860 lines
22 KiB
C
860 lines
22 KiB
C
/*
|
|
* Implementation of the kernel access vector cache (AVC).
|
|
*
|
|
* Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
|
|
* James Morris <jmorris@redhat.com>
|
|
*
|
|
* Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
|
|
* Replaced the avc_lock spinlock by RCU.
|
|
*
|
|
* Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2,
|
|
* as published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/dcache.h>
|
|
#include <linux/init.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/percpu.h>
|
|
#include <net/sock.h>
|
|
#include <linux/un.h>
|
|
#include <net/af_unix.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/ipv6.h>
|
|
#include <net/ipv6.h>
|
|
#include "avc.h"
|
|
#include "avc_ss.h"
|
|
#include "classmap.h"
|
|
|
|
#define AVC_CACHE_SLOTS 512
|
|
#define AVC_DEF_CACHE_THRESHOLD 512
|
|
#define AVC_CACHE_RECLAIM 16
|
|
|
|
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
|
|
#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
|
|
#else
|
|
#define avc_cache_stats_incr(field) do {} while (0)
|
|
#endif
|
|
|
|
struct avc_entry {
|
|
u32 ssid;
|
|
u32 tsid;
|
|
u16 tclass;
|
|
struct av_decision avd;
|
|
};
|
|
|
|
struct avc_node {
|
|
struct avc_entry ae;
|
|
struct hlist_node list; /* anchored in avc_cache->slots[i] */
|
|
struct rcu_head rhead;
|
|
};
|
|
|
|
struct avc_cache {
|
|
struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
|
|
spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
|
|
atomic_t lru_hint; /* LRU hint for reclaim scan */
|
|
atomic_t active_nodes;
|
|
u32 latest_notif; /* latest revocation notification */
|
|
};
|
|
|
|
struct avc_callback_node {
|
|
int (*callback) (u32 event, u32 ssid, u32 tsid,
|
|
u16 tclass, u32 perms,
|
|
u32 *out_retained);
|
|
u32 events;
|
|
u32 ssid;
|
|
u32 tsid;
|
|
u16 tclass;
|
|
u32 perms;
|
|
struct avc_callback_node *next;
|
|
};
|
|
|
|
/* Exported via selinufs */
|
|
unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
|
|
|
|
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
|
|
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
|
|
#endif
|
|
|
|
static struct avc_cache avc_cache;
|
|
static struct avc_callback_node *avc_callbacks;
|
|
static struct kmem_cache *avc_node_cachep;
|
|
|
|
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
|
|
{
|
|
return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
|
|
}
|
|
|
|
/**
|
|
* avc_dump_av - Display an access vector in human-readable form.
|
|
* @tclass: target security class
|
|
* @av: access vector
|
|
*/
|
|
static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
|
|
{
|
|
const char **perms;
|
|
int i, perm;
|
|
|
|
if (av == 0) {
|
|
audit_log_format(ab, " null");
|
|
return;
|
|
}
|
|
|
|
perms = secclass_map[tclass-1].perms;
|
|
|
|
audit_log_format(ab, " {");
|
|
i = 0;
|
|
perm = 1;
|
|
while (i < (sizeof(av) * 8)) {
|
|
if ((perm & av) && perms[i]) {
|
|
audit_log_format(ab, " %s", perms[i]);
|
|
av &= ~perm;
|
|
}
|
|
i++;
|
|
perm <<= 1;
|
|
}
|
|
|
|
if (av)
|
|
audit_log_format(ab, " 0x%x", av);
|
|
|
|
audit_log_format(ab, " }");
|
|
}
|
|
|
|
/**
|
|
* avc_dump_query - Display a SID pair and a class in human-readable form.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
*/
|
|
static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
|
|
{
|
|
int rc;
|
|
char *scontext;
|
|
u32 scontext_len;
|
|
|
|
rc = security_sid_to_context(ssid, &scontext, &scontext_len);
|
|
if (rc)
|
|
audit_log_format(ab, "ssid=%d", ssid);
|
|
else {
|
|
audit_log_format(ab, "scontext=%s", scontext);
|
|
kfree(scontext);
|
|
}
|
|
|
|
rc = security_sid_to_context(tsid, &scontext, &scontext_len);
|
|
if (rc)
|
|
audit_log_format(ab, " tsid=%d", tsid);
|
|
else {
|
|
audit_log_format(ab, " tcontext=%s", scontext);
|
|
kfree(scontext);
|
|
}
|
|
|
|
BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
|
|
audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
|
|
}
|
|
|
|
/**
|
|
* avc_init - Initialize the AVC.
|
|
*
|
|
* Initialize the access vector cache.
|
|
*/
|
|
void __init avc_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
|
|
INIT_HLIST_HEAD(&avc_cache.slots[i]);
|
|
spin_lock_init(&avc_cache.slots_lock[i]);
|
|
}
|
|
atomic_set(&avc_cache.active_nodes, 0);
|
|
atomic_set(&avc_cache.lru_hint, 0);
|
|
|
|
avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
|
|
}
|
|
|
|
int avc_get_hash_stats(char *page)
|
|
{
|
|
int i, chain_len, max_chain_len, slots_used;
|
|
struct avc_node *node;
|
|
struct hlist_head *head;
|
|
|
|
rcu_read_lock();
|
|
|
|
slots_used = 0;
|
|
max_chain_len = 0;
|
|
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
|
|
head = &avc_cache.slots[i];
|
|
if (!hlist_empty(head)) {
|
|
struct hlist_node *next;
|
|
|
|
slots_used++;
|
|
chain_len = 0;
|
|
hlist_for_each_entry_rcu(node, next, head, list)
|
|
chain_len++;
|
|
if (chain_len > max_chain_len)
|
|
max_chain_len = chain_len;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
|
|
"longest chain: %d\n",
|
|
atomic_read(&avc_cache.active_nodes),
|
|
slots_used, AVC_CACHE_SLOTS, max_chain_len);
|
|
}
|
|
|
|
static void avc_node_free(struct rcu_head *rhead)
|
|
{
|
|
struct avc_node *node = container_of(rhead, struct avc_node, rhead);
|
|
kmem_cache_free(avc_node_cachep, node);
|
|
avc_cache_stats_incr(frees);
|
|
}
|
|
|
|
static void avc_node_delete(struct avc_node *node)
|
|
{
|
|
hlist_del_rcu(&node->list);
|
|
call_rcu(&node->rhead, avc_node_free);
|
|
atomic_dec(&avc_cache.active_nodes);
|
|
}
|
|
|
|
static void avc_node_kill(struct avc_node *node)
|
|
{
|
|
kmem_cache_free(avc_node_cachep, node);
|
|
avc_cache_stats_incr(frees);
|
|
atomic_dec(&avc_cache.active_nodes);
|
|
}
|
|
|
|
static void avc_node_replace(struct avc_node *new, struct avc_node *old)
|
|
{
|
|
hlist_replace_rcu(&old->list, &new->list);
|
|
call_rcu(&old->rhead, avc_node_free);
|
|
atomic_dec(&avc_cache.active_nodes);
|
|
}
|
|
|
|
static inline int avc_reclaim_node(void)
|
|
{
|
|
struct avc_node *node;
|
|
int hvalue, try, ecx;
|
|
unsigned long flags;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
spinlock_t *lock;
|
|
|
|
for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
|
|
hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
|
|
head = &avc_cache.slots[hvalue];
|
|
lock = &avc_cache.slots_lock[hvalue];
|
|
|
|
if (!spin_trylock_irqsave(lock, flags))
|
|
continue;
|
|
|
|
rcu_read_lock();
|
|
hlist_for_each_entry(node, next, head, list) {
|
|
avc_node_delete(node);
|
|
avc_cache_stats_incr(reclaims);
|
|
ecx++;
|
|
if (ecx >= AVC_CACHE_RECLAIM) {
|
|
rcu_read_unlock();
|
|
spin_unlock_irqrestore(lock, flags);
|
|
goto out;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
spin_unlock_irqrestore(lock, flags);
|
|
}
|
|
out:
|
|
return ecx;
|
|
}
|
|
|
|
static struct avc_node *avc_alloc_node(void)
|
|
{
|
|
struct avc_node *node;
|
|
|
|
node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
|
|
if (!node)
|
|
goto out;
|
|
|
|
INIT_HLIST_NODE(&node->list);
|
|
avc_cache_stats_incr(allocations);
|
|
|
|
if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
|
|
avc_reclaim_node();
|
|
|
|
out:
|
|
return node;
|
|
}
|
|
|
|
static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
|
|
{
|
|
node->ae.ssid = ssid;
|
|
node->ae.tsid = tsid;
|
|
node->ae.tclass = tclass;
|
|
memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
|
|
}
|
|
|
|
static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
|
|
{
|
|
struct avc_node *node, *ret = NULL;
|
|
int hvalue;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
|
|
hvalue = avc_hash(ssid, tsid, tclass);
|
|
head = &avc_cache.slots[hvalue];
|
|
hlist_for_each_entry_rcu(node, next, head, list) {
|
|
if (ssid == node->ae.ssid &&
|
|
tclass == node->ae.tclass &&
|
|
tsid == node->ae.tsid) {
|
|
ret = node;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* avc_lookup - Look up an AVC entry.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
*
|
|
* Look up an AVC entry that is valid for the
|
|
* (@ssid, @tsid), interpreting the permissions
|
|
* based on @tclass. If a valid AVC entry exists,
|
|
* then this function returns the avc_node.
|
|
* Otherwise, this function returns NULL.
|
|
*/
|
|
static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
|
|
{
|
|
struct avc_node *node;
|
|
|
|
avc_cache_stats_incr(lookups);
|
|
node = avc_search_node(ssid, tsid, tclass);
|
|
|
|
if (node)
|
|
return node;
|
|
|
|
avc_cache_stats_incr(misses);
|
|
return NULL;
|
|
}
|
|
|
|
static int avc_latest_notif_update(int seqno, int is_insert)
|
|
{
|
|
int ret = 0;
|
|
static DEFINE_SPINLOCK(notif_lock);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(¬if_lock, flag);
|
|
if (is_insert) {
|
|
if (seqno < avc_cache.latest_notif) {
|
|
printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
|
|
seqno, avc_cache.latest_notif);
|
|
ret = -EAGAIN;
|
|
}
|
|
} else {
|
|
if (seqno > avc_cache.latest_notif)
|
|
avc_cache.latest_notif = seqno;
|
|
}
|
|
spin_unlock_irqrestore(¬if_lock, flag);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* avc_insert - Insert an AVC entry.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
* @avd: resulting av decision
|
|
*
|
|
* Insert an AVC entry for the SID pair
|
|
* (@ssid, @tsid) and class @tclass.
|
|
* The access vectors and the sequence number are
|
|
* normally provided by the security server in
|
|
* response to a security_compute_av() call. If the
|
|
* sequence number @avd->seqno is not less than the latest
|
|
* revocation notification, then the function copies
|
|
* the access vectors into a cache entry, returns
|
|
* avc_node inserted. Otherwise, this function returns NULL.
|
|
*/
|
|
static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
|
|
{
|
|
struct avc_node *pos, *node = NULL;
|
|
int hvalue;
|
|
unsigned long flag;
|
|
|
|
if (avc_latest_notif_update(avd->seqno, 1))
|
|
goto out;
|
|
|
|
node = avc_alloc_node();
|
|
if (node) {
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
spinlock_t *lock;
|
|
|
|
hvalue = avc_hash(ssid, tsid, tclass);
|
|
avc_node_populate(node, ssid, tsid, tclass, avd);
|
|
|
|
head = &avc_cache.slots[hvalue];
|
|
lock = &avc_cache.slots_lock[hvalue];
|
|
|
|
spin_lock_irqsave(lock, flag);
|
|
hlist_for_each_entry(pos, next, head, list) {
|
|
if (pos->ae.ssid == ssid &&
|
|
pos->ae.tsid == tsid &&
|
|
pos->ae.tclass == tclass) {
|
|
avc_node_replace(node, pos);
|
|
goto found;
|
|
}
|
|
}
|
|
hlist_add_head_rcu(&node->list, head);
|
|
found:
|
|
spin_unlock_irqrestore(lock, flag);
|
|
}
|
|
out:
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* avc_audit_pre_callback - SELinux specific information
|
|
* will be called by generic audit code
|
|
* @ab: the audit buffer
|
|
* @a: audit_data
|
|
*/
|
|
static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
|
|
{
|
|
struct common_audit_data *ad = a;
|
|
audit_log_format(ab, "avc: %s ",
|
|
ad->selinux_audit_data.denied ? "denied" : "granted");
|
|
avc_dump_av(ab, ad->selinux_audit_data.tclass,
|
|
ad->selinux_audit_data.audited);
|
|
audit_log_format(ab, " for ");
|
|
}
|
|
|
|
/**
|
|
* avc_audit_post_callback - SELinux specific information
|
|
* will be called by generic audit code
|
|
* @ab: the audit buffer
|
|
* @a: audit_data
|
|
*/
|
|
static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
|
|
{
|
|
struct common_audit_data *ad = a;
|
|
audit_log_format(ab, " ");
|
|
avc_dump_query(ab, ad->selinux_audit_data.ssid,
|
|
ad->selinux_audit_data.tsid,
|
|
ad->selinux_audit_data.tclass);
|
|
}
|
|
|
|
/* This is the slow part of avc audit with big stack footprint */
|
|
static noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
|
|
u32 requested, u32 audited, u32 denied,
|
|
struct av_decision *avd, struct common_audit_data *a,
|
|
unsigned flags)
|
|
{
|
|
struct common_audit_data stack_data;
|
|
|
|
if (!a) {
|
|
a = &stack_data;
|
|
COMMON_AUDIT_DATA_INIT(a, NONE);
|
|
}
|
|
|
|
/*
|
|
* When in a RCU walk do the audit on the RCU retry. This is because
|
|
* the collection of the dname in an inode audit message is not RCU
|
|
* safe. Note this may drop some audits when the situation changes
|
|
* during retry. However this is logically just as if the operation
|
|
* happened a little later.
|
|
*/
|
|
if ((a->type == LSM_AUDIT_DATA_INODE) &&
|
|
(flags & MAY_NOT_BLOCK))
|
|
return -ECHILD;
|
|
|
|
a->selinux_audit_data.tclass = tclass;
|
|
a->selinux_audit_data.requested = requested;
|
|
a->selinux_audit_data.ssid = ssid;
|
|
a->selinux_audit_data.tsid = tsid;
|
|
a->selinux_audit_data.audited = audited;
|
|
a->selinux_audit_data.denied = denied;
|
|
a->lsm_pre_audit = avc_audit_pre_callback;
|
|
a->lsm_post_audit = avc_audit_post_callback;
|
|
common_lsm_audit(a);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* avc_audit - Audit the granting or denial of permissions.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
* @requested: requested permissions
|
|
* @avd: access vector decisions
|
|
* @result: result from avc_has_perm_noaudit
|
|
* @a: auxiliary audit data
|
|
* @flags: VFS walk flags
|
|
*
|
|
* Audit the granting or denial of permissions in accordance
|
|
* with the policy. This function is typically called by
|
|
* avc_has_perm() after a permission check, but can also be
|
|
* called directly by callers who use avc_has_perm_noaudit()
|
|
* in order to separate the permission check from the auditing.
|
|
* For example, this separation is useful when the permission check must
|
|
* be performed under a lock, to allow the lock to be released
|
|
* before calling the auditing code.
|
|
*/
|
|
int avc_audit(u32 ssid, u32 tsid,
|
|
u16 tclass, u32 requested,
|
|
struct av_decision *avd, int result, struct common_audit_data *a,
|
|
unsigned flags)
|
|
{
|
|
u32 denied, audited;
|
|
denied = requested & ~avd->allowed;
|
|
if (unlikely(denied)) {
|
|
audited = denied & avd->auditdeny;
|
|
/*
|
|
* a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
|
|
* this field means that ANY denials should NOT be audited if
|
|
* the policy contains an explicit dontaudit rule for that
|
|
* permission. Take notice that this is unrelated to the
|
|
* actual permissions that were denied. As an example lets
|
|
* assume:
|
|
*
|
|
* denied == READ
|
|
* avd.auditdeny & ACCESS == 0 (not set means explicit rule)
|
|
* selinux_audit_data.auditdeny & ACCESS == 1
|
|
*
|
|
* We will NOT audit the denial even though the denied
|
|
* permission was READ and the auditdeny checks were for
|
|
* ACCESS
|
|
*/
|
|
if (a &&
|
|
a->selinux_audit_data.auditdeny &&
|
|
!(a->selinux_audit_data.auditdeny & avd->auditdeny))
|
|
audited = 0;
|
|
} else if (result)
|
|
audited = denied = requested;
|
|
else
|
|
audited = requested & avd->auditallow;
|
|
if (likely(!audited))
|
|
return 0;
|
|
|
|
return slow_avc_audit(ssid, tsid, tclass,
|
|
requested, audited, denied,
|
|
avd, a, flags);
|
|
}
|
|
|
|
/**
|
|
* avc_add_callback - Register a callback for security events.
|
|
* @callback: callback function
|
|
* @events: security events
|
|
* @ssid: source security identifier or %SECSID_WILD
|
|
* @tsid: target security identifier or %SECSID_WILD
|
|
* @tclass: target security class
|
|
* @perms: permissions
|
|
*
|
|
* Register a callback function for events in the set @events
|
|
* related to the SID pair (@ssid, @tsid)
|
|
* and the permissions @perms, interpreting
|
|
* @perms based on @tclass. Returns %0 on success or
|
|
* -%ENOMEM if insufficient memory exists to add the callback.
|
|
*/
|
|
int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
|
|
u16 tclass, u32 perms,
|
|
u32 *out_retained),
|
|
u32 events, u32 ssid, u32 tsid,
|
|
u16 tclass, u32 perms)
|
|
{
|
|
struct avc_callback_node *c;
|
|
int rc = 0;
|
|
|
|
c = kmalloc(sizeof(*c), GFP_ATOMIC);
|
|
if (!c) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
c->callback = callback;
|
|
c->events = events;
|
|
c->ssid = ssid;
|
|
c->tsid = tsid;
|
|
c->perms = perms;
|
|
c->next = avc_callbacks;
|
|
avc_callbacks = c;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static inline int avc_sidcmp(u32 x, u32 y)
|
|
{
|
|
return (x == y || x == SECSID_WILD || y == SECSID_WILD);
|
|
}
|
|
|
|
/**
|
|
* avc_update_node Update an AVC entry
|
|
* @event : Updating event
|
|
* @perms : Permission mask bits
|
|
* @ssid,@tsid,@tclass : identifier of an AVC entry
|
|
* @seqno : sequence number when decision was made
|
|
*
|
|
* if a valid AVC entry doesn't exist,this function returns -ENOENT.
|
|
* if kmalloc() called internal returns NULL, this function returns -ENOMEM.
|
|
* otherwise, this function updates the AVC entry. The original AVC-entry object
|
|
* will release later by RCU.
|
|
*/
|
|
static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
|
|
u32 seqno)
|
|
{
|
|
int hvalue, rc = 0;
|
|
unsigned long flag;
|
|
struct avc_node *pos, *node, *orig = NULL;
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
spinlock_t *lock;
|
|
|
|
node = avc_alloc_node();
|
|
if (!node) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Lock the target slot */
|
|
hvalue = avc_hash(ssid, tsid, tclass);
|
|
|
|
head = &avc_cache.slots[hvalue];
|
|
lock = &avc_cache.slots_lock[hvalue];
|
|
|
|
spin_lock_irqsave(lock, flag);
|
|
|
|
hlist_for_each_entry(pos, next, head, list) {
|
|
if (ssid == pos->ae.ssid &&
|
|
tsid == pos->ae.tsid &&
|
|
tclass == pos->ae.tclass &&
|
|
seqno == pos->ae.avd.seqno){
|
|
orig = pos;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!orig) {
|
|
rc = -ENOENT;
|
|
avc_node_kill(node);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Copy and replace original node.
|
|
*/
|
|
|
|
avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
|
|
|
|
switch (event) {
|
|
case AVC_CALLBACK_GRANT:
|
|
node->ae.avd.allowed |= perms;
|
|
break;
|
|
case AVC_CALLBACK_TRY_REVOKE:
|
|
case AVC_CALLBACK_REVOKE:
|
|
node->ae.avd.allowed &= ~perms;
|
|
break;
|
|
case AVC_CALLBACK_AUDITALLOW_ENABLE:
|
|
node->ae.avd.auditallow |= perms;
|
|
break;
|
|
case AVC_CALLBACK_AUDITALLOW_DISABLE:
|
|
node->ae.avd.auditallow &= ~perms;
|
|
break;
|
|
case AVC_CALLBACK_AUDITDENY_ENABLE:
|
|
node->ae.avd.auditdeny |= perms;
|
|
break;
|
|
case AVC_CALLBACK_AUDITDENY_DISABLE:
|
|
node->ae.avd.auditdeny &= ~perms;
|
|
break;
|
|
}
|
|
avc_node_replace(node, orig);
|
|
out_unlock:
|
|
spin_unlock_irqrestore(lock, flag);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* avc_flush - Flush the cache
|
|
*/
|
|
static void avc_flush(void)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *next;
|
|
struct avc_node *node;
|
|
spinlock_t *lock;
|
|
unsigned long flag;
|
|
int i;
|
|
|
|
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
|
|
head = &avc_cache.slots[i];
|
|
lock = &avc_cache.slots_lock[i];
|
|
|
|
spin_lock_irqsave(lock, flag);
|
|
/*
|
|
* With preemptable RCU, the outer spinlock does not
|
|
* prevent RCU grace periods from ending.
|
|
*/
|
|
rcu_read_lock();
|
|
hlist_for_each_entry(node, next, head, list)
|
|
avc_node_delete(node);
|
|
rcu_read_unlock();
|
|
spin_unlock_irqrestore(lock, flag);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* avc_ss_reset - Flush the cache and revalidate migrated permissions.
|
|
* @seqno: policy sequence number
|
|
*/
|
|
int avc_ss_reset(u32 seqno)
|
|
{
|
|
struct avc_callback_node *c;
|
|
int rc = 0, tmprc;
|
|
|
|
avc_flush();
|
|
|
|
for (c = avc_callbacks; c; c = c->next) {
|
|
if (c->events & AVC_CALLBACK_RESET) {
|
|
tmprc = c->callback(AVC_CALLBACK_RESET,
|
|
0, 0, 0, 0, NULL);
|
|
/* save the first error encountered for the return
|
|
value and continue processing the callbacks */
|
|
if (!rc)
|
|
rc = tmprc;
|
|
}
|
|
}
|
|
|
|
avc_latest_notif_update(seqno, 0);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* avc_has_perm_noaudit - Check permissions but perform no auditing.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
* @requested: requested permissions, interpreted based on @tclass
|
|
* @flags: AVC_STRICT or 0
|
|
* @avd: access vector decisions
|
|
*
|
|
* Check the AVC to determine whether the @requested permissions are granted
|
|
* for the SID pair (@ssid, @tsid), interpreting the permissions
|
|
* based on @tclass, and call the security server on a cache miss to obtain
|
|
* a new decision and add it to the cache. Return a copy of the decisions
|
|
* in @avd. Return %0 if all @requested permissions are granted,
|
|
* -%EACCES if any permissions are denied, or another -errno upon
|
|
* other errors. This function is typically called by avc_has_perm(),
|
|
* but may also be called directly to separate permission checking from
|
|
* auditing, e.g. in cases where a lock must be held for the check but
|
|
* should be released for the auditing.
|
|
*/
|
|
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
|
|
u16 tclass, u32 requested,
|
|
unsigned flags,
|
|
struct av_decision *avd)
|
|
{
|
|
struct avc_node *node;
|
|
int rc = 0;
|
|
u32 denied;
|
|
|
|
BUG_ON(!requested);
|
|
|
|
rcu_read_lock();
|
|
|
|
node = avc_lookup(ssid, tsid, tclass);
|
|
if (unlikely(!node)) {
|
|
rcu_read_unlock();
|
|
security_compute_av(ssid, tsid, tclass, avd);
|
|
rcu_read_lock();
|
|
node = avc_insert(ssid, tsid, tclass, avd);
|
|
} else {
|
|
memcpy(avd, &node->ae.avd, sizeof(*avd));
|
|
avd = &node->ae.avd;
|
|
}
|
|
|
|
denied = requested & ~(avd->allowed);
|
|
|
|
if (denied) {
|
|
if (flags & AVC_STRICT)
|
|
rc = -EACCES;
|
|
else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
|
|
avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
|
|
tsid, tclass, avd->seqno);
|
|
else
|
|
rc = -EACCES;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* avc_has_perm - Check permissions and perform any appropriate auditing.
|
|
* @ssid: source security identifier
|
|
* @tsid: target security identifier
|
|
* @tclass: target security class
|
|
* @requested: requested permissions, interpreted based on @tclass
|
|
* @auditdata: auxiliary audit data
|
|
* @flags: VFS walk flags
|
|
*
|
|
* Check the AVC to determine whether the @requested permissions are granted
|
|
* for the SID pair (@ssid, @tsid), interpreting the permissions
|
|
* based on @tclass, and call the security server on a cache miss to obtain
|
|
* a new decision and add it to the cache. Audit the granting or denial of
|
|
* permissions in accordance with the policy. Return %0 if all @requested
|
|
* permissions are granted, -%EACCES if any permissions are denied, or
|
|
* another -errno upon other errors.
|
|
*/
|
|
int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
|
|
u32 requested, struct common_audit_data *auditdata,
|
|
unsigned flags)
|
|
{
|
|
struct av_decision avd;
|
|
int rc, rc2;
|
|
|
|
rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
|
|
|
|
rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
|
|
flags);
|
|
if (rc2)
|
|
return rc2;
|
|
return rc;
|
|
}
|
|
|
|
u32 avc_policy_seqno(void)
|
|
{
|
|
return avc_cache.latest_notif;
|
|
}
|
|
|
|
void avc_disable(void)
|
|
{
|
|
/*
|
|
* If you are looking at this because you have realized that we are
|
|
* not destroying the avc_node_cachep it might be easy to fix, but
|
|
* I don't know the memory barrier semantics well enough to know. It's
|
|
* possible that some other task dereferenced security_ops when
|
|
* it still pointed to selinux operations. If that is the case it's
|
|
* possible that it is about to use the avc and is about to need the
|
|
* avc_node_cachep. I know I could wrap the security.c security_ops call
|
|
* in an rcu_lock, but seriously, it's not worth it. Instead I just flush
|
|
* the cache and get that memory back.
|
|
*/
|
|
if (avc_node_cachep) {
|
|
avc_flush();
|
|
/* kmem_cache_destroy(avc_node_cachep); */
|
|
}
|
|
}
|