3135 lines
87 KiB
C
3135 lines
87 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright(C) 2015-2018 Linaro Limited.
|
|
*
|
|
* Author: Tor Jeremiassen <tor@ti.com>
|
|
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/coresight-pmu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/types.h>
|
|
#include <linux/zalloc.h>
|
|
|
|
#include <opencsd/ocsd_if_types.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "auxtrace.h"
|
|
#include "color.h"
|
|
#include "cs-etm.h"
|
|
#include "cs-etm-decoder/cs-etm-decoder.h"
|
|
#include "debug.h"
|
|
#include "dso.h"
|
|
#include "evlist.h"
|
|
#include "intlist.h"
|
|
#include "machine.h"
|
|
#include "map.h"
|
|
#include "perf.h"
|
|
#include "session.h"
|
|
#include "map_symbol.h"
|
|
#include "branch.h"
|
|
#include "symbol.h"
|
|
#include "tool.h"
|
|
#include "thread.h"
|
|
#include "thread-stack.h"
|
|
#include <tools/libc_compat.h>
|
|
#include "util/synthetic-events.h"
|
|
|
|
struct cs_etm_auxtrace {
|
|
struct auxtrace auxtrace;
|
|
struct auxtrace_queues queues;
|
|
struct auxtrace_heap heap;
|
|
struct itrace_synth_opts synth_opts;
|
|
struct perf_session *session;
|
|
struct machine *machine;
|
|
struct thread *unknown_thread;
|
|
|
|
u8 timeless_decoding;
|
|
u8 snapshot_mode;
|
|
u8 data_queued;
|
|
u8 sample_branches;
|
|
u8 sample_instructions;
|
|
|
|
int num_cpu;
|
|
u64 latest_kernel_timestamp;
|
|
u32 auxtrace_type;
|
|
u64 branches_sample_type;
|
|
u64 branches_id;
|
|
u64 instructions_sample_type;
|
|
u64 instructions_sample_period;
|
|
u64 instructions_id;
|
|
u64 **metadata;
|
|
unsigned int pmu_type;
|
|
};
|
|
|
|
struct cs_etm_traceid_queue {
|
|
u8 trace_chan_id;
|
|
pid_t pid, tid;
|
|
u64 period_instructions;
|
|
size_t last_branch_pos;
|
|
union perf_event *event_buf;
|
|
struct thread *thread;
|
|
struct branch_stack *last_branch;
|
|
struct branch_stack *last_branch_rb;
|
|
struct cs_etm_packet *prev_packet;
|
|
struct cs_etm_packet *packet;
|
|
struct cs_etm_packet_queue packet_queue;
|
|
};
|
|
|
|
struct cs_etm_queue {
|
|
struct cs_etm_auxtrace *etm;
|
|
struct cs_etm_decoder *decoder;
|
|
struct auxtrace_buffer *buffer;
|
|
unsigned int queue_nr;
|
|
u8 pending_timestamp_chan_id;
|
|
u64 offset;
|
|
const unsigned char *buf;
|
|
size_t buf_len, buf_used;
|
|
/* Conversion between traceID and index in traceid_queues array */
|
|
struct intlist *traceid_queues_list;
|
|
struct cs_etm_traceid_queue **traceid_queues;
|
|
};
|
|
|
|
/* RB tree for quick conversion between traceID and metadata pointers */
|
|
static struct intlist *traceid_list;
|
|
|
|
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
|
|
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
|
|
pid_t tid);
|
|
static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
|
|
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
|
|
|
|
/* PTMs ETMIDR [11:8] set to b0011 */
|
|
#define ETMIDR_PTM_VERSION 0x00000300
|
|
|
|
/*
|
|
* A struct auxtrace_heap_item only has a queue_nr and a timestamp to
|
|
* work with. One option is to modify to auxtrace_heap_XYZ() API or simply
|
|
* encode the etm queue number as the upper 16 bit and the channel as
|
|
* the lower 16 bit.
|
|
*/
|
|
#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
|
|
(queue_nr << 16 | trace_chan_id)
|
|
#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
|
|
#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
|
|
|
|
static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
|
|
{
|
|
etmidr &= ETMIDR_PTM_VERSION;
|
|
|
|
if (etmidr == ETMIDR_PTM_VERSION)
|
|
return CS_ETM_PROTO_PTM;
|
|
|
|
return CS_ETM_PROTO_ETMV3;
|
|
}
|
|
|
|
static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
|
|
{
|
|
struct int_node *inode;
|
|
u64 *metadata;
|
|
|
|
inode = intlist__find(traceid_list, trace_chan_id);
|
|
if (!inode)
|
|
return -EINVAL;
|
|
|
|
metadata = inode->priv;
|
|
*magic = metadata[CS_ETM_MAGIC];
|
|
return 0;
|
|
}
|
|
|
|
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
|
|
{
|
|
struct int_node *inode;
|
|
u64 *metadata;
|
|
|
|
inode = intlist__find(traceid_list, trace_chan_id);
|
|
if (!inode)
|
|
return -EINVAL;
|
|
|
|
metadata = inode->priv;
|
|
*cpu = (int)metadata[CS_ETM_CPU];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The returned PID format is presented by two bits:
|
|
*
|
|
* Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
|
|
* Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
|
|
*
|
|
* It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
|
|
* are enabled at the same time when the session runs on an EL2 kernel.
|
|
* This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
|
|
* recorded in the trace data, the tool will selectively use
|
|
* CONTEXTIDR_EL2 as PID.
|
|
*/
|
|
int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
|
|
{
|
|
struct int_node *inode;
|
|
u64 *metadata, val;
|
|
|
|
inode = intlist__find(traceid_list, trace_chan_id);
|
|
if (!inode)
|
|
return -EINVAL;
|
|
|
|
metadata = inode->priv;
|
|
|
|
if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
|
|
val = metadata[CS_ETM_ETMCR];
|
|
/* CONTEXTIDR is traced */
|
|
if (val & BIT(ETM_OPT_CTXTID))
|
|
*pid_fmt = BIT(ETM_OPT_CTXTID);
|
|
} else {
|
|
val = metadata[CS_ETMV4_TRCCONFIGR];
|
|
/* CONTEXTIDR_EL2 is traced */
|
|
if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
|
|
*pid_fmt = BIT(ETM_OPT_CTXTID2);
|
|
/* CONTEXTIDR_EL1 is traced */
|
|
else if (val & BIT(ETM4_CFG_BIT_CTXTID))
|
|
*pid_fmt = BIT(ETM_OPT_CTXTID);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
|
|
u8 trace_chan_id)
|
|
{
|
|
/*
|
|
* When a timestamp packet is encountered the backend code
|
|
* is stopped so that the front end has time to process packets
|
|
* that were accumulated in the traceID queue. Since there can
|
|
* be more than one channel per cs_etm_queue, we need to specify
|
|
* what traceID queue needs servicing.
|
|
*/
|
|
etmq->pending_timestamp_chan_id = trace_chan_id;
|
|
}
|
|
|
|
static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
|
|
u8 *trace_chan_id)
|
|
{
|
|
struct cs_etm_packet_queue *packet_queue;
|
|
|
|
if (!etmq->pending_timestamp_chan_id)
|
|
return 0;
|
|
|
|
if (trace_chan_id)
|
|
*trace_chan_id = etmq->pending_timestamp_chan_id;
|
|
|
|
packet_queue = cs_etm__etmq_get_packet_queue(etmq,
|
|
etmq->pending_timestamp_chan_id);
|
|
if (!packet_queue)
|
|
return 0;
|
|
|
|
/* Acknowledge pending status */
|
|
etmq->pending_timestamp_chan_id = 0;
|
|
|
|
/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
|
|
return packet_queue->cs_timestamp;
|
|
}
|
|
|
|
static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
|
|
{
|
|
int i;
|
|
|
|
queue->head = 0;
|
|
queue->tail = 0;
|
|
queue->packet_count = 0;
|
|
for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
|
|
queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
|
|
queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
|
|
queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
|
|
queue->packet_buffer[i].instr_count = 0;
|
|
queue->packet_buffer[i].last_instr_taken_branch = false;
|
|
queue->packet_buffer[i].last_instr_size = 0;
|
|
queue->packet_buffer[i].last_instr_type = 0;
|
|
queue->packet_buffer[i].last_instr_subtype = 0;
|
|
queue->packet_buffer[i].last_instr_cond = 0;
|
|
queue->packet_buffer[i].flags = 0;
|
|
queue->packet_buffer[i].exception_number = UINT32_MAX;
|
|
queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
|
|
queue->packet_buffer[i].cpu = INT_MIN;
|
|
}
|
|
}
|
|
|
|
static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
|
|
{
|
|
int idx;
|
|
struct int_node *inode;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
|
|
|
|
intlist__for_each_entry(inode, traceid_queues_list) {
|
|
idx = (int)(intptr_t)inode->priv;
|
|
tidq = etmq->traceid_queues[idx];
|
|
cs_etm__clear_packet_queue(&tidq->packet_queue);
|
|
}
|
|
}
|
|
|
|
static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq,
|
|
u8 trace_chan_id)
|
|
{
|
|
int rc = -ENOMEM;
|
|
struct auxtrace_queue *queue;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
|
|
cs_etm__clear_packet_queue(&tidq->packet_queue);
|
|
|
|
queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
|
|
tidq->tid = queue->tid;
|
|
tidq->pid = -1;
|
|
tidq->trace_chan_id = trace_chan_id;
|
|
|
|
tidq->packet = zalloc(sizeof(struct cs_etm_packet));
|
|
if (!tidq->packet)
|
|
goto out;
|
|
|
|
tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
|
|
if (!tidq->prev_packet)
|
|
goto out_free;
|
|
|
|
if (etm->synth_opts.last_branch) {
|
|
size_t sz = sizeof(struct branch_stack);
|
|
|
|
sz += etm->synth_opts.last_branch_sz *
|
|
sizeof(struct branch_entry);
|
|
tidq->last_branch = zalloc(sz);
|
|
if (!tidq->last_branch)
|
|
goto out_free;
|
|
tidq->last_branch_rb = zalloc(sz);
|
|
if (!tidq->last_branch_rb)
|
|
goto out_free;
|
|
}
|
|
|
|
tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
|
|
if (!tidq->event_buf)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
zfree(&tidq->last_branch_rb);
|
|
zfree(&tidq->last_branch);
|
|
zfree(&tidq->prev_packet);
|
|
zfree(&tidq->packet);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static struct cs_etm_traceid_queue
|
|
*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
|
|
{
|
|
int idx;
|
|
struct int_node *inode;
|
|
struct intlist *traceid_queues_list;
|
|
struct cs_etm_traceid_queue *tidq, **traceid_queues;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
|
|
if (etm->timeless_decoding)
|
|
trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
|
|
|
|
traceid_queues_list = etmq->traceid_queues_list;
|
|
|
|
/*
|
|
* Check if the traceid_queue exist for this traceID by looking
|
|
* in the queue list.
|
|
*/
|
|
inode = intlist__find(traceid_queues_list, trace_chan_id);
|
|
if (inode) {
|
|
idx = (int)(intptr_t)inode->priv;
|
|
return etmq->traceid_queues[idx];
|
|
}
|
|
|
|
/* We couldn't find a traceid_queue for this traceID, allocate one */
|
|
tidq = malloc(sizeof(*tidq));
|
|
if (!tidq)
|
|
return NULL;
|
|
|
|
memset(tidq, 0, sizeof(*tidq));
|
|
|
|
/* Get a valid index for the new traceid_queue */
|
|
idx = intlist__nr_entries(traceid_queues_list);
|
|
/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
|
|
inode = intlist__findnew(traceid_queues_list, trace_chan_id);
|
|
if (!inode)
|
|
goto out_free;
|
|
|
|
/* Associate this traceID with this index */
|
|
inode->priv = (void *)(intptr_t)idx;
|
|
|
|
if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
|
|
goto out_free;
|
|
|
|
/* Grow the traceid_queues array by one unit */
|
|
traceid_queues = etmq->traceid_queues;
|
|
traceid_queues = reallocarray(traceid_queues,
|
|
idx + 1,
|
|
sizeof(*traceid_queues));
|
|
|
|
/*
|
|
* On failure reallocarray() returns NULL and the original block of
|
|
* memory is left untouched.
|
|
*/
|
|
if (!traceid_queues)
|
|
goto out_free;
|
|
|
|
traceid_queues[idx] = tidq;
|
|
etmq->traceid_queues = traceid_queues;
|
|
|
|
return etmq->traceid_queues[idx];
|
|
|
|
out_free:
|
|
/*
|
|
* Function intlist__remove() removes the inode from the list
|
|
* and delete the memory associated to it.
|
|
*/
|
|
intlist__remove(traceid_queues_list, inode);
|
|
free(tidq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct cs_etm_packet_queue
|
|
*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
|
|
{
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
|
|
if (tidq)
|
|
return &tidq->packet_queue;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
struct cs_etm_packet *tmp;
|
|
|
|
if (etm->sample_branches || etm->synth_opts.last_branch ||
|
|
etm->sample_instructions) {
|
|
/*
|
|
* Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
|
|
* the next incoming packet.
|
|
*/
|
|
tmp = tidq->packet;
|
|
tidq->packet = tidq->prev_packet;
|
|
tidq->prev_packet = tmp;
|
|
}
|
|
}
|
|
|
|
static void cs_etm__packet_dump(const char *pkt_string)
|
|
{
|
|
const char *color = PERF_COLOR_BLUE;
|
|
int len = strlen(pkt_string);
|
|
|
|
if (len && (pkt_string[len-1] == '\n'))
|
|
color_fprintf(stdout, color, " %s", pkt_string);
|
|
else
|
|
color_fprintf(stdout, color, " %s\n", pkt_string);
|
|
|
|
fflush(stdout);
|
|
}
|
|
|
|
static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
|
|
struct cs_etm_auxtrace *etm, int idx,
|
|
u32 etmidr)
|
|
{
|
|
u64 **metadata = etm->metadata;
|
|
|
|
t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
|
|
t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
|
|
t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
|
|
}
|
|
|
|
static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
|
|
struct cs_etm_auxtrace *etm, int idx)
|
|
{
|
|
u64 **metadata = etm->metadata;
|
|
|
|
t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
|
|
t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
|
|
t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
|
|
t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
|
|
t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
|
|
t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
|
|
t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
|
|
}
|
|
|
|
static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
|
|
struct cs_etm_auxtrace *etm, int idx)
|
|
{
|
|
u64 **metadata = etm->metadata;
|
|
|
|
t_params[idx].protocol = CS_ETM_PROTO_ETE;
|
|
t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
|
|
t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
|
|
t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
|
|
t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
|
|
t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
|
|
t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
|
|
t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
|
|
}
|
|
|
|
static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
|
|
struct cs_etm_auxtrace *etm,
|
|
int decoders)
|
|
{
|
|
int i;
|
|
u32 etmidr;
|
|
u64 architecture;
|
|
|
|
for (i = 0; i < decoders; i++) {
|
|
architecture = etm->metadata[i][CS_ETM_MAGIC];
|
|
|
|
switch (architecture) {
|
|
case __perf_cs_etmv3_magic:
|
|
etmidr = etm->metadata[i][CS_ETM_ETMIDR];
|
|
cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
|
|
break;
|
|
case __perf_cs_etmv4_magic:
|
|
cs_etm__set_trace_param_etmv4(t_params, etm, i);
|
|
break;
|
|
case __perf_cs_ete_magic:
|
|
cs_etm__set_trace_param_ete(t_params, etm, i);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
|
|
struct cs_etm_queue *etmq,
|
|
enum cs_etm_decoder_operation mode,
|
|
bool formatted)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
if (!(mode < CS_ETM_OPERATION_MAX))
|
|
goto out;
|
|
|
|
d_params->packet_printer = cs_etm__packet_dump;
|
|
d_params->operation = mode;
|
|
d_params->data = etmq;
|
|
d_params->formatted = formatted;
|
|
d_params->fsyncs = false;
|
|
d_params->hsyncs = false;
|
|
d_params->frame_aligned = true;
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void cs_etm__dump_event(struct cs_etm_queue *etmq,
|
|
struct auxtrace_buffer *buffer)
|
|
{
|
|
int ret;
|
|
const char *color = PERF_COLOR_BLUE;
|
|
size_t buffer_used = 0;
|
|
|
|
fprintf(stdout, "\n");
|
|
color_fprintf(stdout, color,
|
|
". ... CoreSight %s Trace data: size %#zx bytes\n",
|
|
cs_etm_decoder__get_name(etmq->decoder), buffer->size);
|
|
|
|
do {
|
|
size_t consumed;
|
|
|
|
ret = cs_etm_decoder__process_data_block(
|
|
etmq->decoder, buffer->offset,
|
|
&((u8 *)buffer->data)[buffer_used],
|
|
buffer->size - buffer_used, &consumed);
|
|
if (ret)
|
|
break;
|
|
|
|
buffer_used += consumed;
|
|
} while (buffer_used < buffer->size);
|
|
|
|
cs_etm_decoder__reset(etmq->decoder);
|
|
}
|
|
|
|
static int cs_etm__flush_events(struct perf_session *session,
|
|
struct perf_tool *tool)
|
|
{
|
|
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
if (dump_trace)
|
|
return 0;
|
|
|
|
if (!tool->ordered_events)
|
|
return -EINVAL;
|
|
|
|
if (etm->timeless_decoding)
|
|
return cs_etm__process_timeless_queues(etm, -1);
|
|
|
|
return cs_etm__process_queues(etm);
|
|
}
|
|
|
|
static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
|
|
{
|
|
int idx;
|
|
uintptr_t priv;
|
|
struct int_node *inode, *tmp;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
|
|
|
|
intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
|
|
priv = (uintptr_t)inode->priv;
|
|
idx = priv;
|
|
|
|
/* Free this traceid_queue from the array */
|
|
tidq = etmq->traceid_queues[idx];
|
|
thread__zput(tidq->thread);
|
|
zfree(&tidq->event_buf);
|
|
zfree(&tidq->last_branch);
|
|
zfree(&tidq->last_branch_rb);
|
|
zfree(&tidq->prev_packet);
|
|
zfree(&tidq->packet);
|
|
zfree(&tidq);
|
|
|
|
/*
|
|
* Function intlist__remove() removes the inode from the list
|
|
* and delete the memory associated to it.
|
|
*/
|
|
intlist__remove(traceid_queues_list, inode);
|
|
}
|
|
|
|
/* Then the RB tree itself */
|
|
intlist__delete(traceid_queues_list);
|
|
etmq->traceid_queues_list = NULL;
|
|
|
|
/* finally free the traceid_queues array */
|
|
zfree(&etmq->traceid_queues);
|
|
}
|
|
|
|
static void cs_etm__free_queue(void *priv)
|
|
{
|
|
struct cs_etm_queue *etmq = priv;
|
|
|
|
if (!etmq)
|
|
return;
|
|
|
|
cs_etm_decoder__free(etmq->decoder);
|
|
cs_etm__free_traceid_queues(etmq);
|
|
free(etmq);
|
|
}
|
|
|
|
static void cs_etm__free_events(struct perf_session *session)
|
|
{
|
|
unsigned int i;
|
|
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
struct auxtrace_queues *queues = &aux->queues;
|
|
|
|
for (i = 0; i < queues->nr_queues; i++) {
|
|
cs_etm__free_queue(queues->queue_array[i].priv);
|
|
queues->queue_array[i].priv = NULL;
|
|
}
|
|
|
|
auxtrace_queues__free(queues);
|
|
}
|
|
|
|
static void cs_etm__free(struct perf_session *session)
|
|
{
|
|
int i;
|
|
struct int_node *inode, *tmp;
|
|
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
cs_etm__free_events(session);
|
|
session->auxtrace = NULL;
|
|
|
|
/* First remove all traceID/metadata nodes for the RB tree */
|
|
intlist__for_each_entry_safe(inode, tmp, traceid_list)
|
|
intlist__remove(traceid_list, inode);
|
|
/* Then the RB tree itself */
|
|
intlist__delete(traceid_list);
|
|
|
|
for (i = 0; i < aux->num_cpu; i++)
|
|
zfree(&aux->metadata[i]);
|
|
|
|
thread__zput(aux->unknown_thread);
|
|
zfree(&aux->metadata);
|
|
zfree(&aux);
|
|
}
|
|
|
|
static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
|
|
struct evsel *evsel)
|
|
{
|
|
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
|
|
return evsel->core.attr.type == aux->pmu_type;
|
|
}
|
|
|
|
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
|
|
{
|
|
struct machine *machine;
|
|
|
|
machine = etmq->etm->machine;
|
|
|
|
if (address >= machine__kernel_start(machine)) {
|
|
if (machine__is_host(machine))
|
|
return PERF_RECORD_MISC_KERNEL;
|
|
else
|
|
return PERF_RECORD_MISC_GUEST_KERNEL;
|
|
} else {
|
|
if (machine__is_host(machine))
|
|
return PERF_RECORD_MISC_USER;
|
|
else if (perf_guest)
|
|
return PERF_RECORD_MISC_GUEST_USER;
|
|
else
|
|
return PERF_RECORD_MISC_HYPERVISOR;
|
|
}
|
|
}
|
|
|
|
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
|
|
u64 address, size_t size, u8 *buffer)
|
|
{
|
|
u8 cpumode;
|
|
u64 offset;
|
|
int len;
|
|
struct thread *thread;
|
|
struct machine *machine;
|
|
struct addr_location al;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
if (!etmq)
|
|
return 0;
|
|
|
|
machine = etmq->etm->machine;
|
|
cpumode = cs_etm__cpu_mode(etmq, address);
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
|
|
if (!tidq)
|
|
return 0;
|
|
|
|
thread = tidq->thread;
|
|
if (!thread) {
|
|
if (cpumode != PERF_RECORD_MISC_KERNEL)
|
|
return 0;
|
|
thread = etmq->etm->unknown_thread;
|
|
}
|
|
|
|
if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
|
|
return 0;
|
|
|
|
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
|
|
dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
|
|
return 0;
|
|
|
|
offset = al.map->map_ip(al.map, address);
|
|
|
|
map__load(al.map);
|
|
|
|
len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
|
|
|
|
if (len <= 0) {
|
|
ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
|
|
" Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
|
|
if (!al.map->dso->auxtrace_warned) {
|
|
pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
|
|
address,
|
|
al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
|
|
al.map->dso->auxtrace_warned = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
|
|
bool formatted)
|
|
{
|
|
struct cs_etm_decoder_params d_params;
|
|
struct cs_etm_trace_params *t_params = NULL;
|
|
struct cs_etm_queue *etmq;
|
|
/*
|
|
* Each queue can only contain data from one CPU when unformatted, so only one decoder is
|
|
* needed.
|
|
*/
|
|
int decoders = formatted ? etm->num_cpu : 1;
|
|
|
|
etmq = zalloc(sizeof(*etmq));
|
|
if (!etmq)
|
|
return NULL;
|
|
|
|
etmq->traceid_queues_list = intlist__new(NULL);
|
|
if (!etmq->traceid_queues_list)
|
|
goto out_free;
|
|
|
|
/* Use metadata to fill in trace parameters for trace decoder */
|
|
t_params = zalloc(sizeof(*t_params) * decoders);
|
|
|
|
if (!t_params)
|
|
goto out_free;
|
|
|
|
if (cs_etm__init_trace_params(t_params, etm, decoders))
|
|
goto out_free;
|
|
|
|
/* Set decoder parameters to decode trace packets */
|
|
if (cs_etm__init_decoder_params(&d_params, etmq,
|
|
dump_trace ? CS_ETM_OPERATION_PRINT :
|
|
CS_ETM_OPERATION_DECODE,
|
|
formatted))
|
|
goto out_free;
|
|
|
|
etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
|
|
t_params);
|
|
|
|
if (!etmq->decoder)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Register a function to handle all memory accesses required by
|
|
* the trace decoder library.
|
|
*/
|
|
if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
|
|
0x0L, ((u64) -1L),
|
|
cs_etm__mem_access))
|
|
goto out_free_decoder;
|
|
|
|
zfree(&t_params);
|
|
return etmq;
|
|
|
|
out_free_decoder:
|
|
cs_etm_decoder__free(etmq->decoder);
|
|
out_free:
|
|
intlist__delete(etmq->traceid_queues_list);
|
|
free(etmq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
|
|
struct auxtrace_queue *queue,
|
|
unsigned int queue_nr,
|
|
bool formatted)
|
|
{
|
|
struct cs_etm_queue *etmq = queue->priv;
|
|
|
|
if (list_empty(&queue->head) || etmq)
|
|
return 0;
|
|
|
|
etmq = cs_etm__alloc_queue(etm, formatted);
|
|
|
|
if (!etmq)
|
|
return -ENOMEM;
|
|
|
|
queue->priv = etmq;
|
|
etmq->etm = etm;
|
|
etmq->queue_nr = queue_nr;
|
|
etmq->offset = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
|
|
struct cs_etm_queue *etmq,
|
|
unsigned int queue_nr)
|
|
{
|
|
int ret = 0;
|
|
unsigned int cs_queue_nr;
|
|
u8 trace_chan_id;
|
|
u64 cs_timestamp;
|
|
|
|
/*
|
|
* We are under a CPU-wide trace scenario. As such we need to know
|
|
* when the code that generated the traces started to execute so that
|
|
* it can be correlated with execution on other CPUs. So we get a
|
|
* handle on the beginning of traces and decode until we find a
|
|
* timestamp. The timestamp is then added to the auxtrace min heap
|
|
* in order to know what nibble (of all the etmqs) to decode first.
|
|
*/
|
|
while (1) {
|
|
/*
|
|
* Fetch an aux_buffer from this etmq. Bail if no more
|
|
* blocks or an error has been encountered.
|
|
*/
|
|
ret = cs_etm__get_data_block(etmq);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Run decoder on the trace block. The decoder will stop when
|
|
* encountering a CS timestamp, a full packet queue or the end of
|
|
* trace for that block.
|
|
*/
|
|
ret = cs_etm__decode_data_block(etmq);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
|
|
* the timestamp calculation for us.
|
|
*/
|
|
cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
|
|
|
|
/* We found a timestamp, no need to continue. */
|
|
if (cs_timestamp)
|
|
break;
|
|
|
|
/*
|
|
* We didn't find a timestamp so empty all the traceid packet
|
|
* queues before looking for another timestamp packet, either
|
|
* in the current data block or a new one. Packets that were
|
|
* just decoded are useless since no timestamp has been
|
|
* associated with them. As such simply discard them.
|
|
*/
|
|
cs_etm__clear_all_packet_queues(etmq);
|
|
}
|
|
|
|
/*
|
|
* We have a timestamp. Add it to the min heap to reflect when
|
|
* instructions conveyed by the range packets of this traceID queue
|
|
* started to execute. Once the same has been done for all the traceID
|
|
* queues of each etmq, redenring and decoding can start in
|
|
* chronological order.
|
|
*
|
|
* Note that packets decoded above are still in the traceID's packet
|
|
* queue and will be processed in cs_etm__process_queues().
|
|
*/
|
|
cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
|
|
ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static inline
|
|
void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
struct branch_stack *bs_src = tidq->last_branch_rb;
|
|
struct branch_stack *bs_dst = tidq->last_branch;
|
|
size_t nr = 0;
|
|
|
|
/*
|
|
* Set the number of records before early exit: ->nr is used to
|
|
* determine how many branches to copy from ->entries.
|
|
*/
|
|
bs_dst->nr = bs_src->nr;
|
|
|
|
/*
|
|
* Early exit when there is nothing to copy.
|
|
*/
|
|
if (!bs_src->nr)
|
|
return;
|
|
|
|
/*
|
|
* As bs_src->entries is a circular buffer, we need to copy from it in
|
|
* two steps. First, copy the branches from the most recently inserted
|
|
* branch ->last_branch_pos until the end of bs_src->entries buffer.
|
|
*/
|
|
nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
|
|
memcpy(&bs_dst->entries[0],
|
|
&bs_src->entries[tidq->last_branch_pos],
|
|
sizeof(struct branch_entry) * nr);
|
|
|
|
/*
|
|
* If we wrapped around at least once, the branches from the beginning
|
|
* of the bs_src->entries buffer and until the ->last_branch_pos element
|
|
* are older valid branches: copy them over. The total number of
|
|
* branches copied over will be equal to the number of branches asked by
|
|
* the user in last_branch_sz.
|
|
*/
|
|
if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
|
|
memcpy(&bs_dst->entries[nr],
|
|
&bs_src->entries[0],
|
|
sizeof(struct branch_entry) * tidq->last_branch_pos);
|
|
}
|
|
}
|
|
|
|
static inline
|
|
void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
tidq->last_branch_pos = 0;
|
|
tidq->last_branch_rb->nr = 0;
|
|
}
|
|
|
|
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
|
|
u8 trace_chan_id, u64 addr)
|
|
{
|
|
u8 instrBytes[2];
|
|
|
|
cs_etm__mem_access(etmq, trace_chan_id, addr,
|
|
ARRAY_SIZE(instrBytes), instrBytes);
|
|
/*
|
|
* T32 instruction size is indicated by bits[15:11] of the first
|
|
* 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
|
|
* denote a 32-bit instruction.
|
|
*/
|
|
return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
|
|
}
|
|
|
|
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
|
|
{
|
|
/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
|
|
if (packet->sample_type == CS_ETM_DISCONTINUITY)
|
|
return 0;
|
|
|
|
return packet->start_addr;
|
|
}
|
|
|
|
static inline
|
|
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
|
|
{
|
|
/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
|
|
if (packet->sample_type == CS_ETM_DISCONTINUITY)
|
|
return 0;
|
|
|
|
return packet->end_addr - packet->last_instr_size;
|
|
}
|
|
|
|
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
|
|
u64 trace_chan_id,
|
|
const struct cs_etm_packet *packet,
|
|
u64 offset)
|
|
{
|
|
if (packet->isa == CS_ETM_ISA_T32) {
|
|
u64 addr = packet->start_addr;
|
|
|
|
while (offset) {
|
|
addr += cs_etm__t32_instr_size(etmq,
|
|
trace_chan_id, addr);
|
|
offset--;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/* Assume a 4 byte instruction size (A32/A64) */
|
|
return packet->start_addr + offset * 4;
|
|
}
|
|
|
|
static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
struct branch_stack *bs = tidq->last_branch_rb;
|
|
struct branch_entry *be;
|
|
|
|
/*
|
|
* The branches are recorded in a circular buffer in reverse
|
|
* chronological order: we start recording from the last element of the
|
|
* buffer down. After writing the first element of the stack, move the
|
|
* insert position back to the end of the buffer.
|
|
*/
|
|
if (!tidq->last_branch_pos)
|
|
tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
|
|
|
|
tidq->last_branch_pos -= 1;
|
|
|
|
be = &bs->entries[tidq->last_branch_pos];
|
|
be->from = cs_etm__last_executed_instr(tidq->prev_packet);
|
|
be->to = cs_etm__first_executed_instr(tidq->packet);
|
|
/* No support for mispredict */
|
|
be->flags.mispred = 0;
|
|
be->flags.predicted = 1;
|
|
|
|
/*
|
|
* Increment bs->nr until reaching the number of last branches asked by
|
|
* the user on the command line.
|
|
*/
|
|
if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
|
|
bs->nr += 1;
|
|
}
|
|
|
|
static int cs_etm__inject_event(union perf_event *event,
|
|
struct perf_sample *sample, u64 type)
|
|
{
|
|
event->header.size = perf_event__sample_event_size(sample, type, 0);
|
|
return perf_event__synthesize_sample(event, type, 0, sample);
|
|
}
|
|
|
|
|
|
static int
|
|
cs_etm__get_trace(struct cs_etm_queue *etmq)
|
|
{
|
|
struct auxtrace_buffer *aux_buffer = etmq->buffer;
|
|
struct auxtrace_buffer *old_buffer = aux_buffer;
|
|
struct auxtrace_queue *queue;
|
|
|
|
queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
|
|
|
|
aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
|
|
|
|
/* If no more data, drop the previous auxtrace_buffer and return */
|
|
if (!aux_buffer) {
|
|
if (old_buffer)
|
|
auxtrace_buffer__drop_data(old_buffer);
|
|
etmq->buf_len = 0;
|
|
return 0;
|
|
}
|
|
|
|
etmq->buffer = aux_buffer;
|
|
|
|
/* If the aux_buffer doesn't have data associated, try to load it */
|
|
if (!aux_buffer->data) {
|
|
/* get the file desc associated with the perf data file */
|
|
int fd = perf_data__fd(etmq->etm->session->data);
|
|
|
|
aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
|
|
if (!aux_buffer->data)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* If valid, drop the previous buffer */
|
|
if (old_buffer)
|
|
auxtrace_buffer__drop_data(old_buffer);
|
|
|
|
etmq->buf_used = 0;
|
|
etmq->buf_len = aux_buffer->size;
|
|
etmq->buf = aux_buffer->data;
|
|
|
|
return etmq->buf_len;
|
|
}
|
|
|
|
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
if ((!tidq->thread) && (tidq->tid != -1))
|
|
tidq->thread = machine__find_thread(etm->machine, -1,
|
|
tidq->tid);
|
|
|
|
if (tidq->thread)
|
|
tidq->pid = tidq->thread->pid_;
|
|
}
|
|
|
|
int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
|
|
pid_t tid, u8 trace_chan_id)
|
|
{
|
|
int cpu, err = -EINVAL;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
|
|
if (!tidq)
|
|
return err;
|
|
|
|
if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
|
|
return err;
|
|
|
|
err = machine__set_current_tid(etm->machine, cpu, tid, tid);
|
|
if (err)
|
|
return err;
|
|
|
|
tidq->tid = tid;
|
|
thread__zput(tidq->thread);
|
|
|
|
cs_etm__set_pid_tid_cpu(etm, tidq);
|
|
return 0;
|
|
}
|
|
|
|
bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
|
|
{
|
|
return !!etmq->etm->timeless_decoding;
|
|
}
|
|
|
|
static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
|
|
u64 trace_chan_id,
|
|
const struct cs_etm_packet *packet,
|
|
struct perf_sample *sample)
|
|
{
|
|
/*
|
|
* It's pointless to read instructions for the CS_ETM_DISCONTINUITY
|
|
* packet, so directly bail out with 'insn_len' = 0.
|
|
*/
|
|
if (packet->sample_type == CS_ETM_DISCONTINUITY) {
|
|
sample->insn_len = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* T32 instruction size might be 32-bit or 16-bit, decide by calling
|
|
* cs_etm__t32_instr_size().
|
|
*/
|
|
if (packet->isa == CS_ETM_ISA_T32)
|
|
sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
|
|
sample->ip);
|
|
/* Otherwise, A64 and A32 instruction size are always 32-bit. */
|
|
else
|
|
sample->insn_len = 4;
|
|
|
|
cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
|
|
sample->insn_len, (void *)sample->insn);
|
|
}
|
|
|
|
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq,
|
|
u64 addr, u64 period)
|
|
{
|
|
int ret = 0;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
union perf_event *event = tidq->event_buf;
|
|
struct perf_sample sample = {.ip = 0,};
|
|
|
|
event->sample.header.type = PERF_RECORD_SAMPLE;
|
|
event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
|
|
event->sample.header.size = sizeof(struct perf_event_header);
|
|
|
|
if (!etm->timeless_decoding)
|
|
sample.time = etm->latest_kernel_timestamp;
|
|
sample.ip = addr;
|
|
sample.pid = tidq->pid;
|
|
sample.tid = tidq->tid;
|
|
sample.id = etmq->etm->instructions_id;
|
|
sample.stream_id = etmq->etm->instructions_id;
|
|
sample.period = period;
|
|
sample.cpu = tidq->packet->cpu;
|
|
sample.flags = tidq->prev_packet->flags;
|
|
sample.cpumode = event->sample.header.misc;
|
|
|
|
cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
|
|
|
|
if (etm->synth_opts.last_branch)
|
|
sample.branch_stack = tidq->last_branch;
|
|
|
|
if (etm->synth_opts.inject) {
|
|
ret = cs_etm__inject_event(event, &sample,
|
|
etm->instructions_sample_type);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
|
|
|
|
if (ret)
|
|
pr_err(
|
|
"CS ETM Trace: failed to deliver instruction event, error %d\n",
|
|
ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The cs etm packet encodes an instruction range between a branch target
|
|
* and the next taken branch. Generate sample accordingly.
|
|
*/
|
|
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
int ret = 0;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
struct perf_sample sample = {.ip = 0,};
|
|
union perf_event *event = tidq->event_buf;
|
|
struct dummy_branch_stack {
|
|
u64 nr;
|
|
u64 hw_idx;
|
|
struct branch_entry entries;
|
|
} dummy_bs;
|
|
u64 ip;
|
|
|
|
ip = cs_etm__last_executed_instr(tidq->prev_packet);
|
|
|
|
event->sample.header.type = PERF_RECORD_SAMPLE;
|
|
event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
|
|
event->sample.header.size = sizeof(struct perf_event_header);
|
|
|
|
if (!etm->timeless_decoding)
|
|
sample.time = etm->latest_kernel_timestamp;
|
|
sample.ip = ip;
|
|
sample.pid = tidq->pid;
|
|
sample.tid = tidq->tid;
|
|
sample.addr = cs_etm__first_executed_instr(tidq->packet);
|
|
sample.id = etmq->etm->branches_id;
|
|
sample.stream_id = etmq->etm->branches_id;
|
|
sample.period = 1;
|
|
sample.cpu = tidq->packet->cpu;
|
|
sample.flags = tidq->prev_packet->flags;
|
|
sample.cpumode = event->sample.header.misc;
|
|
|
|
cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
|
|
&sample);
|
|
|
|
/*
|
|
* perf report cannot handle events without a branch stack
|
|
*/
|
|
if (etm->synth_opts.last_branch) {
|
|
dummy_bs = (struct dummy_branch_stack){
|
|
.nr = 1,
|
|
.hw_idx = -1ULL,
|
|
.entries = {
|
|
.from = sample.ip,
|
|
.to = sample.addr,
|
|
},
|
|
};
|
|
sample.branch_stack = (struct branch_stack *)&dummy_bs;
|
|
}
|
|
|
|
if (etm->synth_opts.inject) {
|
|
ret = cs_etm__inject_event(event, &sample,
|
|
etm->branches_sample_type);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
|
|
|
|
if (ret)
|
|
pr_err(
|
|
"CS ETM Trace: failed to deliver instruction event, error %d\n",
|
|
ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct cs_etm_synth {
|
|
struct perf_tool dummy_tool;
|
|
struct perf_session *session;
|
|
};
|
|
|
|
static int cs_etm__event_synth(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample __maybe_unused,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
struct cs_etm_synth *cs_etm_synth =
|
|
container_of(tool, struct cs_etm_synth, dummy_tool);
|
|
|
|
return perf_session__deliver_synth_event(cs_etm_synth->session,
|
|
event, NULL);
|
|
}
|
|
|
|
static int cs_etm__synth_event(struct perf_session *session,
|
|
struct perf_event_attr *attr, u64 id)
|
|
{
|
|
struct cs_etm_synth cs_etm_synth;
|
|
|
|
memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
|
|
cs_etm_synth.session = session;
|
|
|
|
return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
|
|
&id, cs_etm__event_synth);
|
|
}
|
|
|
|
static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
|
|
struct perf_session *session)
|
|
{
|
|
struct evlist *evlist = session->evlist;
|
|
struct evsel *evsel;
|
|
struct perf_event_attr attr;
|
|
bool found = false;
|
|
u64 id;
|
|
int err;
|
|
|
|
evlist__for_each_entry(evlist, evsel) {
|
|
if (evsel->core.attr.type == etm->pmu_type) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
pr_debug("No selected events with CoreSight Trace data\n");
|
|
return 0;
|
|
}
|
|
|
|
memset(&attr, 0, sizeof(struct perf_event_attr));
|
|
attr.size = sizeof(struct perf_event_attr);
|
|
attr.type = PERF_TYPE_HARDWARE;
|
|
attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
|
|
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
|
|
PERF_SAMPLE_PERIOD;
|
|
if (etm->timeless_decoding)
|
|
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
|
|
else
|
|
attr.sample_type |= PERF_SAMPLE_TIME;
|
|
|
|
attr.exclude_user = evsel->core.attr.exclude_user;
|
|
attr.exclude_kernel = evsel->core.attr.exclude_kernel;
|
|
attr.exclude_hv = evsel->core.attr.exclude_hv;
|
|
attr.exclude_host = evsel->core.attr.exclude_host;
|
|
attr.exclude_guest = evsel->core.attr.exclude_guest;
|
|
attr.sample_id_all = evsel->core.attr.sample_id_all;
|
|
attr.read_format = evsel->core.attr.read_format;
|
|
|
|
/* create new id val to be a fixed offset from evsel id */
|
|
id = evsel->core.id[0] + 1000000000;
|
|
|
|
if (!id)
|
|
id = 1;
|
|
|
|
if (etm->synth_opts.branches) {
|
|
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
|
|
attr.sample_period = 1;
|
|
attr.sample_type |= PERF_SAMPLE_ADDR;
|
|
err = cs_etm__synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
etm->sample_branches = true;
|
|
etm->branches_sample_type = attr.sample_type;
|
|
etm->branches_id = id;
|
|
id += 1;
|
|
attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
|
|
}
|
|
|
|
if (etm->synth_opts.last_branch) {
|
|
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
|
|
/*
|
|
* We don't use the hardware index, but the sample generation
|
|
* code uses the new format branch_stack with this field,
|
|
* so the event attributes must indicate that it's present.
|
|
*/
|
|
attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
|
|
}
|
|
|
|
if (etm->synth_opts.instructions) {
|
|
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
|
|
attr.sample_period = etm->synth_opts.period;
|
|
etm->instructions_sample_period = attr.sample_period;
|
|
err = cs_etm__synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
etm->sample_instructions = true;
|
|
etm->instructions_sample_type = attr.sample_type;
|
|
etm->instructions_id = id;
|
|
id += 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__sample(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
int ret;
|
|
u8 trace_chan_id = tidq->trace_chan_id;
|
|
u64 instrs_prev;
|
|
|
|
/* Get instructions remainder from previous packet */
|
|
instrs_prev = tidq->period_instructions;
|
|
|
|
tidq->period_instructions += tidq->packet->instr_count;
|
|
|
|
/*
|
|
* Record a branch when the last instruction in
|
|
* PREV_PACKET is a branch.
|
|
*/
|
|
if (etm->synth_opts.last_branch &&
|
|
tidq->prev_packet->sample_type == CS_ETM_RANGE &&
|
|
tidq->prev_packet->last_instr_taken_branch)
|
|
cs_etm__update_last_branch_rb(etmq, tidq);
|
|
|
|
if (etm->sample_instructions &&
|
|
tidq->period_instructions >= etm->instructions_sample_period) {
|
|
/*
|
|
* Emit instruction sample periodically
|
|
* TODO: allow period to be defined in cycles and clock time
|
|
*/
|
|
|
|
/*
|
|
* Below diagram demonstrates the instruction samples
|
|
* generation flows:
|
|
*
|
|
* Instrs Instrs Instrs Instrs
|
|
* Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
|
|
* | | | |
|
|
* V V V V
|
|
* --------------------------------------------------
|
|
* ^ ^
|
|
* | |
|
|
* Period Period
|
|
* instructions(Pi) instructions(Pi')
|
|
*
|
|
* | |
|
|
* \---------------- -----------------/
|
|
* V
|
|
* tidq->packet->instr_count
|
|
*
|
|
* Instrs Sample(n...) are the synthesised samples occurring
|
|
* every etm->instructions_sample_period instructions - as
|
|
* defined on the perf command line. Sample(n) is being the
|
|
* last sample before the current etm packet, n+1 to n+3
|
|
* samples are generated from the current etm packet.
|
|
*
|
|
* tidq->packet->instr_count represents the number of
|
|
* instructions in the current etm packet.
|
|
*
|
|
* Period instructions (Pi) contains the the number of
|
|
* instructions executed after the sample point(n) from the
|
|
* previous etm packet. This will always be less than
|
|
* etm->instructions_sample_period.
|
|
*
|
|
* When generate new samples, it combines with two parts
|
|
* instructions, one is the tail of the old packet and another
|
|
* is the head of the new coming packet, to generate
|
|
* sample(n+1); sample(n+2) and sample(n+3) consume the
|
|
* instructions with sample period. After sample(n+3), the rest
|
|
* instructions will be used by later packet and it is assigned
|
|
* to tidq->period_instructions for next round calculation.
|
|
*/
|
|
|
|
/*
|
|
* Get the initial offset into the current packet instructions;
|
|
* entry conditions ensure that instrs_prev is less than
|
|
* etm->instructions_sample_period.
|
|
*/
|
|
u64 offset = etm->instructions_sample_period - instrs_prev;
|
|
u64 addr;
|
|
|
|
/* Prepare last branches for instruction sample */
|
|
if (etm->synth_opts.last_branch)
|
|
cs_etm__copy_last_branch_rb(etmq, tidq);
|
|
|
|
while (tidq->period_instructions >=
|
|
etm->instructions_sample_period) {
|
|
/*
|
|
* Calculate the address of the sampled instruction (-1
|
|
* as sample is reported as though instruction has just
|
|
* been executed, but PC has not advanced to next
|
|
* instruction)
|
|
*/
|
|
addr = cs_etm__instr_addr(etmq, trace_chan_id,
|
|
tidq->packet, offset - 1);
|
|
ret = cs_etm__synth_instruction_sample(
|
|
etmq, tidq, addr,
|
|
etm->instructions_sample_period);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset += etm->instructions_sample_period;
|
|
tidq->period_instructions -=
|
|
etm->instructions_sample_period;
|
|
}
|
|
}
|
|
|
|
if (etm->sample_branches) {
|
|
bool generate_sample = false;
|
|
|
|
/* Generate sample for tracing on packet */
|
|
if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
|
|
generate_sample = true;
|
|
|
|
/* Generate sample for branch taken packet */
|
|
if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
|
|
tidq->prev_packet->last_instr_taken_branch)
|
|
generate_sample = true;
|
|
|
|
if (generate_sample) {
|
|
ret = cs_etm__synth_branch_sample(etmq, tidq);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
cs_etm__packet_swap(etm, tidq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
/*
|
|
* When the exception packet is inserted, whether the last instruction
|
|
* in previous range packet is taken branch or not, we need to force
|
|
* to set 'prev_packet->last_instr_taken_branch' to true. This ensures
|
|
* to generate branch sample for the instruction range before the
|
|
* exception is trapped to kernel or before the exception returning.
|
|
*
|
|
* The exception packet includes the dummy address values, so don't
|
|
* swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
|
|
* for generating instruction and branch samples.
|
|
*/
|
|
if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
|
|
tidq->prev_packet->last_instr_taken_branch = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__flush(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
int err = 0;
|
|
struct cs_etm_auxtrace *etm = etmq->etm;
|
|
|
|
/* Handle start tracing packet */
|
|
if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
|
|
goto swap_packet;
|
|
|
|
if (etmq->etm->synth_opts.last_branch &&
|
|
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
|
|
u64 addr;
|
|
|
|
/* Prepare last branches for instruction sample */
|
|
cs_etm__copy_last_branch_rb(etmq, tidq);
|
|
|
|
/*
|
|
* Generate a last branch event for the branches left in the
|
|
* circular buffer at the end of the trace.
|
|
*
|
|
* Use the address of the end of the last reported execution
|
|
* range
|
|
*/
|
|
addr = cs_etm__last_executed_instr(tidq->prev_packet);
|
|
|
|
err = cs_etm__synth_instruction_sample(
|
|
etmq, tidq, addr,
|
|
tidq->period_instructions);
|
|
if (err)
|
|
return err;
|
|
|
|
tidq->period_instructions = 0;
|
|
|
|
}
|
|
|
|
if (etm->sample_branches &&
|
|
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
|
|
err = cs_etm__synth_branch_sample(etmq, tidq);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
swap_packet:
|
|
cs_etm__packet_swap(etm, tidq);
|
|
|
|
/* Reset last branches after flush the trace */
|
|
if (etm->synth_opts.last_branch)
|
|
cs_etm__reset_last_branch_rb(tidq);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int cs_etm__end_block(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* It has no new packet coming and 'etmq->packet' contains the stale
|
|
* packet which was set at the previous time with packets swapping;
|
|
* so skip to generate branch sample to avoid stale packet.
|
|
*
|
|
* For this case only flush branch stack and generate a last branch
|
|
* event for the branches left in the circular buffer at the end of
|
|
* the trace.
|
|
*/
|
|
if (etmq->etm->synth_opts.last_branch &&
|
|
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
|
|
u64 addr;
|
|
|
|
/* Prepare last branches for instruction sample */
|
|
cs_etm__copy_last_branch_rb(etmq, tidq);
|
|
|
|
/*
|
|
* Use the address of the end of the last reported execution
|
|
* range.
|
|
*/
|
|
addr = cs_etm__last_executed_instr(tidq->prev_packet);
|
|
|
|
err = cs_etm__synth_instruction_sample(
|
|
etmq, tidq, addr,
|
|
tidq->period_instructions);
|
|
if (err)
|
|
return err;
|
|
|
|
tidq->period_instructions = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
|
|
* if need be.
|
|
* Returns: < 0 if error
|
|
* = 0 if no more auxtrace_buffer to read
|
|
* > 0 if the current buffer isn't empty yet
|
|
*/
|
|
static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
|
|
{
|
|
int ret;
|
|
|
|
if (!etmq->buf_len) {
|
|
ret = cs_etm__get_trace(etmq);
|
|
if (ret <= 0)
|
|
return ret;
|
|
/*
|
|
* We cannot assume consecutive blocks in the data file
|
|
* are contiguous, reset the decoder to force re-sync.
|
|
*/
|
|
ret = cs_etm_decoder__reset(etmq->decoder);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return etmq->buf_len;
|
|
}
|
|
|
|
static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
|
|
struct cs_etm_packet *packet,
|
|
u64 end_addr)
|
|
{
|
|
/* Initialise to keep compiler happy */
|
|
u16 instr16 = 0;
|
|
u32 instr32 = 0;
|
|
u64 addr;
|
|
|
|
switch (packet->isa) {
|
|
case CS_ETM_ISA_T32:
|
|
/*
|
|
* The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
|
|
*
|
|
* b'15 b'8
|
|
* +-----------------+--------+
|
|
* | 1 1 0 1 1 1 1 1 | imm8 |
|
|
* +-----------------+--------+
|
|
*
|
|
* According to the specification, it only defines SVC for T32
|
|
* with 16 bits instruction and has no definition for 32bits;
|
|
* so below only read 2 bytes as instruction size for T32.
|
|
*/
|
|
addr = end_addr - 2;
|
|
cs_etm__mem_access(etmq, trace_chan_id, addr,
|
|
sizeof(instr16), (u8 *)&instr16);
|
|
if ((instr16 & 0xFF00) == 0xDF00)
|
|
return true;
|
|
|
|
break;
|
|
case CS_ETM_ISA_A32:
|
|
/*
|
|
* The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
|
|
*
|
|
* b'31 b'28 b'27 b'24
|
|
* +---------+---------+-------------------------+
|
|
* | !1111 | 1 1 1 1 | imm24 |
|
|
* +---------+---------+-------------------------+
|
|
*/
|
|
addr = end_addr - 4;
|
|
cs_etm__mem_access(etmq, trace_chan_id, addr,
|
|
sizeof(instr32), (u8 *)&instr32);
|
|
if ((instr32 & 0x0F000000) == 0x0F000000 &&
|
|
(instr32 & 0xF0000000) != 0xF0000000)
|
|
return true;
|
|
|
|
break;
|
|
case CS_ETM_ISA_A64:
|
|
/*
|
|
* The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
|
|
*
|
|
* b'31 b'21 b'4 b'0
|
|
* +-----------------------+---------+-----------+
|
|
* | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
|
|
* +-----------------------+---------+-----------+
|
|
*/
|
|
addr = end_addr - 4;
|
|
cs_etm__mem_access(etmq, trace_chan_id, addr,
|
|
sizeof(instr32), (u8 *)&instr32);
|
|
if ((instr32 & 0xFFE0001F) == 0xd4000001)
|
|
return true;
|
|
|
|
break;
|
|
case CS_ETM_ISA_UNKNOWN:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq, u64 magic)
|
|
{
|
|
u8 trace_chan_id = tidq->trace_chan_id;
|
|
struct cs_etm_packet *packet = tidq->packet;
|
|
struct cs_etm_packet *prev_packet = tidq->prev_packet;
|
|
|
|
if (magic == __perf_cs_etmv3_magic)
|
|
if (packet->exception_number == CS_ETMV3_EXC_SVC)
|
|
return true;
|
|
|
|
/*
|
|
* ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
|
|
* HVC cases; need to check if it's SVC instruction based on
|
|
* packet address.
|
|
*/
|
|
if (magic == __perf_cs_etmv4_magic) {
|
|
if (packet->exception_number == CS_ETMV4_EXC_CALL &&
|
|
cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
|
|
prev_packet->end_addr))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
|
|
u64 magic)
|
|
{
|
|
struct cs_etm_packet *packet = tidq->packet;
|
|
|
|
if (magic == __perf_cs_etmv3_magic)
|
|
if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
|
|
packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
|
|
packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
|
|
packet->exception_number == CS_ETMV3_EXC_IRQ ||
|
|
packet->exception_number == CS_ETMV3_EXC_FIQ)
|
|
return true;
|
|
|
|
if (magic == __perf_cs_etmv4_magic)
|
|
if (packet->exception_number == CS_ETMV4_EXC_RESET ||
|
|
packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
|
|
packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
|
|
packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
|
|
packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
|
|
packet->exception_number == CS_ETMV4_EXC_IRQ ||
|
|
packet->exception_number == CS_ETMV4_EXC_FIQ)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq,
|
|
u64 magic)
|
|
{
|
|
u8 trace_chan_id = tidq->trace_chan_id;
|
|
struct cs_etm_packet *packet = tidq->packet;
|
|
struct cs_etm_packet *prev_packet = tidq->prev_packet;
|
|
|
|
if (magic == __perf_cs_etmv3_magic)
|
|
if (packet->exception_number == CS_ETMV3_EXC_SMC ||
|
|
packet->exception_number == CS_ETMV3_EXC_HYP ||
|
|
packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
|
|
packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
|
|
packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
|
|
packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
|
|
packet->exception_number == CS_ETMV3_EXC_GENERIC)
|
|
return true;
|
|
|
|
if (magic == __perf_cs_etmv4_magic) {
|
|
if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
|
|
packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
|
|
packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
|
|
packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
|
|
return true;
|
|
|
|
/*
|
|
* For CS_ETMV4_EXC_CALL, except SVC other instructions
|
|
* (SMC, HVC) are taken as sync exceptions.
|
|
*/
|
|
if (packet->exception_number == CS_ETMV4_EXC_CALL &&
|
|
!cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
|
|
prev_packet->end_addr))
|
|
return true;
|
|
|
|
/*
|
|
* ETMv4 has 5 bits for exception number; if the numbers
|
|
* are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
|
|
* they are implementation defined exceptions.
|
|
*
|
|
* For this case, simply take it as sync exception.
|
|
*/
|
|
if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
|
|
packet->exception_number <= CS_ETMV4_EXC_END)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
struct cs_etm_packet *packet = tidq->packet;
|
|
struct cs_etm_packet *prev_packet = tidq->prev_packet;
|
|
u8 trace_chan_id = tidq->trace_chan_id;
|
|
u64 magic;
|
|
int ret;
|
|
|
|
switch (packet->sample_type) {
|
|
case CS_ETM_RANGE:
|
|
/*
|
|
* Immediate branch instruction without neither link nor
|
|
* return flag, it's normal branch instruction within
|
|
* the function.
|
|
*/
|
|
if (packet->last_instr_type == OCSD_INSTR_BR &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
|
|
packet->flags = PERF_IP_FLAG_BRANCH;
|
|
|
|
if (packet->last_instr_cond)
|
|
packet->flags |= PERF_IP_FLAG_CONDITIONAL;
|
|
}
|
|
|
|
/*
|
|
* Immediate branch instruction with link (e.g. BL), this is
|
|
* branch instruction for function call.
|
|
*/
|
|
if (packet->last_instr_type == OCSD_INSTR_BR &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_CALL;
|
|
|
|
/*
|
|
* Indirect branch instruction with link (e.g. BLR), this is
|
|
* branch instruction for function call.
|
|
*/
|
|
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_CALL;
|
|
|
|
/*
|
|
* Indirect branch instruction with subtype of
|
|
* OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
|
|
* function return for A32/T32.
|
|
*/
|
|
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN;
|
|
|
|
/*
|
|
* Indirect branch instruction without link (e.g. BR), usually
|
|
* this is used for function return, especially for functions
|
|
* within dynamic link lib.
|
|
*/
|
|
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_NONE)
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN;
|
|
|
|
/* Return instruction for function return. */
|
|
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
|
|
packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN;
|
|
|
|
/*
|
|
* Decoder might insert a discontinuity in the middle of
|
|
* instruction packets, fixup prev_packet with flag
|
|
* PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
|
|
*/
|
|
if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
|
|
prev_packet->flags |= PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_TRACE_BEGIN;
|
|
|
|
/*
|
|
* If the previous packet is an exception return packet
|
|
* and the return address just follows SVC instruction,
|
|
* it needs to calibrate the previous packet sample flags
|
|
* as PERF_IP_FLAG_SYSCALLRET.
|
|
*/
|
|
if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN |
|
|
PERF_IP_FLAG_INTERRUPT) &&
|
|
cs_etm__is_svc_instr(etmq, trace_chan_id,
|
|
packet, packet->start_addr))
|
|
prev_packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN |
|
|
PERF_IP_FLAG_SYSCALLRET;
|
|
break;
|
|
case CS_ETM_DISCONTINUITY:
|
|
/*
|
|
* The trace is discontinuous, if the previous packet is
|
|
* instruction packet, set flag PERF_IP_FLAG_TRACE_END
|
|
* for previous packet.
|
|
*/
|
|
if (prev_packet->sample_type == CS_ETM_RANGE)
|
|
prev_packet->flags |= PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_TRACE_END;
|
|
break;
|
|
case CS_ETM_EXCEPTION:
|
|
ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* The exception is for system call. */
|
|
if (cs_etm__is_syscall(etmq, tidq, magic))
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_CALL |
|
|
PERF_IP_FLAG_SYSCALLRET;
|
|
/*
|
|
* The exceptions are triggered by external signals from bus,
|
|
* interrupt controller, debug module, PE reset or halt.
|
|
*/
|
|
else if (cs_etm__is_async_exception(tidq, magic))
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_CALL |
|
|
PERF_IP_FLAG_ASYNC |
|
|
PERF_IP_FLAG_INTERRUPT;
|
|
/*
|
|
* Otherwise, exception is caused by trap, instruction &
|
|
* data fault, or alignment errors.
|
|
*/
|
|
else if (cs_etm__is_sync_exception(etmq, tidq, magic))
|
|
packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_CALL |
|
|
PERF_IP_FLAG_INTERRUPT;
|
|
|
|
/*
|
|
* When the exception packet is inserted, since exception
|
|
* packet is not used standalone for generating samples
|
|
* and it's affiliation to the previous instruction range
|
|
* packet; so set previous range packet flags to tell perf
|
|
* it is an exception taken branch.
|
|
*/
|
|
if (prev_packet->sample_type == CS_ETM_RANGE)
|
|
prev_packet->flags = packet->flags;
|
|
break;
|
|
case CS_ETM_EXCEPTION_RET:
|
|
/*
|
|
* When the exception return packet is inserted, since
|
|
* exception return packet is not used standalone for
|
|
* generating samples and it's affiliation to the previous
|
|
* instruction range packet; so set previous range packet
|
|
* flags to tell perf it is an exception return branch.
|
|
*
|
|
* The exception return can be for either system call or
|
|
* other exception types; unfortunately the packet doesn't
|
|
* contain exception type related info so we cannot decide
|
|
* the exception type purely based on exception return packet.
|
|
* If we record the exception number from exception packet and
|
|
* reuse it for exception return packet, this is not reliable
|
|
* due the trace can be discontinuity or the interrupt can
|
|
* be nested, thus the recorded exception number cannot be
|
|
* used for exception return packet for these two cases.
|
|
*
|
|
* For exception return packet, we only need to distinguish the
|
|
* packet is for system call or for other types. Thus the
|
|
* decision can be deferred when receive the next packet which
|
|
* contains the return address, based on the return address we
|
|
* can read out the previous instruction and check if it's a
|
|
* system call instruction and then calibrate the sample flag
|
|
* as needed.
|
|
*/
|
|
if (prev_packet->sample_type == CS_ETM_RANGE)
|
|
prev_packet->flags = PERF_IP_FLAG_BRANCH |
|
|
PERF_IP_FLAG_RETURN |
|
|
PERF_IP_FLAG_INTERRUPT;
|
|
break;
|
|
case CS_ETM_EMPTY:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
|
|
{
|
|
int ret = 0;
|
|
size_t processed = 0;
|
|
|
|
/*
|
|
* Packets are decoded and added to the decoder's packet queue
|
|
* until the decoder packet processing callback has requested that
|
|
* processing stops or there is nothing left in the buffer. Normal
|
|
* operations that stop processing are a timestamp packet or a full
|
|
* decoder buffer queue.
|
|
*/
|
|
ret = cs_etm_decoder__process_data_block(etmq->decoder,
|
|
etmq->offset,
|
|
&etmq->buf[etmq->buf_used],
|
|
etmq->buf_len,
|
|
&processed);
|
|
if (ret)
|
|
goto out;
|
|
|
|
etmq->offset += processed;
|
|
etmq->buf_used += processed;
|
|
etmq->buf_len -= processed;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
|
|
struct cs_etm_traceid_queue *tidq)
|
|
{
|
|
int ret;
|
|
struct cs_etm_packet_queue *packet_queue;
|
|
|
|
packet_queue = &tidq->packet_queue;
|
|
|
|
/* Process each packet in this chunk */
|
|
while (1) {
|
|
ret = cs_etm_decoder__get_packet(packet_queue,
|
|
tidq->packet);
|
|
if (ret <= 0)
|
|
/*
|
|
* Stop processing this chunk on
|
|
* end of data or error
|
|
*/
|
|
break;
|
|
|
|
/*
|
|
* Since packet addresses are swapped in packet
|
|
* handling within below switch() statements,
|
|
* thus setting sample flags must be called
|
|
* prior to switch() statement to use address
|
|
* information before packets swapping.
|
|
*/
|
|
ret = cs_etm__set_sample_flags(etmq, tidq);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
switch (tidq->packet->sample_type) {
|
|
case CS_ETM_RANGE:
|
|
/*
|
|
* If the packet contains an instruction
|
|
* range, generate instruction sequence
|
|
* events.
|
|
*/
|
|
cs_etm__sample(etmq, tidq);
|
|
break;
|
|
case CS_ETM_EXCEPTION:
|
|
case CS_ETM_EXCEPTION_RET:
|
|
/*
|
|
* If the exception packet is coming,
|
|
* make sure the previous instruction
|
|
* range packet to be handled properly.
|
|
*/
|
|
cs_etm__exception(tidq);
|
|
break;
|
|
case CS_ETM_DISCONTINUITY:
|
|
/*
|
|
* Discontinuity in trace, flush
|
|
* previous branch stack
|
|
*/
|
|
cs_etm__flush(etmq, tidq);
|
|
break;
|
|
case CS_ETM_EMPTY:
|
|
/*
|
|
* Should not receive empty packet,
|
|
* report error.
|
|
*/
|
|
pr_err("CS ETM Trace: empty packet\n");
|
|
return -EINVAL;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
|
|
{
|
|
int idx;
|
|
struct int_node *inode;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
|
|
|
|
intlist__for_each_entry(inode, traceid_queues_list) {
|
|
idx = (int)(intptr_t)inode->priv;
|
|
tidq = etmq->traceid_queues[idx];
|
|
|
|
/* Ignore return value */
|
|
cs_etm__process_traceid_queue(etmq, tidq);
|
|
|
|
/*
|
|
* Generate an instruction sample with the remaining
|
|
* branchstack entries.
|
|
*/
|
|
cs_etm__flush(etmq, tidq);
|
|
}
|
|
}
|
|
|
|
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
|
|
{
|
|
int err = 0;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
|
|
if (!tidq)
|
|
return -EINVAL;
|
|
|
|
/* Go through each buffer in the queue and decode them one by one */
|
|
while (1) {
|
|
err = cs_etm__get_data_block(etmq);
|
|
if (err <= 0)
|
|
return err;
|
|
|
|
/* Run trace decoder until buffer consumed or end of trace */
|
|
do {
|
|
err = cs_etm__decode_data_block(etmq);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Process each packet in this chunk, nothing to do if
|
|
* an error occurs other than hoping the next one will
|
|
* be better.
|
|
*/
|
|
err = cs_etm__process_traceid_queue(etmq, tidq);
|
|
|
|
} while (etmq->buf_len);
|
|
|
|
if (err == 0)
|
|
/* Flush any remaining branch stack entries */
|
|
err = cs_etm__end_block(etmq, tidq);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
|
|
pid_t tid)
|
|
{
|
|
unsigned int i;
|
|
struct auxtrace_queues *queues = &etm->queues;
|
|
|
|
for (i = 0; i < queues->nr_queues; i++) {
|
|
struct auxtrace_queue *queue = &etm->queues.queue_array[i];
|
|
struct cs_etm_queue *etmq = queue->priv;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
if (!etmq)
|
|
continue;
|
|
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq,
|
|
CS_ETM_PER_THREAD_TRACEID);
|
|
|
|
if (!tidq)
|
|
continue;
|
|
|
|
if ((tid == -1) || (tidq->tid == tid)) {
|
|
cs_etm__set_pid_tid_cpu(etm, tidq);
|
|
cs_etm__run_decoder(etmq);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
|
|
{
|
|
int ret = 0;
|
|
unsigned int cs_queue_nr, queue_nr, i;
|
|
u8 trace_chan_id;
|
|
u64 cs_timestamp;
|
|
struct auxtrace_queue *queue;
|
|
struct cs_etm_queue *etmq;
|
|
struct cs_etm_traceid_queue *tidq;
|
|
|
|
/*
|
|
* Pre-populate the heap with one entry from each queue so that we can
|
|
* start processing in time order across all queues.
|
|
*/
|
|
for (i = 0; i < etm->queues.nr_queues; i++) {
|
|
etmq = etm->queues.queue_array[i].priv;
|
|
if (!etmq)
|
|
continue;
|
|
|
|
ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
while (1) {
|
|
if (!etm->heap.heap_cnt)
|
|
goto out;
|
|
|
|
/* Take the entry at the top of the min heap */
|
|
cs_queue_nr = etm->heap.heap_array[0].queue_nr;
|
|
queue_nr = TO_QUEUE_NR(cs_queue_nr);
|
|
trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
|
|
queue = &etm->queues.queue_array[queue_nr];
|
|
etmq = queue->priv;
|
|
|
|
/*
|
|
* Remove the top entry from the heap since we are about
|
|
* to process it.
|
|
*/
|
|
auxtrace_heap__pop(&etm->heap);
|
|
|
|
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
|
|
if (!tidq) {
|
|
/*
|
|
* No traceID queue has been allocated for this traceID,
|
|
* which means something somewhere went very wrong. No
|
|
* other choice than simply exit.
|
|
*/
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Packets associated with this timestamp are already in
|
|
* the etmq's traceID queue, so process them.
|
|
*/
|
|
ret = cs_etm__process_traceid_queue(etmq, tidq);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Packets for this timestamp have been processed, time to
|
|
* move on to the next timestamp, fetching a new auxtrace_buffer
|
|
* if need be.
|
|
*/
|
|
refetch:
|
|
ret = cs_etm__get_data_block(etmq);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* No more auxtrace_buffers to process in this etmq, simply
|
|
* move on to another entry in the auxtrace_heap.
|
|
*/
|
|
if (!ret)
|
|
continue;
|
|
|
|
ret = cs_etm__decode_data_block(etmq);
|
|
if (ret)
|
|
goto out;
|
|
|
|
cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
|
|
|
|
if (!cs_timestamp) {
|
|
/*
|
|
* Function cs_etm__decode_data_block() returns when
|
|
* there is no more traces to decode in the current
|
|
* auxtrace_buffer OR when a timestamp has been
|
|
* encountered on any of the traceID queues. Since we
|
|
* did not get a timestamp, there is no more traces to
|
|
* process in this auxtrace_buffer. As such empty and
|
|
* flush all traceID queues.
|
|
*/
|
|
cs_etm__clear_all_traceid_queues(etmq);
|
|
|
|
/* Fetch another auxtrace_buffer for this etmq */
|
|
goto refetch;
|
|
}
|
|
|
|
/*
|
|
* Add to the min heap the timestamp for packets that have
|
|
* just been decoded. They will be processed and synthesized
|
|
* during the next call to cs_etm__process_traceid_queue() for
|
|
* this queue/traceID.
|
|
*/
|
|
cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
|
|
ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
|
|
union perf_event *event)
|
|
{
|
|
struct thread *th;
|
|
|
|
if (etm->timeless_decoding)
|
|
return 0;
|
|
|
|
/*
|
|
* Add the tid/pid to the log so that we can get a match when
|
|
* we get a contextID from the decoder.
|
|
*/
|
|
th = machine__findnew_thread(etm->machine,
|
|
event->itrace_start.pid,
|
|
event->itrace_start.tid);
|
|
if (!th)
|
|
return -ENOMEM;
|
|
|
|
thread__put(th);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
|
|
union perf_event *event)
|
|
{
|
|
struct thread *th;
|
|
bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
|
|
|
|
/*
|
|
* Context switch in per-thread mode are irrelevant since perf
|
|
* will start/stop tracing as the process is scheduled.
|
|
*/
|
|
if (etm->timeless_decoding)
|
|
return 0;
|
|
|
|
/*
|
|
* SWITCH_IN events carry the next process to be switched out while
|
|
* SWITCH_OUT events carry the process to be switched in. As such
|
|
* we don't care about IN events.
|
|
*/
|
|
if (!out)
|
|
return 0;
|
|
|
|
/*
|
|
* Add the tid/pid to the log so that we can get a match when
|
|
* we get a contextID from the decoder.
|
|
*/
|
|
th = machine__findnew_thread(etm->machine,
|
|
event->context_switch.next_prev_pid,
|
|
event->context_switch.next_prev_tid);
|
|
if (!th)
|
|
return -ENOMEM;
|
|
|
|
thread__put(th);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__process_event(struct perf_session *session,
|
|
union perf_event *event,
|
|
struct perf_sample *sample,
|
|
struct perf_tool *tool)
|
|
{
|
|
u64 sample_kernel_timestamp;
|
|
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
|
|
if (dump_trace)
|
|
return 0;
|
|
|
|
if (!tool->ordered_events) {
|
|
pr_err("CoreSight ETM Trace requires ordered events\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sample->time && (sample->time != (u64) -1))
|
|
sample_kernel_timestamp = sample->time;
|
|
else
|
|
sample_kernel_timestamp = 0;
|
|
|
|
/*
|
|
* Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
|
|
* need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
|
|
* ETM_OPT_CTXTID is not enabled.
|
|
*/
|
|
if (etm->timeless_decoding &&
|
|
event->header.type == PERF_RECORD_EXIT)
|
|
return cs_etm__process_timeless_queues(etm,
|
|
event->fork.tid);
|
|
|
|
if (event->header.type == PERF_RECORD_ITRACE_START)
|
|
return cs_etm__process_itrace_start(etm, event);
|
|
else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
|
|
return cs_etm__process_switch_cpu_wide(etm, event);
|
|
|
|
if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
|
|
/*
|
|
* Record the latest kernel timestamp available in the header
|
|
* for samples so that synthesised samples occur from this point
|
|
* onwards.
|
|
*/
|
|
etm->latest_kernel_timestamp = sample_kernel_timestamp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dump_queued_data(struct cs_etm_auxtrace *etm,
|
|
struct perf_record_auxtrace *event)
|
|
{
|
|
struct auxtrace_buffer *buf;
|
|
unsigned int i;
|
|
/*
|
|
* Find all buffers with same reference in the queues and dump them.
|
|
* This is because the queues can contain multiple entries of the same
|
|
* buffer that were split on aux records.
|
|
*/
|
|
for (i = 0; i < etm->queues.nr_queues; ++i)
|
|
list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
|
|
if (buf->reference == event->reference)
|
|
cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
|
|
}
|
|
|
|
static int cs_etm__process_auxtrace_event(struct perf_session *session,
|
|
union perf_event *event,
|
|
struct perf_tool *tool __maybe_unused)
|
|
{
|
|
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
if (!etm->data_queued) {
|
|
struct auxtrace_buffer *buffer;
|
|
off_t data_offset;
|
|
int fd = perf_data__fd(session->data);
|
|
bool is_pipe = perf_data__is_pipe(session->data);
|
|
int err;
|
|
int idx = event->auxtrace.idx;
|
|
|
|
if (is_pipe)
|
|
data_offset = 0;
|
|
else {
|
|
data_offset = lseek(fd, 0, SEEK_CUR);
|
|
if (data_offset == -1)
|
|
return -errno;
|
|
}
|
|
|
|
err = auxtrace_queues__add_event(&etm->queues, session,
|
|
event, data_offset, &buffer);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Knowing if the trace is formatted or not requires a lookup of
|
|
* the aux record so only works in non-piped mode where data is
|
|
* queued in cs_etm__queue_aux_records(). Always assume
|
|
* formatted in piped mode (true).
|
|
*/
|
|
err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
|
|
idx, true);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dump_trace)
|
|
if (auxtrace_buffer__get_data(buffer, fd)) {
|
|
cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
|
|
auxtrace_buffer__put_data(buffer);
|
|
}
|
|
} else if (dump_trace)
|
|
dump_queued_data(etm, &event->auxtrace);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
|
|
{
|
|
struct evsel *evsel;
|
|
struct evlist *evlist = etm->session->evlist;
|
|
bool timeless_decoding = true;
|
|
|
|
/* Override timeless mode with user input from --itrace=Z */
|
|
if (etm->synth_opts.timeless_decoding)
|
|
return true;
|
|
|
|
/*
|
|
* Circle through the list of event and complain if we find one
|
|
* with the time bit set.
|
|
*/
|
|
evlist__for_each_entry(evlist, evsel) {
|
|
if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
|
|
timeless_decoding = false;
|
|
}
|
|
|
|
return timeless_decoding;
|
|
}
|
|
|
|
static const char * const cs_etm_global_header_fmts[] = {
|
|
[CS_HEADER_VERSION] = " Header version %llx\n",
|
|
[CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
|
|
[CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
|
|
};
|
|
|
|
static const char * const cs_etm_priv_fmts[] = {
|
|
[CS_ETM_MAGIC] = " Magic number %llx\n",
|
|
[CS_ETM_CPU] = " CPU %lld\n",
|
|
[CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n",
|
|
[CS_ETM_ETMCR] = " ETMCR %llx\n",
|
|
[CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
|
|
[CS_ETM_ETMCCER] = " ETMCCER %llx\n",
|
|
[CS_ETM_ETMIDR] = " ETMIDR %llx\n",
|
|
};
|
|
|
|
static const char * const cs_etmv4_priv_fmts[] = {
|
|
[CS_ETM_MAGIC] = " Magic number %llx\n",
|
|
[CS_ETM_CPU] = " CPU %lld\n",
|
|
[CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n",
|
|
[CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
|
|
[CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
|
|
[CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
|
|
[CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
|
|
[CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
|
|
[CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
|
|
[CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
|
|
[CS_ETE_TRCDEVARCH] = " TRCDEVARCH %llx\n"
|
|
};
|
|
|
|
static const char * const param_unk_fmt =
|
|
" Unknown parameter [%d] %llx\n";
|
|
static const char * const magic_unk_fmt =
|
|
" Magic number Unknown %llx\n";
|
|
|
|
static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
|
|
{
|
|
int i = *offset, j, nr_params = 0, fmt_offset;
|
|
__u64 magic;
|
|
|
|
/* check magic value */
|
|
magic = val[i + CS_ETM_MAGIC];
|
|
if ((magic != __perf_cs_etmv3_magic) &&
|
|
(magic != __perf_cs_etmv4_magic)) {
|
|
/* failure - note bad magic value */
|
|
fprintf(stdout, magic_unk_fmt, magic);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* print common header block */
|
|
fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
|
|
fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
|
|
|
|
if (magic == __perf_cs_etmv3_magic) {
|
|
nr_params = CS_ETM_NR_TRC_PARAMS_V0;
|
|
fmt_offset = CS_ETM_ETMCR;
|
|
/* after common block, offset format index past NR_PARAMS */
|
|
for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
|
|
fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
|
|
} else if (magic == __perf_cs_etmv4_magic) {
|
|
nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
|
|
fmt_offset = CS_ETMV4_TRCCONFIGR;
|
|
/* after common block, offset format index past NR_PARAMS */
|
|
for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
|
|
fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
|
|
}
|
|
*offset = i;
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
|
|
{
|
|
int i = *offset, j, total_params = 0;
|
|
__u64 magic;
|
|
|
|
magic = val[i + CS_ETM_MAGIC];
|
|
/* total params to print is NR_PARAMS + common block size for v1 */
|
|
total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
|
|
|
|
if (magic == __perf_cs_etmv3_magic) {
|
|
for (j = 0; j < total_params; j++, i++) {
|
|
/* if newer record - could be excess params */
|
|
if (j >= CS_ETM_PRIV_MAX)
|
|
fprintf(stdout, param_unk_fmt, j, val[i]);
|
|
else
|
|
fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
|
|
}
|
|
} else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
|
|
/*
|
|
* ETE and ETMv4 can be printed in the same block because the number of parameters
|
|
* is saved and they share the list of parameter names. ETE is also only supported
|
|
* in V1 files.
|
|
*/
|
|
for (j = 0; j < total_params; j++, i++) {
|
|
/* if newer record - could be excess params */
|
|
if (j >= CS_ETE_PRIV_MAX)
|
|
fprintf(stdout, param_unk_fmt, j, val[i]);
|
|
else
|
|
fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
|
|
}
|
|
} else {
|
|
/* failure - note bad magic value and error out */
|
|
fprintf(stdout, magic_unk_fmt, magic);
|
|
return -EINVAL;
|
|
}
|
|
*offset = i;
|
|
return 0;
|
|
}
|
|
|
|
static void cs_etm__print_auxtrace_info(__u64 *val, int num)
|
|
{
|
|
int i, cpu = 0, version, err;
|
|
|
|
/* bail out early on bad header version */
|
|
version = val[0];
|
|
if (version > CS_HEADER_CURRENT_VERSION) {
|
|
/* failure.. return */
|
|
fprintf(stdout, " Unknown Header Version = %x, ", version);
|
|
fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
|
|
fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
|
|
|
|
for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
|
|
if (version == 0)
|
|
err = cs_etm__print_cpu_metadata_v0(val, &i);
|
|
else if (version == 1)
|
|
err = cs_etm__print_cpu_metadata_v1(val, &i);
|
|
if (err)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a single cpu parameter block from the auxtrace_info priv block.
|
|
*
|
|
* For version 1 there is a per cpu nr_params entry. If we are handling
|
|
* version 1 file, then there may be less, the same, or more params
|
|
* indicated by this value than the compile time number we understand.
|
|
*
|
|
* For a version 0 info block, there are a fixed number, and we need to
|
|
* fill out the nr_param value in the metadata we create.
|
|
*/
|
|
static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
|
|
int out_blk_size, int nr_params_v0)
|
|
{
|
|
u64 *metadata = NULL;
|
|
int hdr_version;
|
|
int nr_in_params, nr_out_params, nr_cmn_params;
|
|
int i, k;
|
|
|
|
metadata = zalloc(sizeof(*metadata) * out_blk_size);
|
|
if (!metadata)
|
|
return NULL;
|
|
|
|
/* read block current index & version */
|
|
i = *buff_in_offset;
|
|
hdr_version = buff_in[CS_HEADER_VERSION];
|
|
|
|
if (!hdr_version) {
|
|
/* read version 0 info block into a version 1 metadata block */
|
|
nr_in_params = nr_params_v0;
|
|
metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
|
|
metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
|
|
metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
|
|
/* remaining block params at offset +1 from source */
|
|
for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
|
|
metadata[k + 1] = buff_in[i + k];
|
|
/* version 0 has 2 common params */
|
|
nr_cmn_params = 2;
|
|
} else {
|
|
/* read version 1 info block - input and output nr_params may differ */
|
|
/* version 1 has 3 common params */
|
|
nr_cmn_params = 3;
|
|
nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
|
|
|
|
/* if input has more params than output - skip excess */
|
|
nr_out_params = nr_in_params + nr_cmn_params;
|
|
if (nr_out_params > out_blk_size)
|
|
nr_out_params = out_blk_size;
|
|
|
|
for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
|
|
metadata[k] = buff_in[i + k];
|
|
|
|
/* record the actual nr params we copied */
|
|
metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
|
|
}
|
|
|
|
/* adjust in offset by number of in params used */
|
|
i += nr_in_params + nr_cmn_params;
|
|
*buff_in_offset = i;
|
|
return metadata;
|
|
}
|
|
|
|
/**
|
|
* Puts a fragment of an auxtrace buffer into the auxtrace queues based
|
|
* on the bounds of aux_event, if it matches with the buffer that's at
|
|
* file_offset.
|
|
*
|
|
* Normally, whole auxtrace buffers would be added to the queue. But we
|
|
* want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
|
|
* is reset across each buffer, so splitting the buffers up in advance has
|
|
* the same effect.
|
|
*/
|
|
static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
|
|
struct perf_record_aux *aux_event, struct perf_sample *sample)
|
|
{
|
|
int err;
|
|
char buf[PERF_SAMPLE_MAX_SIZE];
|
|
union perf_event *auxtrace_event_union;
|
|
struct perf_record_auxtrace *auxtrace_event;
|
|
union perf_event auxtrace_fragment;
|
|
__u64 aux_offset, aux_size;
|
|
__u32 idx;
|
|
bool formatted;
|
|
|
|
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
|
|
struct cs_etm_auxtrace,
|
|
auxtrace);
|
|
|
|
/*
|
|
* There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
|
|
* from looping through the auxtrace index.
|
|
*/
|
|
err = perf_session__peek_event(session, file_offset, buf,
|
|
PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
|
|
if (err)
|
|
return err;
|
|
auxtrace_event = &auxtrace_event_union->auxtrace;
|
|
if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
|
|
return -EINVAL;
|
|
|
|
if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
|
|
auxtrace_event->header.size != sz) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* In per-thread mode, CPU is set to -1, but TID will be set instead. See
|
|
* auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
|
|
*/
|
|
if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
|
|
auxtrace_event->cpu != sample->cpu)
|
|
return 1;
|
|
|
|
if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
|
|
/*
|
|
* Clamp size in snapshot mode. The buffer size is clamped in
|
|
* __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
|
|
* the buffer size.
|
|
*/
|
|
aux_size = min(aux_event->aux_size, auxtrace_event->size);
|
|
|
|
/*
|
|
* In this mode, the head also points to the end of the buffer so aux_offset
|
|
* needs to have the size subtracted so it points to the beginning as in normal mode
|
|
*/
|
|
aux_offset = aux_event->aux_offset - aux_size;
|
|
} else {
|
|
aux_size = aux_event->aux_size;
|
|
aux_offset = aux_event->aux_offset;
|
|
}
|
|
|
|
if (aux_offset >= auxtrace_event->offset &&
|
|
aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
|
|
/*
|
|
* If this AUX event was inside this buffer somewhere, create a new auxtrace event
|
|
* based on the sizes of the aux event, and queue that fragment.
|
|
*/
|
|
auxtrace_fragment.auxtrace = *auxtrace_event;
|
|
auxtrace_fragment.auxtrace.size = aux_size;
|
|
auxtrace_fragment.auxtrace.offset = aux_offset;
|
|
file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
|
|
|
|
pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
|
|
" tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
|
|
err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
|
|
file_offset, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
idx = auxtrace_event->idx;
|
|
formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
|
|
return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
|
|
idx, formatted);
|
|
}
|
|
|
|
/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
|
|
return 1;
|
|
}
|
|
|
|
static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
|
|
u64 offset __maybe_unused, void *data __maybe_unused)
|
|
{
|
|
struct perf_sample sample;
|
|
int ret;
|
|
struct auxtrace_index_entry *ent;
|
|
struct auxtrace_index *auxtrace_index;
|
|
struct evsel *evsel;
|
|
size_t i;
|
|
|
|
/* Don't care about any other events, we're only queuing buffers for AUX events */
|
|
if (event->header.type != PERF_RECORD_AUX)
|
|
return 0;
|
|
|
|
if (event->header.size < sizeof(struct perf_record_aux))
|
|
return -EINVAL;
|
|
|
|
/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
|
|
if (!event->aux.aux_size)
|
|
return 0;
|
|
|
|
/*
|
|
* Parse the sample, we need the sample_id_all data that comes after the event so that the
|
|
* CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
|
|
*/
|
|
evsel = evlist__event2evsel(session->evlist, event);
|
|
if (!evsel)
|
|
return -EINVAL;
|
|
ret = evsel__parse_sample(evsel, event, &sample);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Loop through the auxtrace index to find the buffer that matches up with this aux event.
|
|
*/
|
|
list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
|
|
for (i = 0; i < auxtrace_index->nr; i++) {
|
|
ent = &auxtrace_index->entries[i];
|
|
ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
|
|
ent->sz, &event->aux, &sample);
|
|
/*
|
|
* Stop search on error or successful values. Continue search on
|
|
* 1 ('not found')
|
|
*/
|
|
if (ret != 1)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
|
|
* don't exit with an error because it will still be possible to decode other aux records.
|
|
*/
|
|
pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
|
|
" tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int cs_etm__queue_aux_records(struct perf_session *session)
|
|
{
|
|
struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
|
|
struct auxtrace_index, list);
|
|
if (index && index->nr > 0)
|
|
return perf_session__peek_events(session, session->header.data_offset,
|
|
session->header.data_size,
|
|
cs_etm__queue_aux_records_cb, NULL);
|
|
|
|
/*
|
|
* We would get here if there are no entries in the index (either no auxtrace
|
|
* buffers or no index at all). Fail silently as there is the possibility of
|
|
* queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
|
|
* false.
|
|
*
|
|
* In that scenario, buffers will not be split by AUX records.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int cs_etm__process_auxtrace_info(union perf_event *event,
|
|
struct perf_session *session)
|
|
{
|
|
struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
|
|
struct cs_etm_auxtrace *etm = NULL;
|
|
struct int_node *inode;
|
|
unsigned int pmu_type;
|
|
int event_header_size = sizeof(struct perf_event_header);
|
|
int info_header_size;
|
|
int total_size = auxtrace_info->header.size;
|
|
int priv_size = 0;
|
|
int num_cpu, trcidr_idx;
|
|
int err = 0;
|
|
int i, j;
|
|
u64 *ptr, *hdr = NULL;
|
|
u64 **metadata = NULL;
|
|
u64 hdr_version;
|
|
|
|
/*
|
|
* sizeof(auxtrace_info_event::type) +
|
|
* sizeof(auxtrace_info_event::reserved) == 8
|
|
*/
|
|
info_header_size = 8;
|
|
|
|
if (total_size < (event_header_size + info_header_size))
|
|
return -EINVAL;
|
|
|
|
priv_size = total_size - event_header_size - info_header_size;
|
|
|
|
/* First the global part */
|
|
ptr = (u64 *) auxtrace_info->priv;
|
|
|
|
/* Look for version of the header */
|
|
hdr_version = ptr[0];
|
|
if (hdr_version > CS_HEADER_CURRENT_VERSION) {
|
|
/* print routine will print an error on bad version */
|
|
if (dump_trace)
|
|
cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
|
|
if (!hdr)
|
|
return -ENOMEM;
|
|
|
|
/* Extract header information - see cs-etm.h for format */
|
|
for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
|
|
hdr[i] = ptr[i];
|
|
num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
|
|
pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
|
|
0xffffffff);
|
|
|
|
/*
|
|
* Create an RB tree for traceID-metadata tuple. Since the conversion
|
|
* has to be made for each packet that gets decoded, optimizing access
|
|
* in anything other than a sequential array is worth doing.
|
|
*/
|
|
traceid_list = intlist__new(NULL);
|
|
if (!traceid_list) {
|
|
err = -ENOMEM;
|
|
goto err_free_hdr;
|
|
}
|
|
|
|
metadata = zalloc(sizeof(*metadata) * num_cpu);
|
|
if (!metadata) {
|
|
err = -ENOMEM;
|
|
goto err_free_traceid_list;
|
|
}
|
|
|
|
/*
|
|
* The metadata is stored in the auxtrace_info section and encodes
|
|
* the configuration of the ARM embedded trace macrocell which is
|
|
* required by the trace decoder to properly decode the trace due
|
|
* to its highly compressed nature.
|
|
*/
|
|
for (j = 0; j < num_cpu; j++) {
|
|
if (ptr[i] == __perf_cs_etmv3_magic) {
|
|
metadata[j] =
|
|
cs_etm__create_meta_blk(ptr, &i,
|
|
CS_ETM_PRIV_MAX,
|
|
CS_ETM_NR_TRC_PARAMS_V0);
|
|
|
|
/* The traceID is our handle */
|
|
trcidr_idx = CS_ETM_ETMTRACEIDR;
|
|
|
|
} else if (ptr[i] == __perf_cs_etmv4_magic) {
|
|
metadata[j] =
|
|
cs_etm__create_meta_blk(ptr, &i,
|
|
CS_ETMV4_PRIV_MAX,
|
|
CS_ETMV4_NR_TRC_PARAMS_V0);
|
|
|
|
/* The traceID is our handle */
|
|
trcidr_idx = CS_ETMV4_TRCTRACEIDR;
|
|
} else if (ptr[i] == __perf_cs_ete_magic) {
|
|
metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
|
|
|
|
/* ETE shares first part of metadata with ETMv4 */
|
|
trcidr_idx = CS_ETMV4_TRCTRACEIDR;
|
|
} else {
|
|
ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
|
|
ptr[i]);
|
|
err = -EINVAL;
|
|
goto err_free_metadata;
|
|
}
|
|
|
|
if (!metadata[j]) {
|
|
err = -ENOMEM;
|
|
goto err_free_metadata;
|
|
}
|
|
|
|
/* Get an RB node for this CPU */
|
|
inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
|
|
|
|
/* Something went wrong, no need to continue */
|
|
if (!inode) {
|
|
err = -ENOMEM;
|
|
goto err_free_metadata;
|
|
}
|
|
|
|
/*
|
|
* The node for that CPU should not be taken.
|
|
* Back out if that's the case.
|
|
*/
|
|
if (inode->priv) {
|
|
err = -EINVAL;
|
|
goto err_free_metadata;
|
|
}
|
|
/* All good, associate the traceID with the metadata pointer */
|
|
inode->priv = metadata[j];
|
|
}
|
|
|
|
/*
|
|
* Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
|
|
* CS_ETMV4_PRIV_MAX mark how many double words are in the
|
|
* global metadata, and each cpu's metadata respectively.
|
|
* The following tests if the correct number of double words was
|
|
* present in the auxtrace info section.
|
|
*/
|
|
if (i * 8 != priv_size) {
|
|
err = -EINVAL;
|
|
goto err_free_metadata;
|
|
}
|
|
|
|
etm = zalloc(sizeof(*etm));
|
|
|
|
if (!etm) {
|
|
err = -ENOMEM;
|
|
goto err_free_metadata;
|
|
}
|
|
|
|
err = auxtrace_queues__init(&etm->queues);
|
|
if (err)
|
|
goto err_free_etm;
|
|
|
|
if (session->itrace_synth_opts->set) {
|
|
etm->synth_opts = *session->itrace_synth_opts;
|
|
} else {
|
|
itrace_synth_opts__set_default(&etm->synth_opts,
|
|
session->itrace_synth_opts->default_no_sample);
|
|
etm->synth_opts.callchain = false;
|
|
}
|
|
|
|
etm->session = session;
|
|
etm->machine = &session->machines.host;
|
|
|
|
etm->num_cpu = num_cpu;
|
|
etm->pmu_type = pmu_type;
|
|
etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
|
|
etm->metadata = metadata;
|
|
etm->auxtrace_type = auxtrace_info->type;
|
|
etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
|
|
|
|
etm->auxtrace.process_event = cs_etm__process_event;
|
|
etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
|
|
etm->auxtrace.flush_events = cs_etm__flush_events;
|
|
etm->auxtrace.free_events = cs_etm__free_events;
|
|
etm->auxtrace.free = cs_etm__free;
|
|
etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
|
|
session->auxtrace = &etm->auxtrace;
|
|
|
|
etm->unknown_thread = thread__new(999999999, 999999999);
|
|
if (!etm->unknown_thread) {
|
|
err = -ENOMEM;
|
|
goto err_free_queues;
|
|
}
|
|
|
|
/*
|
|
* Initialize list node so that at thread__zput() we can avoid
|
|
* segmentation fault at list_del_init().
|
|
*/
|
|
INIT_LIST_HEAD(&etm->unknown_thread->node);
|
|
|
|
err = thread__set_comm(etm->unknown_thread, "unknown", 0);
|
|
if (err)
|
|
goto err_delete_thread;
|
|
|
|
if (thread__init_maps(etm->unknown_thread, etm->machine)) {
|
|
err = -ENOMEM;
|
|
goto err_delete_thread;
|
|
}
|
|
|
|
if (dump_trace) {
|
|
cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
|
|
}
|
|
|
|
err = cs_etm__synth_events(etm, session);
|
|
if (err)
|
|
goto err_delete_thread;
|
|
|
|
err = cs_etm__queue_aux_records(session);
|
|
if (err)
|
|
goto err_delete_thread;
|
|
|
|
etm->data_queued = etm->queues.populated;
|
|
/*
|
|
* Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
|
|
* cs_etm__queue_aux_fragment() for details relating to limitations.
|
|
*/
|
|
if (!etm->data_queued)
|
|
pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
|
|
"Continuing with best effort decoding in piped mode.\n\n");
|
|
|
|
return 0;
|
|
|
|
err_delete_thread:
|
|
thread__zput(etm->unknown_thread);
|
|
err_free_queues:
|
|
auxtrace_queues__free(&etm->queues);
|
|
session->auxtrace = NULL;
|
|
err_free_etm:
|
|
zfree(&etm);
|
|
err_free_metadata:
|
|
/* No need to check @metadata[j], free(NULL) is supported */
|
|
for (j = 0; j < num_cpu; j++)
|
|
zfree(&metadata[j]);
|
|
zfree(&metadata);
|
|
err_free_traceid_list:
|
|
intlist__delete(traceid_list);
|
|
err_free_hdr:
|
|
zfree(&hdr);
|
|
/*
|
|
* At this point, as a minimum we have valid header. Dump the rest of
|
|
* the info section - the print routines will error out on structural
|
|
* issues.
|
|
*/
|
|
if (dump_trace)
|
|
cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
|
|
return err;
|
|
}
|