OpenCloudOS-Kernel/sound/soc/soc-ops.c

981 lines
26 KiB
C

/*
* soc-ops.c -- Generic ASoC operations
*
* Copyright 2005 Wolfson Microelectronics PLC.
* Copyright 2005 Openedhand Ltd.
* Copyright (C) 2010 Slimlogic Ltd.
* Copyright (C) 2010 Texas Instruments Inc.
*
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
* with code, comments and ideas from :-
* Richard Purdie <richard@openedhand.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dpcm.h>
#include <sound/initval.h>
/**
* snd_soc_info_enum_double - enumerated double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double enumerated
* mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
e->items, e->texts);
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
/**
* snd_soc_get_enum_double - enumerated double mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val, item;
unsigned int reg_val;
int ret;
ret = snd_soc_component_read(component, e->reg, &reg_val);
if (ret)
return ret;
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[0] = item;
if (e->shift_l != e->shift_r) {
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[1] = item;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
/**
* snd_soc_put_enum_double - enumerated double mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
unsigned int val;
unsigned int mask;
if (item[0] >= e->items)
return -EINVAL;
val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
mask = e->mask << e->shift_l;
if (e->shift_l != e->shift_r) {
if (item[1] >= e->items)
return -EINVAL;
val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
mask |= e->mask << e->shift_r;
}
return snd_soc_component_update_bits(component, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
/**
* snd_soc_read_signed - Read a codec register and interprete as signed value
* @component: component
* @reg: Register to read
* @mask: Mask to use after shifting the register value
* @shift: Right shift of register value
* @sign_bit: Bit that describes if a number is negative or not.
* @signed_val: Pointer to where the read value should be stored
*
* This functions reads a codec register. The register value is shifted right
* by 'shift' bits and masked with the given 'mask'. Afterwards it translates
* the given registervalue into a signed integer if sign_bit is non-zero.
*
* Returns 0 on sucess, otherwise an error value
*/
static int snd_soc_read_signed(struct snd_soc_component *component,
unsigned int reg, unsigned int mask, unsigned int shift,
unsigned int sign_bit, int *signed_val)
{
int ret;
unsigned int val;
ret = snd_soc_component_read(component, reg, &val);
if (ret < 0)
return ret;
val = (val >> shift) & mask;
if (!sign_bit) {
*signed_val = val;
return 0;
}
/* non-negative number */
if (!(val & BIT(sign_bit))) {
*signed_val = val;
return 0;
}
ret = val;
/*
* The register most probably does not contain a full-sized int.
* Instead we have an arbitrary number of bits in a signed
* representation which has to be translated into a full-sized int.
* This is done by filling up all bits above the sign-bit.
*/
ret |= ~((int)(BIT(sign_bit) - 1));
*signed_val = ret;
return 0;
}
/**
* snd_soc_info_volsw - single mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control, or a double
* mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int platform_max;
if (!mc->platform_max)
mc->platform_max = mc->max;
platform_max = mc->platform_max;
if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
else
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = platform_max - mc->min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
/**
* snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control, or a double
* mixer control that spans 2 registers of the SX TLV type. SX TLV controls
* have a range that represents both positive and negative values either side
* of zero but without a sign bit.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
snd_soc_info_volsw(kcontrol, uinfo);
/* Max represents the number of levels in an SX control not the
* maximum value, so add the minimum value back on
*/
uinfo->value.integer.max += mc->min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
/**
* snd_soc_get_volsw - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int sign_bit = mc->sign_bit;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
int val;
int ret;
if (sign_bit)
mask = BIT(sign_bit + 1) - 1;
ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
if (ret)
return ret;
ucontrol->value.integer.value[0] = val - min;
if (invert)
ucontrol->value.integer.value[0] =
max - ucontrol->value.integer.value[0];
if (snd_soc_volsw_is_stereo(mc)) {
if (reg == reg2)
ret = snd_soc_read_signed(component, reg, mask, rshift,
sign_bit, &val);
else
ret = snd_soc_read_signed(component, reg2, mask, shift,
sign_bit, &val);
if (ret)
return ret;
ucontrol->value.integer.value[1] = val - min;
if (invert)
ucontrol->value.integer.value[1] =
max - ucontrol->value.integer.value[1];
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
/**
* snd_soc_put_volsw - single mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
unsigned int sign_bit = mc->sign_bit;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
int err;
bool type_2r = false;
unsigned int val2 = 0;
unsigned int val, val_mask;
if (sign_bit)
mask = BIT(sign_bit + 1) - 1;
val = ((ucontrol->value.integer.value[0] + min) & mask);
if (invert)
val = max - val;
val_mask = mask << shift;
val = val << shift;
if (snd_soc_volsw_is_stereo(mc)) {
val2 = ((ucontrol->value.integer.value[1] + min) & mask);
if (invert)
val2 = max - val2;
if (reg == reg2) {
val_mask |= mask << rshift;
val |= val2 << rshift;
} else {
val2 = val2 << shift;
type_2r = true;
}
}
err = snd_soc_component_update_bits(component, reg, val_mask, val);
if (err < 0)
return err;
if (type_2r)
err = snd_soc_component_update_bits(component, reg2, val_mask,
val2);
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
/**
* snd_soc_get_volsw_sx - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int mask = (1 << (fls(min + max) - 1)) - 1;
unsigned int val;
int ret;
ret = snd_soc_component_read(component, reg, &val);
if (ret < 0)
return ret;
ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
if (snd_soc_volsw_is_stereo(mc)) {
ret = snd_soc_component_read(component, reg2, &val);
if (ret < 0)
return ret;
val = ((val >> rshift) - min) & mask;
ucontrol->value.integer.value[1] = val;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
/**
* snd_soc_put_volsw_sx - double mixer set callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int mask = (1 << (fls(min + max) - 1)) - 1;
int err = 0;
unsigned int val, val_mask, val2 = 0;
val_mask = mask << shift;
val = (ucontrol->value.integer.value[0] + min) & mask;
val = val << shift;
err = snd_soc_component_update_bits(component, reg, val_mask, val);
if (err < 0)
return err;
if (snd_soc_volsw_is_stereo(mc)) {
val_mask = mask << rshift;
val2 = (ucontrol->value.integer.value[1] + min) & mask;
val2 = val2 << rshift;
err = snd_soc_component_update_bits(component, reg2, val_mask,
val2);
}
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
/**
* snd_soc_info_volsw_range - single mixer info callback with range.
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information, within a range, about a single
* mixer control.
*
* returns 0 for success.
*/
int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int platform_max;
int min = mc->min;
if (!mc->platform_max)
mc->platform_max = mc->max;
platform_max = mc->platform_max;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = platform_max - min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
/**
* snd_soc_put_volsw_range - single mixer put value callback with range.
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value, within a range, for a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int rreg = mc->rreg;
unsigned int shift = mc->shift;
int min = mc->min;
int max = mc->max;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
unsigned int val, val_mask;
int ret;
if (invert)
val = (max - ucontrol->value.integer.value[0]) & mask;
else
val = ((ucontrol->value.integer.value[0] + min) & mask);
val_mask = mask << shift;
val = val << shift;
ret = snd_soc_component_update_bits(component, reg, val_mask, val);
if (ret < 0)
return ret;
if (snd_soc_volsw_is_stereo(mc)) {
if (invert)
val = (max - ucontrol->value.integer.value[1]) & mask;
else
val = ((ucontrol->value.integer.value[1] + min) & mask);
val_mask = mask << shift;
val = val << shift;
ret = snd_soc_component_update_bits(component, rreg, val_mask,
val);
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
/**
* snd_soc_get_volsw_range - single mixer get callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value, within a range, of a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int rreg = mc->rreg;
unsigned int shift = mc->shift;
int min = mc->min;
int max = mc->max;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
unsigned int val;
int ret;
ret = snd_soc_component_read(component, reg, &val);
if (ret)
return ret;
ucontrol->value.integer.value[0] = (val >> shift) & mask;
if (invert)
ucontrol->value.integer.value[0] =
max - ucontrol->value.integer.value[0];
else
ucontrol->value.integer.value[0] =
ucontrol->value.integer.value[0] - min;
if (snd_soc_volsw_is_stereo(mc)) {
ret = snd_soc_component_read(component, rreg, &val);
if (ret)
return ret;
ucontrol->value.integer.value[1] = (val >> shift) & mask;
if (invert)
ucontrol->value.integer.value[1] =
max - ucontrol->value.integer.value[1];
else
ucontrol->value.integer.value[1] =
ucontrol->value.integer.value[1] - min;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
/**
* snd_soc_limit_volume - Set new limit to an existing volume control.
*
* @card: where to look for the control
* @name: Name of the control
* @max: new maximum limit
*
* Return 0 for success, else error.
*/
int snd_soc_limit_volume(struct snd_soc_card *card,
const char *name, int max)
{
struct snd_card *snd_card = card->snd_card;
struct snd_kcontrol *kctl;
struct soc_mixer_control *mc;
int found = 0;
int ret = -EINVAL;
/* Sanity check for name and max */
if (unlikely(!name || max <= 0))
return -EINVAL;
list_for_each_entry(kctl, &snd_card->controls, list) {
if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
found = 1;
break;
}
}
if (found) {
mc = (struct soc_mixer_control *)kctl->private_value;
if (max <= mc->max) {
mc->platform_max = max;
ret = 0;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = params->num_regs * component->val_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
int ret;
if (component->regmap)
ret = regmap_raw_read(component->regmap, params->base,
ucontrol->value.bytes.data,
params->num_regs * component->val_bytes);
else
ret = -EINVAL;
/* Hide any masked bytes to ensure consistent data reporting */
if (ret == 0 && params->mask) {
switch (component->val_bytes) {
case 1:
ucontrol->value.bytes.data[0] &= ~params->mask;
break;
case 2:
((u16 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be16(~params->mask);
break;
case 4:
((u32 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be32(~params->mask);
break;
default:
return -EINVAL;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
int ret, len;
unsigned int val, mask;
void *data;
if (!component->regmap || !params->num_regs)
return -EINVAL;
len = params->num_regs * component->val_bytes;
data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
/*
* If we've got a mask then we need to preserve the register
* bits. We shouldn't modify the incoming data so take a
* copy.
*/
if (params->mask) {
ret = regmap_read(component->regmap, params->base, &val);
if (ret != 0)
goto out;
val &= params->mask;
switch (component->val_bytes) {
case 1:
((u8 *)data)[0] &= ~params->mask;
((u8 *)data)[0] |= val;
break;
case 2:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap,
&mask, &mask);
if (ret != 0)
goto out;
((u16 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap,
&val, &val);
if (ret != 0)
goto out;
((u16 *)data)[0] |= val;
break;
case 4:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap,
&mask, &mask);
if (ret != 0)
goto out;
((u32 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap,
&val, &val);
if (ret != 0)
goto out;
((u32 *)data)[0] |= val;
break;
default:
ret = -EINVAL;
goto out;
}
}
ret = regmap_raw_write(component->regmap, params->base,
data, len);
out:
kfree(data);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
unsigned int count = size < params->max ? size : params->max;
int ret = -ENXIO;
switch (op_flag) {
case SNDRV_CTL_TLV_OP_READ:
if (params->get)
ret = params->get(tlv, count);
break;
case SNDRV_CTL_TLV_OP_WRITE:
if (params->put)
ret = params->put(tlv, count);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
/**
* snd_soc_info_xr_sx - signed multi register info callback
* @kcontrol: mreg control
* @uinfo: control element information
*
* Callback to provide information of a control that can
* span multiple codec registers which together
* forms a single signed value in a MSB/LSB manner.
*
* Returns 0 for success.
*/
int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = mc->min;
uinfo->value.integer.max = mc->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
/**
* snd_soc_get_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to get the value of a control that can span
* multiple codec registers which together forms a single
* signed value in a MSB/LSB manner. The control supports
* specifying total no of bits used to allow for bitfields
* across the multiple codec registers.
*
* Returns 0 for success.
*/
int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = (1<<regwshift)-1;
unsigned int invert = mc->invert;
unsigned long mask = (1UL<<mc->nbits)-1;
long min = mc->min;
long max = mc->max;
long val = 0;
unsigned int regval;
unsigned int i;
int ret;
for (i = 0; i < regcount; i++) {
ret = snd_soc_component_read(component, regbase+i, &regval);
if (ret)
return ret;
val |= (regval & regwmask) << (regwshift*(regcount-i-1));
}
val &= mask;
if (min < 0 && val > max)
val |= ~mask;
if (invert)
val = max - val;
ucontrol->value.integer.value[0] = val;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
/**
* snd_soc_put_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to set the value of a control that can span
* multiple codec registers which together forms a single
* signed value in a MSB/LSB manner. The control supports
* specifying total no of bits used to allow for bitfields
* across the multiple codec registers.
*
* Returns 0 for success.
*/
int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = (1<<regwshift)-1;
unsigned int invert = mc->invert;
unsigned long mask = (1UL<<mc->nbits)-1;
long max = mc->max;
long val = ucontrol->value.integer.value[0];
unsigned int i, regval, regmask;
int err;
if (invert)
val = max - val;
val &= mask;
for (i = 0; i < regcount; i++) {
regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
err = snd_soc_component_update_bits(component, regbase+i,
regmask, regval);
if (err < 0)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
/**
* snd_soc_get_strobe - strobe get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback get the value of a strobe mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int shift = mc->shift;
unsigned int mask = 1 << shift;
unsigned int invert = mc->invert != 0;
unsigned int val;
int ret;
ret = snd_soc_component_read(component, reg, &val);
if (ret)
return ret;
val &= mask;
if (shift != 0 && val != 0)
val = val >> shift;
ucontrol->value.enumerated.item[0] = val ^ invert;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
/**
* snd_soc_put_strobe - strobe put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback strobe a register bit to high then low (or the inverse)
* in one pass of a single mixer enum control.
*
* Returns 1 for success.
*/
int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int shift = mc->shift;
unsigned int mask = 1 << shift;
unsigned int invert = mc->invert != 0;
unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
unsigned int val1 = (strobe ^ invert) ? mask : 0;
unsigned int val2 = (strobe ^ invert) ? 0 : mask;
int err;
err = snd_soc_component_update_bits(component, reg, mask, val1);
if (err < 0)
return err;
return snd_soc_component_update_bits(component, reg, mask, val2);
}
EXPORT_SYMBOL_GPL(snd_soc_put_strobe);