OpenCloudOS-Kernel/include/asm-generic/pgtable.h

254 lines
7.0 KiB
C

#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H
#ifndef __ASSEMBLY__
#ifndef __HAVE_ARCH_PTEP_ESTABLISH
/*
* Establish a new mapping:
* - flush the old one
* - update the page tables
* - inform the TLB about the new one
*
* We hold the mm semaphore for reading, and the pte lock.
*
* Note: the old pte is known to not be writable, so we don't need to
* worry about dirty bits etc getting lost.
*/
#define ptep_establish(__vma, __address, __ptep, __entry) \
do { \
set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
flush_tlb_page(__vma, __address); \
} while (0)
#endif
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
/*
* Largely same as above, but only sets the access flags (dirty,
* accessed, and writable). Furthermore, we know it always gets set
* to a "more permissive" setting, which allows most architectures
* to optimize this.
*/
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
do { \
set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
flush_tlb_page(__vma, __address); \
} while (0)
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __address, __ptep) \
({ \
pte_t __pte = *(__ptep); \
int r = 1; \
if (!pte_young(__pte)) \
r = 0; \
else \
set_pte_at((__vma)->vm_mm, (__address), \
(__ptep), pte_mkold(__pte)); \
r; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep) \
({ \
int __young; \
__young = ptep_test_and_clear_young(__vma, __address, __ptep); \
if (__young) \
flush_tlb_page(__vma, __address); \
__young; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define ptep_test_and_clear_dirty(__vma, __address, __ptep) \
({ \
pte_t __pte = *__ptep; \
int r = 1; \
if (!pte_dirty(__pte)) \
r = 0; \
else \
set_pte_at((__vma)->vm_mm, (__address), (__ptep), \
pte_mkclean(__pte)); \
r; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
({ \
int __dirty; \
__dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep); \
if (__dirty) \
flush_tlb_page(__vma, __address); \
__dirty; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define ptep_get_and_clear(__mm, __address, __ptep) \
({ \
pte_t __pte = *(__ptep); \
pte_clear((__mm), (__address), (__ptep)); \
__pte; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
#define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
({ \
pte_t __pte; \
__pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
__pte; \
})
#endif
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE's which are already
* not present, or in the process of an address space destruction.
*/
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
#define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
do { \
pte_clear((__mm), (__address), (__ptep)); \
} while (0)
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
#define ptep_clear_flush(__vma, __address, __ptep) \
({ \
pte_t __pte; \
__pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
flush_tlb_page(__vma, __address); \
__pte; \
})
#endif
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
struct mm_struct;
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif
#ifndef __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (pte_val(A) == pte_val(B))
#endif
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
#define page_test_and_clear_dirty(page) (0)
#define pte_maybe_dirty(pte) pte_dirty(pte)
#else
#define pte_maybe_dirty(pte) (1)
#endif
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
#define page_test_and_clear_young(page) (0)
#endif
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
#endif
#ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
#define lazy_mmu_prot_update(pte) do { } while (0)
#endif
#ifndef __HAVE_ARCH_MOVE_PTE
#define move_pte(pte, prot, old_addr, new_addr) (pte)
#endif
/*
* A facility to provide lazy MMU batching. This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued. Some architectures may benefit from doing this, and it is
* beneficial for both shadow and direct mode hypervisors, which may batch
* the PTE updates which happen during this window. Note that using this
* interface requires that read hazards be removed from the code. A read
* hazard could result in the direct mode hypervisor case, since the actual
* write to the page tables may not yet have taken place, so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date. This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified. In the UP
* case, this is required so that preemption is disabled, and in the SMP case,
* it must synchronize the delayed page table writes properly on other CPUs.
*/
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#endif
/*
* When walking page tables, get the address of the next boundary,
* or the end address of the range if that comes earlier. Although no
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
*/
#define pgd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#ifndef pud_addr_end
#define pud_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pmd_addr_end
#define pmd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
/*
* When walking page tables, we usually want to skip any p?d_none entries;
* and any p?d_bad entries - reporting the error before resetting to none.
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
*/
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
if (pgd_none(*pgd))
return 1;
if (unlikely(pgd_bad(*pgd))) {
pgd_clear_bad(pgd);
return 1;
}
return 0;
}
static inline int pud_none_or_clear_bad(pud_t *pud)
{
if (pud_none(*pud))
return 1;
if (unlikely(pud_bad(*pud))) {
pud_clear_bad(pud);
return 1;
}
return 0;
}
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
if (pmd_none(*pmd))
return 1;
if (unlikely(pmd_bad(*pmd))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_GENERIC_PGTABLE_H */