OpenCloudOS-Kernel/sound/drivers/vx/vx_core.c

821 lines
20 KiB
C

/*
* Driver for Digigram VX soundcards
*
* Hardware core part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/asoundef.h>
#include <sound/info.h>
#include <asm/io.h>
#include <sound/vx_core.h>
#include "vx_cmd.h"
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Common routines for Digigram VX drivers");
MODULE_LICENSE("GPL");
/*
* vx_check_reg_bit - wait for the specified bit is set/reset on a register
* @reg: register to check
* @mask: bit mask
* @bit: resultant bit to be checked
* @time: time-out of loop in msec
*
* returns zero if a bit matches, or a negative error code.
*/
int snd_vx_check_reg_bit(struct vx_core *chip, int reg, int mask, int bit, int time)
{
unsigned long end_time = jiffies + (time * HZ + 999) / 1000;
#ifdef CONFIG_SND_DEBUG
static char *reg_names[VX_REG_MAX] = {
"ICR", "CVR", "ISR", "IVR", "RXH", "RXM", "RXL",
"DMA", "CDSP", "RFREQ", "RUER/V2", "DATA", "MEMIRQ",
"ACQ", "BIT0", "BIT1", "MIC0", "MIC1", "MIC2",
"MIC3", "INTCSR", "CNTRL", "GPIOC",
"LOFREQ", "HIFREQ", "CSUER", "RUER"
};
#endif
do {
if ((snd_vx_inb(chip, reg) & mask) == bit)
return 0;
//msleep(10);
} while (time_after_eq(end_time, jiffies));
snd_printd(KERN_DEBUG "vx_check_reg_bit: timeout, reg=%s, mask=0x%x, val=0x%x\n", reg_names[reg], mask, snd_vx_inb(chip, reg));
return -EIO;
}
EXPORT_SYMBOL(snd_vx_check_reg_bit);
/*
* vx_send_irq_dsp - set command irq bit
* @num: the requested IRQ type, IRQ_XXX
*
* this triggers the specified IRQ request
* returns 0 if successful, or a negative error code.
*
*/
static int vx_send_irq_dsp(struct vx_core *chip, int num)
{
int nirq;
/* wait for Hc = 0 */
if (snd_vx_check_reg_bit(chip, VX_CVR, CVR_HC, 0, 200) < 0)
return -EIO;
nirq = num;
if (vx_has_new_dsp(chip))
nirq += VXP_IRQ_OFFSET;
vx_outb(chip, CVR, (nirq >> 1) | CVR_HC);
return 0;
}
/*
* vx_reset_chk - reset CHK bit on ISR
*
* returns 0 if successful, or a negative error code.
*/
static int vx_reset_chk(struct vx_core *chip)
{
/* Reset irq CHK */
if (vx_send_irq_dsp(chip, IRQ_RESET_CHK) < 0)
return -EIO;
/* Wait until CHK = 0 */
if (vx_check_isr(chip, ISR_CHK, 0, 200) < 0)
return -EIO;
return 0;
}
/*
* vx_transfer_end - terminate message transfer
* @cmd: IRQ message to send (IRQ_MESS_XXX_END)
*
* returns 0 if successful, or a negative error code.
* the error code can be VX-specific, retrieved via vx_get_error().
* NB: call with spinlock held!
*/
static int vx_transfer_end(struct vx_core *chip, int cmd)
{
int err;
if ((err = vx_reset_chk(chip)) < 0)
return err;
/* irq MESS_READ/WRITE_END */
if ((err = vx_send_irq_dsp(chip, cmd)) < 0)
return err;
/* Wait CHK = 1 */
if ((err = vx_wait_isr_bit(chip, ISR_CHK)) < 0)
return err;
/* If error, Read RX */
if ((err = vx_inb(chip, ISR)) & ISR_ERR) {
if ((err = vx_wait_for_rx_full(chip)) < 0) {
snd_printd(KERN_DEBUG "transfer_end: error in rx_full\n");
return err;
}
err = vx_inb(chip, RXH) << 16;
err |= vx_inb(chip, RXM) << 8;
err |= vx_inb(chip, RXL);
snd_printd(KERN_DEBUG "transfer_end: error = 0x%x\n", err);
return -(VX_ERR_MASK | err);
}
return 0;
}
/*
* vx_read_status - return the status rmh
* @rmh: rmh record to store the status
*
* returns 0 if successful, or a negative error code.
* the error code can be VX-specific, retrieved via vx_get_error().
* NB: call with spinlock held!
*/
static int vx_read_status(struct vx_core *chip, struct vx_rmh *rmh)
{
int i, err, val, size;
/* no read necessary? */
if (rmh->DspStat == RMH_SSIZE_FIXED && rmh->LgStat == 0)
return 0;
/* Wait for RX full (with timeout protection)
* The first word of status is in RX
*/
err = vx_wait_for_rx_full(chip);
if (err < 0)
return err;
/* Read RX */
val = vx_inb(chip, RXH) << 16;
val |= vx_inb(chip, RXM) << 8;
val |= vx_inb(chip, RXL);
/* If status given by DSP, let's decode its size */
switch (rmh->DspStat) {
case RMH_SSIZE_ARG:
size = val & 0xff;
rmh->Stat[0] = val & 0xffff00;
rmh->LgStat = size + 1;
break;
case RMH_SSIZE_MASK:
/* Let's count the arg numbers from a mask */
rmh->Stat[0] = val;
size = 0;
while (val) {
if (val & 0x01)
size++;
val >>= 1;
}
rmh->LgStat = size + 1;
break;
default:
/* else retrieve the status length given by the driver */
size = rmh->LgStat;
rmh->Stat[0] = val; /* Val is the status 1st word */
size--; /* hence adjust remaining length */
break;
}
if (size < 1)
return 0;
snd_assert(size <= SIZE_MAX_STATUS, return -EINVAL);
for (i = 1; i <= size; i++) {
/* trigger an irq MESS_WRITE_NEXT */
err = vx_send_irq_dsp(chip, IRQ_MESS_WRITE_NEXT);
if (err < 0)
return err;
/* Wait for RX full (with timeout protection) */
err = vx_wait_for_rx_full(chip);
if (err < 0)
return err;
rmh->Stat[i] = vx_inb(chip, RXH) << 16;
rmh->Stat[i] |= vx_inb(chip, RXM) << 8;
rmh->Stat[i] |= vx_inb(chip, RXL);
}
return vx_transfer_end(chip, IRQ_MESS_WRITE_END);
}
#define MASK_MORE_THAN_1_WORD_COMMAND 0x00008000
#define MASK_1_WORD_COMMAND 0x00ff7fff
/*
* vx_send_msg_nolock - send a DSP message and read back the status
* @rmh: the rmh record to send and receive
*
* returns 0 if successful, or a negative error code.
* the error code can be VX-specific, retrieved via vx_get_error().
*
* this function doesn't call spinlock at all.
*/
int vx_send_msg_nolock(struct vx_core *chip, struct vx_rmh *rmh)
{
int i, err;
if (chip->chip_status & VX_STAT_IS_STALE)
return -EBUSY;
if ((err = vx_reset_chk(chip)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: vx_reset_chk error\n");
return err;
}
#if 0
printk(KERN_DEBUG "rmh: cmd = 0x%06x, length = %d, stype = %d\n",
rmh->Cmd[0], rmh->LgCmd, rmh->DspStat);
if (rmh->LgCmd > 1) {
printk(KERN_DEBUG " ");
for (i = 1; i < rmh->LgCmd; i++)
printk("0x%06x ", rmh->Cmd[i]);
printk("\n");
}
#endif
/* Check bit M is set according to length of the command */
if (rmh->LgCmd > 1)
rmh->Cmd[0] |= MASK_MORE_THAN_1_WORD_COMMAND;
else
rmh->Cmd[0] &= MASK_1_WORD_COMMAND;
/* Wait for TX empty */
if ((err = vx_wait_isr_bit(chip, ISR_TX_EMPTY)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: wait tx empty error\n");
return err;
}
/* Write Cmd[0] */
vx_outb(chip, TXH, (rmh->Cmd[0] >> 16) & 0xff);
vx_outb(chip, TXM, (rmh->Cmd[0] >> 8) & 0xff);
vx_outb(chip, TXL, rmh->Cmd[0] & 0xff);
/* Trigger irq MESSAGE */
if ((err = vx_send_irq_dsp(chip, IRQ_MESSAGE)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: send IRQ_MESSAGE error\n");
return err;
}
/* Wait for CHK = 1 */
if ((err = vx_wait_isr_bit(chip, ISR_CHK)) < 0)
return err;
/* If error, get error value from RX */
if (vx_inb(chip, ISR) & ISR_ERR) {
if ((err = vx_wait_for_rx_full(chip)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: rx_full read error\n");
return err;
}
err = vx_inb(chip, RXH) << 16;
err |= vx_inb(chip, RXM) << 8;
err |= vx_inb(chip, RXL);
snd_printd(KERN_DEBUG "msg got error = 0x%x at cmd[0]\n", err);
err = -(VX_ERR_MASK | err);
return err;
}
/* Send the other words */
if (rmh->LgCmd > 1) {
for (i = 1; i < rmh->LgCmd; i++) {
/* Wait for TX ready */
if ((err = vx_wait_isr_bit(chip, ISR_TX_READY)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: tx_ready error\n");
return err;
}
/* Write Cmd[i] */
vx_outb(chip, TXH, (rmh->Cmd[i] >> 16) & 0xff);
vx_outb(chip, TXM, (rmh->Cmd[i] >> 8) & 0xff);
vx_outb(chip, TXL, rmh->Cmd[i] & 0xff);
/* Trigger irq MESS_READ_NEXT */
if ((err = vx_send_irq_dsp(chip, IRQ_MESS_READ_NEXT)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: IRQ_READ_NEXT error\n");
return err;
}
}
/* Wait for TX empty */
if ((err = vx_wait_isr_bit(chip, ISR_TX_READY)) < 0) {
snd_printd(KERN_DEBUG "vx_send_msg: TX_READY error\n");
return err;
}
/* End of transfer */
err = vx_transfer_end(chip, IRQ_MESS_READ_END);
if (err < 0)
return err;
}
return vx_read_status(chip, rmh);
}
/*
* vx_send_msg - send a DSP message with spinlock
* @rmh: the rmh record to send and receive
*
* returns 0 if successful, or a negative error code.
* see vx_send_msg_nolock().
*/
int vx_send_msg(struct vx_core *chip, struct vx_rmh *rmh)
{
unsigned long flags;
int err;
spin_lock_irqsave(&chip->lock, flags);
err = vx_send_msg_nolock(chip, rmh);
spin_unlock_irqrestore(&chip->lock, flags);
return err;
}
/*
* vx_send_rih_nolock - send an RIH to xilinx
* @cmd: the command to send
*
* returns 0 if successful, or a negative error code.
* the error code can be VX-specific, retrieved via vx_get_error().
*
* this function doesn't call spinlock at all.
*
* unlike RMH, no command is sent to DSP.
*/
int vx_send_rih_nolock(struct vx_core *chip, int cmd)
{
int err;
if (chip->chip_status & VX_STAT_IS_STALE)
return -EBUSY;
#if 0
printk(KERN_DEBUG "send_rih: cmd = 0x%x\n", cmd);
#endif
if ((err = vx_reset_chk(chip)) < 0)
return err;
/* send the IRQ */
if ((err = vx_send_irq_dsp(chip, cmd)) < 0)
return err;
/* Wait CHK = 1 */
if ((err = vx_wait_isr_bit(chip, ISR_CHK)) < 0)
return err;
/* If error, read RX */
if (vx_inb(chip, ISR) & ISR_ERR) {
if ((err = vx_wait_for_rx_full(chip)) < 0)
return err;
err = vx_inb(chip, RXH) << 16;
err |= vx_inb(chip, RXM) << 8;
err |= vx_inb(chip, RXL);
return -(VX_ERR_MASK | err);
}
return 0;
}
/*
* vx_send_rih - send an RIH with spinlock
* @cmd: the command to send
*
* see vx_send_rih_nolock().
*/
int vx_send_rih(struct vx_core *chip, int cmd)
{
unsigned long flags;
int err;
spin_lock_irqsave(&chip->lock, flags);
err = vx_send_rih_nolock(chip, cmd);
spin_unlock_irqrestore(&chip->lock, flags);
return err;
}
#define END_OF_RESET_WAIT_TIME 500 /* us */
/**
* snd_vx_boot_xilinx - boot up the xilinx interface
* @boot: the boot record to load
*/
int snd_vx_load_boot_image(struct vx_core *chip, const struct firmware *boot)
{
unsigned int i;
int no_fillup = vx_has_new_dsp(chip);
/* check the length of boot image */
snd_assert(boot->size > 0, return -EINVAL);
snd_assert(boot->size % 3 == 0, return -EINVAL);
#if 0
{
/* more strict check */
unsigned int c = ((u32)boot->data[0] << 16) | ((u32)boot->data[1] << 8) | boot->data[2];
snd_assert(boot->size == (c + 2) * 3, return -EINVAL);
}
#endif
/* reset dsp */
vx_reset_dsp(chip);
udelay(END_OF_RESET_WAIT_TIME); /* another wait? */
/* download boot strap */
for (i = 0; i < 0x600; i += 3) {
if (i >= boot->size) {
if (no_fillup)
break;
if (vx_wait_isr_bit(chip, ISR_TX_EMPTY) < 0) {
snd_printk(KERN_ERR "dsp boot failed at %d\n", i);
return -EIO;
}
vx_outb(chip, TXH, 0);
vx_outb(chip, TXM, 0);
vx_outb(chip, TXL, 0);
} else {
unsigned char *image = boot->data + i;
if (vx_wait_isr_bit(chip, ISR_TX_EMPTY) < 0) {
snd_printk(KERN_ERR "dsp boot failed at %d\n", i);
return -EIO;
}
vx_outb(chip, TXH, image[0]);
vx_outb(chip, TXM, image[1]);
vx_outb(chip, TXL, image[2]);
}
}
return 0;
}
EXPORT_SYMBOL(snd_vx_load_boot_image);
/*
* vx_test_irq_src - query the source of interrupts
*
* called from irq handler only
*/
static int vx_test_irq_src(struct vx_core *chip, unsigned int *ret)
{
int err;
vx_init_rmh(&chip->irq_rmh, CMD_TEST_IT);
spin_lock(&chip->lock);
err = vx_send_msg_nolock(chip, &chip->irq_rmh);
if (err < 0)
*ret = 0;
else
*ret = chip->irq_rmh.Stat[0];
spin_unlock(&chip->lock);
return err;
}
/*
* vx_interrupt - soft irq handler
*/
static void vx_interrupt(unsigned long private_data)
{
struct vx_core *chip = (struct vx_core *) private_data;
unsigned int events;
if (chip->chip_status & VX_STAT_IS_STALE)
return;
if (vx_test_irq_src(chip, &events) < 0)
return;
#if 0
if (events & 0x000800)
printk(KERN_ERR "DSP Stream underrun ! IRQ events = 0x%x\n", events);
#endif
// printk(KERN_DEBUG "IRQ events = 0x%x\n", events);
/* We must prevent any application using this DSP
* and block any further request until the application
* either unregisters or reloads the DSP
*/
if (events & FATAL_DSP_ERROR) {
snd_printk(KERN_ERR "vx_core: fatal DSP error!!\n");
return;
}
/* The start on time code conditions are filled (ie the time code
* received by the board is equal to one of those given to it).
*/
if (events & TIME_CODE_EVENT_PENDING)
; /* so far, nothing to do yet */
/* The frequency has changed on the board (UER mode). */
if (events & FREQUENCY_CHANGE_EVENT_PENDING)
vx_change_frequency(chip);
/* update the pcm streams */
vx_pcm_update_intr(chip, events);
}
/**
* snd_vx_irq_handler - interrupt handler
*/
irqreturn_t snd_vx_irq_handler(int irq, void *dev)
{
struct vx_core *chip = dev;
if (! (chip->chip_status & VX_STAT_CHIP_INIT) ||
(chip->chip_status & VX_STAT_IS_STALE))
return IRQ_NONE;
if (! vx_test_and_ack(chip))
tasklet_hi_schedule(&chip->tq);
return IRQ_HANDLED;
}
EXPORT_SYMBOL(snd_vx_irq_handler);
/*
*/
static void vx_reset_board(struct vx_core *chip, int cold_reset)
{
snd_assert(chip->ops->reset_board, return);
/* current source, later sync'ed with target */
chip->audio_source = VX_AUDIO_SRC_LINE;
if (cold_reset) {
chip->audio_source_target = chip->audio_source;
chip->clock_source = INTERNAL_QUARTZ;
chip->clock_mode = VX_CLOCK_MODE_AUTO;
chip->freq = 48000;
chip->uer_detected = VX_UER_MODE_NOT_PRESENT;
chip->uer_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
}
chip->ops->reset_board(chip, cold_reset);
vx_reset_codec(chip, cold_reset);
vx_set_internal_clock(chip, chip->freq);
/* Reset the DSP */
vx_reset_dsp(chip);
if (vx_is_pcmcia(chip)) {
/* Acknowledge any pending IRQ and reset the MEMIRQ flag. */
vx_test_and_ack(chip);
vx_validate_irq(chip, 1);
}
/* init CBits */
vx_set_iec958_status(chip, chip->uer_bits);
}
/*
* proc interface
*/
static void vx_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
struct vx_core *chip = entry->private_data;
static char *audio_src_vxp[] = { "Line", "Mic", "Digital" };
static char *audio_src_vx2[] = { "Analog", "Analog", "Digital" };
static char *clock_mode[] = { "Auto", "Internal", "External" };
static char *clock_src[] = { "Internal", "External" };
static char *uer_type[] = { "Consumer", "Professional", "Not Present" };
snd_iprintf(buffer, "%s\n", chip->card->longname);
snd_iprintf(buffer, "Xilinx Firmware: %s\n",
chip->chip_status & VX_STAT_XILINX_LOADED ? "Loaded" : "No");
snd_iprintf(buffer, "Device Initialized: %s\n",
chip->chip_status & VX_STAT_DEVICE_INIT ? "Yes" : "No");
snd_iprintf(buffer, "DSP audio info:");
if (chip->audio_info & VX_AUDIO_INFO_REAL_TIME)
snd_iprintf(buffer, " realtime");
if (chip->audio_info & VX_AUDIO_INFO_OFFLINE)
snd_iprintf(buffer, " offline");
if (chip->audio_info & VX_AUDIO_INFO_MPEG1)
snd_iprintf(buffer, " mpeg1");
if (chip->audio_info & VX_AUDIO_INFO_MPEG2)
snd_iprintf(buffer, " mpeg2");
if (chip->audio_info & VX_AUDIO_INFO_LINEAR_8)
snd_iprintf(buffer, " linear8");
if (chip->audio_info & VX_AUDIO_INFO_LINEAR_16)
snd_iprintf(buffer, " linear16");
if (chip->audio_info & VX_AUDIO_INFO_LINEAR_24)
snd_iprintf(buffer, " linear24");
snd_iprintf(buffer, "\n");
snd_iprintf(buffer, "Input Source: %s\n", vx_is_pcmcia(chip) ?
audio_src_vxp[chip->audio_source] :
audio_src_vx2[chip->audio_source]);
snd_iprintf(buffer, "Clock Mode: %s\n", clock_mode[chip->clock_mode]);
snd_iprintf(buffer, "Clock Source: %s\n", clock_src[chip->clock_source]);
snd_iprintf(buffer, "Frequency: %d\n", chip->freq);
snd_iprintf(buffer, "Detected Frequency: %d\n", chip->freq_detected);
snd_iprintf(buffer, "Detected UER type: %s\n", uer_type[chip->uer_detected]);
snd_iprintf(buffer, "Min/Max/Cur IBL: %d/%d/%d (granularity=%d)\n",
chip->ibl.min_size, chip->ibl.max_size, chip->ibl.size,
chip->ibl.granularity);
}
static void vx_proc_init(struct vx_core *chip)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(chip->card, "vx-status", &entry))
snd_info_set_text_ops(entry, chip, vx_proc_read);
}
/**
* snd_vx_dsp_boot - load the DSP boot
*/
int snd_vx_dsp_boot(struct vx_core *chip, const struct firmware *boot)
{
int err;
int cold_reset = !(chip->chip_status & VX_STAT_DEVICE_INIT);
vx_reset_board(chip, cold_reset);
vx_validate_irq(chip, 0);
if ((err = snd_vx_load_boot_image(chip, boot)) < 0)
return err;
msleep(10);
return 0;
}
EXPORT_SYMBOL(snd_vx_dsp_boot);
/**
* snd_vx_dsp_load - load the DSP image
*/
int snd_vx_dsp_load(struct vx_core *chip, const struct firmware *dsp)
{
unsigned int i;
int err;
unsigned int csum = 0;
unsigned char *image, *cptr;
snd_assert(dsp->size % 3 == 0, return -EINVAL);
vx_toggle_dac_mute(chip, 1);
/* Transfert data buffer from PC to DSP */
for (i = 0; i < dsp->size; i += 3) {
image = dsp->data + i;
/* Wait DSP ready for a new read */
if ((err = vx_wait_isr_bit(chip, ISR_TX_EMPTY)) < 0) {
printk("dsp loading error at position %d\n", i);
return err;
}
cptr = image;
csum ^= *cptr;
csum = (csum >> 24) | (csum << 8);
vx_outb(chip, TXH, *cptr++);
csum ^= *cptr;
csum = (csum >> 24) | (csum << 8);
vx_outb(chip, TXM, *cptr++);
csum ^= *cptr;
csum = (csum >> 24) | (csum << 8);
vx_outb(chip, TXL, *cptr++);
}
snd_printdd(KERN_DEBUG "checksum = 0x%08x\n", csum);
msleep(200);
if ((err = vx_wait_isr_bit(chip, ISR_CHK)) < 0)
return err;
vx_toggle_dac_mute(chip, 0);
vx_test_and_ack(chip);
vx_validate_irq(chip, 1);
return 0;
}
EXPORT_SYMBOL(snd_vx_dsp_load);
#ifdef CONFIG_PM
/*
* suspend
*/
int snd_vx_suspend(struct vx_core *chip, pm_message_t state)
{
unsigned int i;
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
chip->chip_status |= VX_STAT_IN_SUSPEND;
for (i = 0; i < chip->hw->num_codecs; i++)
snd_pcm_suspend_all(chip->pcm[i]);
return 0;
}
EXPORT_SYMBOL(snd_vx_suspend);
/*
* resume
*/
int snd_vx_resume(struct vx_core *chip)
{
int i, err;
chip->chip_status &= ~VX_STAT_CHIP_INIT;
for (i = 0; i < 4; i++) {
if (! chip->firmware[i])
continue;
err = chip->ops->load_dsp(chip, i, chip->firmware[i]);
if (err < 0) {
snd_printk(KERN_ERR "vx: firmware resume error at DSP %d\n", i);
return -EIO;
}
}
chip->chip_status |= VX_STAT_CHIP_INIT;
chip->chip_status &= ~VX_STAT_IN_SUSPEND;
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
return 0;
}
EXPORT_SYMBOL(snd_vx_resume);
#endif
/**
* snd_vx_create - constructor for struct vx_core
* @hw: hardware specific record
*
* this function allocates the instance and prepare for the hardware
* initialization.
*
* return the instance pointer if successful, NULL in error.
*/
struct vx_core *snd_vx_create(struct snd_card *card, struct snd_vx_hardware *hw,
struct snd_vx_ops *ops,
int extra_size)
{
struct vx_core *chip;
snd_assert(card && hw && ops, return NULL);
chip = kzalloc(sizeof(*chip) + extra_size, GFP_KERNEL);
if (! chip) {
snd_printk(KERN_ERR "vx_core: no memory\n");
return NULL;
}
spin_lock_init(&chip->lock);
spin_lock_init(&chip->irq_lock);
chip->irq = -1;
chip->hw = hw;
chip->type = hw->type;
chip->ops = ops;
tasklet_init(&chip->tq, vx_interrupt, (unsigned long)chip);
mutex_init(&chip->mixer_mutex);
chip->card = card;
card->private_data = chip;
strcpy(card->driver, hw->name);
sprintf(card->shortname, "Digigram %s", hw->name);
vx_proc_init(chip);
return chip;
}
EXPORT_SYMBOL(snd_vx_create);
/*
* module entries
*/
static int __init alsa_vx_core_init(void)
{
return 0;
}
static void __exit alsa_vx_core_exit(void)
{
}
module_init(alsa_vx_core_init)
module_exit(alsa_vx_core_exit)