_to_page(pfn);
|
|
unsigned long end = start + nr_pages * sizeof(struct page);
|
|
|
|
if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
|
|
!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
|
|
return NULL;
|
|
|
|
if (vmemmap_populate(start, end, nid, altmap))
|
|
return NULL;
|
|
|
|
return pfn_to_page(pfn);
|
|
}
|