OpenCloudOS-Kernel/arch/sparc/include/asm/io_64.h

462 lines
11 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __SPARC64_IO_H
#define __SPARC64_IO_H
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include <asm/page.h> /* IO address mapping routines need this */
#include <asm/asi.h>
#include <asm-generic/pci_iomap.h>
/* BIO layer definitions. */
extern unsigned long kern_base, kern_size;
/* __raw_{read,write}{b,w,l,q} uses direct access.
* Access the memory as big endian bypassing the cache
* by using ASI_PHYS_BYPASS_EC_E
*/
#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 ret;
__asm__ __volatile__("lduba\t[%1] %2, %0\t/* pci_raw_readb */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
return ret;
}
#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 ret;
__asm__ __volatile__("lduha\t[%1] %2, %0\t/* pci_raw_readw */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
return ret;
}
#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 ret;
__asm__ __volatile__("lduwa\t[%1] %2, %0\t/* pci_raw_readl */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
return ret;
}
#define __raw_readq __raw_readq
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
u64 ret;
__asm__ __volatile__("ldxa\t[%1] %2, %0\t/* pci_raw_readq */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
return ret;
}
#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 b, const volatile void __iomem *addr)
{
__asm__ __volatile__("stba\t%r0, [%1] %2\t/* pci_raw_writeb */"
: /* no outputs */
: "Jr" (b), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
}
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 w, const volatile void __iomem *addr)
{
__asm__ __volatile__("stha\t%r0, [%1] %2\t/* pci_raw_writew */"
: /* no outputs */
: "Jr" (w), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
}
#define __raw_writel __raw_writel
static inline void __raw_writel(u32 l, const volatile void __iomem *addr)
{
__asm__ __volatile__("stwa\t%r0, [%1] %2\t/* pci_raw_writel */"
: /* no outputs */
: "Jr" (l), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
}
#define __raw_writeq __raw_writeq
static inline void __raw_writeq(u64 q, const volatile void __iomem *addr)
{
__asm__ __volatile__("stxa\t%r0, [%1] %2\t/* pci_raw_writeq */"
: /* no outputs */
: "Jr" (q), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
}
/* Memory functions, same as I/O accesses on Ultra.
* Access memory as little endian bypassing
* the cache by using ASI_PHYS_BYPASS_EC_E_L
*/
#define readb readb
#define readb_relaxed readb
static inline u8 readb(const volatile void __iomem *addr)
{ u8 ret;
__asm__ __volatile__("lduba\t[%1] %2, %0\t/* pci_readb */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
return ret;
}
#define readw readw
#define readw_relaxed readw
static inline u16 readw(const volatile void __iomem *addr)
{ u16 ret;
__asm__ __volatile__("lduha\t[%1] %2, %0\t/* pci_readw */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
return ret;
}
#define readl readl
#define readl_relaxed readl
static inline u32 readl(const volatile void __iomem *addr)
{ u32 ret;
__asm__ __volatile__("lduwa\t[%1] %2, %0\t/* pci_readl */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
return ret;
}
#define readq readq
#define readq_relaxed readq
static inline u64 readq(const volatile void __iomem *addr)
{ u64 ret;
__asm__ __volatile__("ldxa\t[%1] %2, %0\t/* pci_readq */"
: "=r" (ret)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
return ret;
}
#define writeb writeb
#define writeb_relaxed writeb
static inline void writeb(u8 b, volatile void __iomem *addr)
{
__asm__ __volatile__("stba\t%r0, [%1] %2\t/* pci_writeb */"
: /* no outputs */
: "Jr" (b), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
}
#define writew writew
#define writew_relaxed writew
static inline void writew(u16 w, volatile void __iomem *addr)
{
__asm__ __volatile__("stha\t%r0, [%1] %2\t/* pci_writew */"
: /* no outputs */
: "Jr" (w), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
}
#define writel writel
#define writel_relaxed writel
static inline void writel(u32 l, volatile void __iomem *addr)
{
__asm__ __volatile__("stwa\t%r0, [%1] %2\t/* pci_writel */"
: /* no outputs */
: "Jr" (l), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
}
#define writeq writeq
#define writeq_relaxed writeq
static inline void writeq(u64 q, volatile void __iomem *addr)
{
__asm__ __volatile__("stxa\t%r0, [%1] %2\t/* pci_writeq */"
: /* no outputs */
: "Jr" (q), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
}
#define inb inb
static inline u8 inb(unsigned long addr)
{
return readb((volatile void __iomem *)addr);
}
#define inw inw
static inline u16 inw(unsigned long addr)
{
return readw((volatile void __iomem *)addr);
}
#define inl inl
static inline u32 inl(unsigned long addr)
{
return readl((volatile void __iomem *)addr);
}
#define outb outb
static inline void outb(u8 b, unsigned long addr)
{
writeb(b, (volatile void __iomem *)addr);
}
#define outw outw
static inline void outw(u16 w, unsigned long addr)
{
writew(w, (volatile void __iomem *)addr);
}
#define outl outl
static inline void outl(u32 l, unsigned long addr)
{
writel(l, (volatile void __iomem *)addr);
}
#define inb_p(__addr) inb(__addr)
#define outb_p(__b, __addr) outb(__b, __addr)
#define inw_p(__addr) inw(__addr)
#define outw_p(__w, __addr) outw(__w, __addr)
#define inl_p(__addr) inl(__addr)
#define outl_p(__l, __addr) outl(__l, __addr)
void outsb(unsigned long, const void *, unsigned long);
void outsw(unsigned long, const void *, unsigned long);
void outsl(unsigned long, const void *, unsigned long);
void insb(unsigned long, void *, unsigned long);
void insw(unsigned long, void *, unsigned long);
void insl(unsigned long, void *, unsigned long);
static inline void readsb(void __iomem *port, void *buf, unsigned long count)
{
insb((unsigned long __force)port, buf, count);
}
static inline void readsw(void __iomem *port, void *buf, unsigned long count)
{
insw((unsigned long __force)port, buf, count);
}
static inline void readsl(void __iomem *port, void *buf, unsigned long count)
{
insl((unsigned long __force)port, buf, count);
}
static inline void writesb(void __iomem *port, const void *buf, unsigned long count)
{
outsb((unsigned long __force)port, buf, count);
}
static inline void writesw(void __iomem *port, const void *buf, unsigned long count)
{
outsw((unsigned long __force)port, buf, count);
}
static inline void writesl(void __iomem *port, const void *buf, unsigned long count)
{
outsl((unsigned long __force)port, buf, count);
}
#define ioread8_rep(p,d,l) readsb(p,d,l)
#define ioread16_rep(p,d,l) readsw(p,d,l)
#define ioread32_rep(p,d,l) readsl(p,d,l)
#define iowrite8_rep(p,d,l) writesb(p,d,l)
#define iowrite16_rep(p,d,l) writesw(p,d,l)
#define iowrite32_rep(p,d,l) writesl(p,d,l)
/* Valid I/O Space regions are anywhere, because each PCI bus supported
* can live in an arbitrary area of the physical address range.
*/
#define IO_SPACE_LIMIT 0xffffffffffffffffUL
/* Now, SBUS variants, only difference from PCI is that we do
* not use little-endian ASIs.
*/
static inline u8 sbus_readb(const volatile void __iomem *addr)
{
return __raw_readb(addr);
}
static inline u16 sbus_readw(const volatile void __iomem *addr)
{
return __raw_readw(addr);
}
static inline u32 sbus_readl(const volatile void __iomem *addr)
{
return __raw_readl(addr);
}
static inline u64 sbus_readq(const volatile void __iomem *addr)
{
return __raw_readq(addr);
}
static inline void sbus_writeb(u8 b, volatile void __iomem *addr)
{
__raw_writeb(b, addr);
}
static inline void sbus_writew(u16 w, volatile void __iomem *addr)
{
__raw_writew(w, addr);
}
static inline void sbus_writel(u32 l, volatile void __iomem *addr)
{
__raw_writel(l, addr);
}
static inline void sbus_writeq(u64 q, volatile void __iomem *addr)
{
__raw_writeq(q, addr);
}
static inline void sbus_memset_io(volatile void __iomem *dst, int c, __kernel_size_t n)
{
while(n--) {
sbus_writeb(c, dst);
dst++;
}
}
static inline void memset_io(volatile void __iomem *dst, int c, __kernel_size_t n)
{
volatile void __iomem *d = dst;
while (n--) {
writeb(c, d);
d++;
}
}
static inline void sbus_memcpy_fromio(void *dst, const volatile void __iomem *src,
__kernel_size_t n)
{
char *d = dst;
while (n--) {
char tmp = sbus_readb(src);
*d++ = tmp;
src++;
}
}
static inline void memcpy_fromio(void *dst, const volatile void __iomem *src,
__kernel_size_t n)
{
char *d = dst;
while (n--) {
char tmp = readb(src);
*d++ = tmp;
src++;
}
}
static inline void sbus_memcpy_toio(volatile void __iomem *dst, const void *src,
__kernel_size_t n)
{
const char *s = src;
volatile void __iomem *d = dst;
while (n--) {
char tmp = *s++;
sbus_writeb(tmp, d);
d++;
}
}
static inline void memcpy_toio(volatile void __iomem *dst, const void *src,
__kernel_size_t n)
{
const char *s = src;
volatile void __iomem *d = dst;
while (n--) {
char tmp = *s++;
writeb(tmp, d);
d++;
}
}
#ifdef __KERNEL__
/* On sparc64 we have the whole physical IO address space accessible
* using physically addressed loads and stores, so this does nothing.
*/
static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
{
return (void __iomem *)offset;
}
#define ioremap_nocache(X,Y) ioremap((X),(Y))
#define ioremap_uc(X,Y) ioremap((X),(Y))
#define ioremap_wc(X,Y) ioremap((X),(Y))
#define ioremap_wt(X,Y) ioremap((X),(Y))
static inline void iounmap(volatile void __iomem *addr)
{
}
#define ioread8 readb
#define ioread16 readw
#define ioread16be __raw_readw
#define ioread32 readl
#define ioread32be __raw_readl
#define iowrite8 writeb
#define iowrite16 writew
#define iowrite16be __raw_writew
#define iowrite32 writel
#define iowrite32be __raw_writel
/* Create a virtual mapping cookie for an IO port range */
void __iomem *ioport_map(unsigned long port, unsigned int nr);
void ioport_unmap(void __iomem *);
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
struct pci_dev;
void pci_iounmap(struct pci_dev *dev, void __iomem *);
static inline int sbus_can_dma_64bit(void)
{
return 1;
}
static inline int sbus_can_burst64(void)
{
return 1;
}
struct device;
void sbus_set_sbus64(struct device *, int);
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif
#endif /* !(__SPARC64_IO_H) */