2996 lines
75 KiB
C
2996 lines
75 KiB
C
/*
|
|
* UART driver for 68360 CPM SCC or SMC
|
|
* Copyright (c) 2000 D. Jeff Dionne <jeff@uclinux.org>,
|
|
* Copyright (c) 2000 Michael Leslie <mleslie@lineo.ca>
|
|
* Copyright (c) 1997 Dan Malek <dmalek@jlc.net>
|
|
*
|
|
* I used the serial.c driver as the framework for this driver.
|
|
* Give credit to those guys.
|
|
* The original code was written for the MBX860 board. I tried to make
|
|
* it generic, but there may be some assumptions in the structures that
|
|
* have to be fixed later.
|
|
* To save porting time, I did not bother to change any object names
|
|
* that are not accessed outside of this file.
|
|
* It still needs lots of work........When it was easy, I included code
|
|
* to support the SCCs, but this has never been tested, nor is it complete.
|
|
* Only the SCCs support modem control, so that is not complete either.
|
|
*
|
|
* This module exports the following rs232 io functions:
|
|
*
|
|
* int rs_360_init(void);
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serialP.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/m68360.h>
|
|
#include <asm/commproc.h>
|
|
|
|
|
|
#ifdef CONFIG_KGDB
|
|
extern void breakpoint(void);
|
|
extern void set_debug_traps(void);
|
|
extern int kgdb_output_string (const char* s, unsigned int count);
|
|
#endif
|
|
|
|
|
|
/* #ifdef CONFIG_SERIAL_CONSOLE */ /* This seems to be a post 2.0 thing - mles */
|
|
#include <linux/console.h>
|
|
|
|
/* this defines the index into rs_table for the port to use
|
|
*/
|
|
#ifndef CONFIG_SERIAL_CONSOLE_PORT
|
|
#define CONFIG_SERIAL_CONSOLE_PORT 1 /* ie SMC2 - note USE_SMC2 must be defined */
|
|
#endif
|
|
/* #endif */
|
|
|
|
#if 0
|
|
/* SCC2 for console
|
|
*/
|
|
#undef CONFIG_SERIAL_CONSOLE_PORT
|
|
#define CONFIG_SERIAL_CONSOLE_PORT 2
|
|
#endif
|
|
|
|
|
|
#define TX_WAKEUP ASYNC_SHARE_IRQ
|
|
|
|
static char *serial_name = "CPM UART driver";
|
|
static char *serial_version = "0.03";
|
|
|
|
static struct tty_driver *serial_driver;
|
|
int serial_console_setup(struct console *co, char *options);
|
|
|
|
/*
|
|
* Serial driver configuration section. Here are the various options:
|
|
*/
|
|
#define SERIAL_PARANOIA_CHECK
|
|
#define CONFIG_SERIAL_NOPAUSE_IO
|
|
#define SERIAL_DO_RESTART
|
|
|
|
/* Set of debugging defines */
|
|
|
|
#undef SERIAL_DEBUG_INTR
|
|
#undef SERIAL_DEBUG_OPEN
|
|
#undef SERIAL_DEBUG_FLOW
|
|
#undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
|
|
|
|
#define _INLINE_ inline
|
|
|
|
#define DBG_CNT(s)
|
|
|
|
/* We overload some of the items in the data structure to meet our
|
|
* needs. For example, the port address is the CPM parameter ram
|
|
* offset for the SCC or SMC. The maximum number of ports is 4 SCCs and
|
|
* 2 SMCs. The "hub6" field is used to indicate the channel number, with
|
|
* a flag indicating SCC or SMC, and the number is used as an index into
|
|
* the CPM parameter area for this device.
|
|
* The "type" field is currently set to 0, for PORT_UNKNOWN. It is
|
|
* not currently used. I should probably use it to indicate the port
|
|
* type of SMC or SCC.
|
|
* The SMCs do not support any modem control signals.
|
|
*/
|
|
#define smc_scc_num hub6
|
|
#define NUM_IS_SCC ((int)0x00010000)
|
|
#define PORT_NUM(P) ((P) & 0x0000ffff)
|
|
|
|
|
|
#if defined (CONFIG_UCQUICC)
|
|
|
|
volatile extern void *_periph_base;
|
|
/* sipex transceiver
|
|
* mode bits for are on pins
|
|
*
|
|
* SCC2 d16..19
|
|
* SCC3 d20..23
|
|
* SCC4 d24..27
|
|
*/
|
|
#define SIPEX_MODE(n,m) ((m & 0x0f)<<(16+4*(n-1)))
|
|
|
|
static uint sipex_mode_bits = 0x00000000;
|
|
|
|
#endif
|
|
|
|
/* There is no `serial_state' defined back here in 2.0.
|
|
* Try to get by with serial_struct
|
|
*/
|
|
/* #define serial_state serial_struct */
|
|
|
|
/* 2.4 -> 2.0 portability problem: async_icount in 2.4 has a few
|
|
* extras: */
|
|
|
|
#if 0
|
|
struct async_icount_24 {
|
|
__u32 cts, dsr, rng, dcd, tx, rx;
|
|
__u32 frame, parity, overrun, brk;
|
|
__u32 buf_overrun;
|
|
} icount;
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
struct serial_state {
|
|
int magic;
|
|
int baud_base;
|
|
unsigned long port;
|
|
int irq;
|
|
int flags;
|
|
int hub6;
|
|
int type;
|
|
int line;
|
|
int revision; /* Chip revision (950) */
|
|
int xmit_fifo_size;
|
|
int custom_divisor;
|
|
int count;
|
|
u8 *iomem_base;
|
|
u16 iomem_reg_shift;
|
|
unsigned short close_delay;
|
|
unsigned short closing_wait; /* time to wait before closing */
|
|
struct async_icount_24 icount;
|
|
int io_type;
|
|
struct async_struct *info;
|
|
};
|
|
#endif
|
|
|
|
#define SSTATE_MAGIC 0x5302
|
|
|
|
|
|
|
|
/* SMC2 is sometimes used for low performance TDM interfaces. Define
|
|
* this as 1 if you want SMC2 as a serial port UART managed by this driver.
|
|
* Define this as 0 if you wish to use SMC2 for something else.
|
|
*/
|
|
#define USE_SMC2 1
|
|
|
|
#if 0
|
|
/* Define SCC to ttySx mapping. */
|
|
#define SCC_NUM_BASE (USE_SMC2 + 1) /* SCC base tty "number" */
|
|
|
|
/* Define which SCC is the first one to use for a serial port. These
|
|
* are 0-based numbers, i.e. this assumes the first SCC (SCC1) is used
|
|
* for Ethernet, and the first available SCC for serial UART is SCC2.
|
|
* NOTE: IF YOU CHANGE THIS, you have to change the PROFF_xxx and
|
|
* interrupt vectors in the table below to match.
|
|
*/
|
|
#define SCC_IDX_BASE 1 /* table index */
|
|
#endif
|
|
|
|
|
|
/* Processors other than the 860 only get SMCs configured by default.
|
|
* Either they don't have SCCs or they are allocated somewhere else.
|
|
* Of course, there are now 860s without some SCCs, so we will need to
|
|
* address that someday.
|
|
* The Embedded Planet Multimedia I/O cards use TDM interfaces to the
|
|
* stereo codec parts, and we use SMC2 to help support that.
|
|
*/
|
|
static struct serial_state rs_table[] = {
|
|
/* type line PORT IRQ FLAGS smc_scc_num (F.K.A. hub6) */
|
|
{ 0, 0, PRSLOT_SMC1, CPMVEC_SMC1, 0, 0 } /* SMC1 ttyS0 */
|
|
#if USE_SMC2
|
|
,{ 0, 0, PRSLOT_SMC2, CPMVEC_SMC2, 0, 1 } /* SMC2 ttyS1 */
|
|
#endif
|
|
|
|
#if defined(CONFIG_SERIAL_68360_SCC)
|
|
,{ 0, 0, PRSLOT_SCC2, CPMVEC_SCC2, 0, (NUM_IS_SCC | 1) } /* SCC2 ttyS2 */
|
|
,{ 0, 0, PRSLOT_SCC3, CPMVEC_SCC3, 0, (NUM_IS_SCC | 2) } /* SCC3 ttyS3 */
|
|
,{ 0, 0, PRSLOT_SCC4, CPMVEC_SCC4, 0, (NUM_IS_SCC | 3) } /* SCC4 ttyS4 */
|
|
#endif
|
|
};
|
|
|
|
#define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state))
|
|
|
|
/* The number of buffer descriptors and their sizes.
|
|
*/
|
|
#define RX_NUM_FIFO 4
|
|
#define RX_BUF_SIZE 32
|
|
#define TX_NUM_FIFO 4
|
|
#define TX_BUF_SIZE 32
|
|
|
|
#define CONSOLE_NUM_FIFO 2
|
|
#define CONSOLE_BUF_SIZE 4
|
|
|
|
char *console_fifos[CONSOLE_NUM_FIFO * CONSOLE_BUF_SIZE];
|
|
|
|
/* The async_struct in serial.h does not really give us what we
|
|
* need, so define our own here.
|
|
*/
|
|
typedef struct serial_info {
|
|
int magic;
|
|
int flags;
|
|
|
|
struct serial_state *state;
|
|
/* struct serial_struct *state; */
|
|
/* struct async_struct *state; */
|
|
|
|
struct tty_struct *tty;
|
|
int read_status_mask;
|
|
int ignore_status_mask;
|
|
int timeout;
|
|
int line;
|
|
int x_char; /* xon/xoff character */
|
|
int close_delay;
|
|
unsigned short closing_wait;
|
|
unsigned short closing_wait2;
|
|
unsigned long event;
|
|
unsigned long last_active;
|
|
int blocked_open; /* # of blocked opens */
|
|
struct work_struct tqueue;
|
|
struct work_struct tqueue_hangup;
|
|
wait_queue_head_t open_wait;
|
|
wait_queue_head_t close_wait;
|
|
|
|
|
|
/* CPM Buffer Descriptor pointers.
|
|
*/
|
|
QUICC_BD *rx_bd_base;
|
|
QUICC_BD *rx_cur;
|
|
QUICC_BD *tx_bd_base;
|
|
QUICC_BD *tx_cur;
|
|
} ser_info_t;
|
|
|
|
|
|
/* since kmalloc_init() does not get called until much after this initialization: */
|
|
static ser_info_t quicc_ser_info[NR_PORTS];
|
|
static char rx_buf_pool[NR_PORTS * RX_NUM_FIFO * RX_BUF_SIZE];
|
|
static char tx_buf_pool[NR_PORTS * TX_NUM_FIFO * TX_BUF_SIZE];
|
|
|
|
static void change_speed(ser_info_t *info);
|
|
static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout);
|
|
|
|
static inline int serial_paranoia_check(ser_info_t *info,
|
|
char *name, const char *routine)
|
|
{
|
|
#ifdef SERIAL_PARANOIA_CHECK
|
|
static const char *badmagic =
|
|
"Warning: bad magic number for serial struct (%s) in %s\n";
|
|
static const char *badinfo =
|
|
"Warning: null async_struct for (%s) in %s\n";
|
|
|
|
if (!info) {
|
|
printk(badinfo, name, routine);
|
|
return 1;
|
|
}
|
|
if (info->magic != SERIAL_MAGIC) {
|
|
printk(badmagic, name, routine);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is used to figure out the divisor speeds and the timeouts,
|
|
* indexed by the termio value. The generic CPM functions are responsible
|
|
* for setting and assigning baud rate generators for us.
|
|
*/
|
|
static int baud_table[] = {
|
|
0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
|
|
9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 };
|
|
|
|
/* This sucks. There is a better way: */
|
|
#if defined(CONFIG_CONSOLE_9600)
|
|
#define CONSOLE_BAUDRATE 9600
|
|
#elif defined(CONFIG_CONSOLE_19200)
|
|
#define CONSOLE_BAUDRATE 19200
|
|
#elif defined(CONFIG_CONSOLE_115200)
|
|
#define CONSOLE_BAUDRATE 115200
|
|
#else
|
|
#warning "console baud rate undefined"
|
|
#define CONSOLE_BAUDRATE 9600
|
|
#endif
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_stop() and rs_start()
|
|
*
|
|
* This routines are called before setting or resetting tty->stopped.
|
|
* They enable or disable transmitter interrupts, as necessary.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_360_stop(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
int idx;
|
|
unsigned long flags;
|
|
volatile struct scc_regs *sccp;
|
|
volatile struct smc_regs *smcp;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_stop"))
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
sccp->scc_sccm &= ~UART_SCCM_TX;
|
|
} else {
|
|
/* smcp = &cpmp->cp_smc[idx]; */
|
|
smcp = &pquicc->smc_regs[idx];
|
|
smcp->smc_smcm &= ~SMCM_TX;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
static void rs_360_start(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
int idx;
|
|
unsigned long flags;
|
|
volatile struct scc_regs *sccp;
|
|
volatile struct smc_regs *smcp;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_stop"))
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
sccp->scc_sccm |= UART_SCCM_TX;
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
smcp->smc_smcm |= SMCM_TX;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* ----------------------------------------------------------------------
|
|
*
|
|
* Here starts the interrupt handling routines. All of the following
|
|
* subroutines are declared as inline and are folded into
|
|
* rs_interrupt(). They were separated out for readability's sake.
|
|
*
|
|
* Note: rs_interrupt() is a "fast" interrupt, which means that it
|
|
* runs with interrupts turned off. People who may want to modify
|
|
* rs_interrupt() should try to keep the interrupt handler as fast as
|
|
* possible. After you are done making modifications, it is not a bad
|
|
* idea to do:
|
|
*
|
|
* gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c
|
|
*
|
|
* and look at the resulting assemble code in serial.s.
|
|
*
|
|
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
|
|
* -----------------------------------------------------------------------
|
|
*/
|
|
|
|
static _INLINE_ void receive_chars(ser_info_t *info)
|
|
{
|
|
struct tty_struct *tty = info->tty;
|
|
unsigned char ch, flag, *cp;
|
|
/*int ignored = 0;*/
|
|
int i;
|
|
ushort status;
|
|
struct async_icount *icount;
|
|
/* struct async_icount_24 *icount; */
|
|
volatile QUICC_BD *bdp;
|
|
|
|
icount = &info->state->icount;
|
|
|
|
/* Just loop through the closed BDs and copy the characters into
|
|
* the buffer.
|
|
*/
|
|
bdp = info->rx_cur;
|
|
for (;;) {
|
|
if (bdp->status & BD_SC_EMPTY) /* If this one is empty */
|
|
break; /* we are all done */
|
|
|
|
/* The read status mask tell us what we should do with
|
|
* incoming characters, especially if errors occur.
|
|
* One special case is the use of BD_SC_EMPTY. If
|
|
* this is not set, we are supposed to be ignoring
|
|
* inputs. In this case, just mark the buffer empty and
|
|
* continue.
|
|
*/
|
|
if (!(info->read_status_mask & BD_SC_EMPTY)) {
|
|
bdp->status |= BD_SC_EMPTY;
|
|
bdp->status &=
|
|
~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV);
|
|
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = info->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
continue;
|
|
}
|
|
|
|
/* Get the number of characters and the buffer pointer.
|
|
*/
|
|
i = bdp->length;
|
|
/* cp = (unsigned char *)__va(bdp->buf); */
|
|
cp = (char *)bdp->buf;
|
|
status = bdp->status;
|
|
|
|
while (i-- > 0) {
|
|
ch = *cp++;
|
|
icount->rx++;
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("DR%02x:%02x...", ch, status);
|
|
#endif
|
|
flag = TTY_NORMAL;
|
|
|
|
if (status & (BD_SC_BR | BD_SC_FR |
|
|
BD_SC_PR | BD_SC_OV)) {
|
|
/*
|
|
* For statistics only
|
|
*/
|
|
if (status & BD_SC_BR)
|
|
icount->brk++;
|
|
else if (status & BD_SC_PR)
|
|
icount->parity++;
|
|
else if (status & BD_SC_FR)
|
|
icount->frame++;
|
|
if (status & BD_SC_OV)
|
|
icount->overrun++;
|
|
|
|
/*
|
|
* Now check to see if character should be
|
|
* ignored, and mask off conditions which
|
|
* should be ignored.
|
|
if (status & info->ignore_status_mask) {
|
|
if (++ignored > 100)
|
|
break;
|
|
continue;
|
|
}
|
|
*/
|
|
status &= info->read_status_mask;
|
|
|
|
if (status & (BD_SC_BR)) {
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("handling break....");
|
|
#endif
|
|
*tty->flip.flag_buf_ptr = TTY_BREAK;
|
|
if (info->flags & ASYNC_SAK)
|
|
do_SAK(tty);
|
|
} else if (status & BD_SC_PR)
|
|
flag = TTY_PARITY;
|
|
else if (status & BD_SC_FR)
|
|
flag = TTY_FRAME;
|
|
}
|
|
tty_insert_flip_char(tty, ch, flag);
|
|
if (status & BD_SC_OV)
|
|
/*
|
|
* Overrun is special, since it's
|
|
* reported immediately, and doesn't
|
|
* affect the current character
|
|
*/
|
|
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
|
|
}
|
|
|
|
/* This BD is ready to be used again. Clear status.
|
|
* Get next BD.
|
|
*/
|
|
bdp->status |= BD_SC_EMPTY;
|
|
bdp->status &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV);
|
|
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = info->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
}
|
|
|
|
info->rx_cur = (QUICC_BD *)bdp;
|
|
|
|
tty_schedule_flip(tty);
|
|
}
|
|
|
|
static _INLINE_ void receive_break(ser_info_t *info)
|
|
{
|
|
struct tty_struct *tty = info->tty;
|
|
|
|
info->state->icount.brk++;
|
|
/* Check to see if there is room in the tty buffer for
|
|
* the break. If not, we exit now, losing the break. FIXME
|
|
*/
|
|
tty_insert_flip_char(tty, 0, TTY_BREAK);
|
|
tty_schedule_flip(tty);
|
|
}
|
|
|
|
static _INLINE_ void transmit_chars(ser_info_t *info)
|
|
{
|
|
|
|
if ((info->flags & TX_WAKEUP) ||
|
|
(info->tty->flags & (1 << TTY_DO_WRITE_WAKEUP))) {
|
|
schedule_work(&info->tqueue);
|
|
}
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("THRE...");
|
|
#endif
|
|
}
|
|
|
|
#ifdef notdef
|
|
/* I need to do this for the SCCs, so it is left as a reminder.
|
|
*/
|
|
static _INLINE_ void check_modem_status(struct async_struct *info)
|
|
{
|
|
int status;
|
|
/* struct async_icount *icount; */
|
|
struct async_icount_24 *icount;
|
|
|
|
status = serial_in(info, UART_MSR);
|
|
|
|
if (status & UART_MSR_ANY_DELTA) {
|
|
icount = &info->state->icount;
|
|
/* update input line counters */
|
|
if (status & UART_MSR_TERI)
|
|
icount->rng++;
|
|
if (status & UART_MSR_DDSR)
|
|
icount->dsr++;
|
|
if (status & UART_MSR_DDCD) {
|
|
icount->dcd++;
|
|
#ifdef CONFIG_HARD_PPS
|
|
if ((info->flags & ASYNC_HARDPPS_CD) &&
|
|
(status & UART_MSR_DCD))
|
|
hardpps();
|
|
#endif
|
|
}
|
|
if (status & UART_MSR_DCTS)
|
|
icount->cts++;
|
|
wake_up_interruptible(&info->delta_msr_wait);
|
|
}
|
|
|
|
if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) {
|
|
#if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR))
|
|
printk("ttys%d CD now %s...", info->line,
|
|
(status & UART_MSR_DCD) ? "on" : "off");
|
|
#endif
|
|
if (status & UART_MSR_DCD)
|
|
wake_up_interruptible(&info->open_wait);
|
|
else {
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("scheduling hangup...");
|
|
#endif
|
|
queue_task(&info->tqueue_hangup,
|
|
&tq_scheduler);
|
|
}
|
|
}
|
|
if (info->flags & ASYNC_CTS_FLOW) {
|
|
if (info->tty->hw_stopped) {
|
|
if (status & UART_MSR_CTS) {
|
|
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
|
|
printk("CTS tx start...");
|
|
#endif
|
|
info->tty->hw_stopped = 0;
|
|
info->IER |= UART_IER_THRI;
|
|
serial_out(info, UART_IER, info->IER);
|
|
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
|
|
return;
|
|
}
|
|
} else {
|
|
if (!(status & UART_MSR_CTS)) {
|
|
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
|
|
printk("CTS tx stop...");
|
|
#endif
|
|
info->tty->hw_stopped = 1;
|
|
info->IER &= ~UART_IER_THRI;
|
|
serial_out(info, UART_IER, info->IER);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is the serial driver's interrupt routine for a single port
|
|
*/
|
|
/* static void rs_360_interrupt(void *dev_id) */ /* until and if we start servicing irqs here */
|
|
static void rs_360_interrupt(int vec, void *dev_id)
|
|
{
|
|
u_char events;
|
|
int idx;
|
|
ser_info_t *info;
|
|
volatile struct smc_regs *smcp;
|
|
volatile struct scc_regs *sccp;
|
|
|
|
info = dev_id;
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
events = sccp->scc_scce;
|
|
if (events & SCCM_RX)
|
|
receive_chars(info);
|
|
if (events & SCCM_TX)
|
|
transmit_chars(info);
|
|
sccp->scc_scce = events;
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
events = smcp->smc_smce;
|
|
if (events & SMCM_BRKE)
|
|
receive_break(info);
|
|
if (events & SMCM_RX)
|
|
receive_chars(info);
|
|
if (events & SMCM_TX)
|
|
transmit_chars(info);
|
|
smcp->smc_smce = events;
|
|
}
|
|
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("rs_interrupt_single(%d, %x)...",
|
|
info->state->smc_scc_num, events);
|
|
#endif
|
|
#ifdef modem_control
|
|
check_modem_status(info);
|
|
#endif
|
|
info->last_active = jiffies;
|
|
#ifdef SERIAL_DEBUG_INTR
|
|
printk("end.\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Here ends the serial interrupt routines.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
static void do_softint(void *private_)
|
|
{
|
|
ser_info_t *info = (ser_info_t *) private_;
|
|
struct tty_struct *tty;
|
|
|
|
tty = info->tty;
|
|
if (!tty)
|
|
return;
|
|
|
|
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event))
|
|
tty_wakeup(tty);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is called from the scheduler tqueue when the interrupt
|
|
* routine has signalled that a hangup has occurred. The path of
|
|
* hangup processing is:
|
|
*
|
|
* serial interrupt routine -> (scheduler tqueue) ->
|
|
* do_serial_hangup() -> tty->hangup() -> rs_hangup()
|
|
*
|
|
*/
|
|
static void do_serial_hangup(void *private_)
|
|
{
|
|
struct async_struct *info = (struct async_struct *) private_;
|
|
struct tty_struct *tty;
|
|
|
|
tty = info->tty;
|
|
if (!tty)
|
|
return;
|
|
|
|
tty_hangup(tty);
|
|
}
|
|
|
|
|
|
static int startup(ser_info_t *info)
|
|
{
|
|
unsigned long flags;
|
|
int retval=0;
|
|
int idx;
|
|
/*struct serial_state *state = info->state;*/
|
|
volatile struct smc_regs *smcp;
|
|
volatile struct scc_regs *sccp;
|
|
volatile struct smc_uart_pram *up;
|
|
volatile struct uart_pram *scup;
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (info->flags & ASYNC_INITIALIZED) {
|
|
goto errout;
|
|
}
|
|
|
|
#ifdef maybe
|
|
if (!state->port || !state->type) {
|
|
if (info->tty)
|
|
set_bit(TTY_IO_ERROR, &info->tty->flags);
|
|
goto errout;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("starting up ttys%d (irq %d)...", info->line, state->irq);
|
|
#endif
|
|
|
|
|
|
#ifdef modem_control
|
|
info->MCR = 0;
|
|
if (info->tty->termios->c_cflag & CBAUD)
|
|
info->MCR = UART_MCR_DTR | UART_MCR_RTS;
|
|
#endif
|
|
|
|
if (info->tty)
|
|
clear_bit(TTY_IO_ERROR, &info->tty->flags);
|
|
|
|
/*
|
|
* and set the speed of the serial port
|
|
*/
|
|
change_speed(info);
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
scup = &pquicc->pram[info->state->port].scc.pscc.u;
|
|
|
|
scup->mrblr = RX_BUF_SIZE;
|
|
scup->max_idl = RX_BUF_SIZE;
|
|
|
|
sccp->scc_sccm |= (UART_SCCM_TX | UART_SCCM_RX);
|
|
sccp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
|
|
/* Enable interrupts and I/O.
|
|
*/
|
|
smcp->smc_smcm |= (SMCM_RX | SMCM_TX);
|
|
smcp->smc_smcmr |= (SMCMR_REN | SMCMR_TEN);
|
|
|
|
/* We can tune the buffer length and idle characters
|
|
* to take advantage of the entire incoming buffer size.
|
|
* If mrblr is something other than 1, maxidl has to be
|
|
* non-zero or we never get an interrupt. The maxidl
|
|
* is the number of character times we wait after reception
|
|
* of the last character before we decide no more characters
|
|
* are coming.
|
|
*/
|
|
/* up = (smc_uart_t *)&pquicc->cp_dparam[state->port]; */
|
|
/* holy unionized structures, Batman: */
|
|
up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u;
|
|
|
|
up->mrblr = RX_BUF_SIZE;
|
|
up->max_idl = RX_BUF_SIZE;
|
|
|
|
up->brkcr = 1; /* number of break chars */
|
|
}
|
|
|
|
info->flags |= ASYNC_INITIALIZED;
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
|
|
errout:
|
|
local_irq_restore(flags);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This routine will shutdown a serial port; interrupts are disabled, and
|
|
* DTR is dropped if the hangup on close termio flag is on.
|
|
*/
|
|
static void shutdown(ser_info_t *info)
|
|
{
|
|
unsigned long flags;
|
|
struct serial_state *state;
|
|
int idx;
|
|
volatile struct smc_regs *smcp;
|
|
volatile struct scc_regs *sccp;
|
|
|
|
if (!(info->flags & ASYNC_INITIALIZED))
|
|
return;
|
|
|
|
state = info->state;
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("Shutting down serial port %d (irq %d)....", info->line,
|
|
state->irq);
|
|
#endif
|
|
|
|
local_irq_save(flags);
|
|
|
|
idx = PORT_NUM(state->smc_scc_num);
|
|
if (state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
sccp->scc_gsmr.w.low &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
/* We can't disable the transmitter if this is the
|
|
* system console.
|
|
*/
|
|
if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT)
|
|
#endif
|
|
sccp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX);
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
|
|
/* Disable interrupts and I/O.
|
|
*/
|
|
smcp->smc_smcm &= ~(SMCM_RX | SMCM_TX);
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
/* We can't disable the transmitter if this is the
|
|
* system console.
|
|
*/
|
|
if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT)
|
|
#endif
|
|
smcp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN);
|
|
}
|
|
|
|
if (info->tty)
|
|
set_bit(TTY_IO_ERROR, &info->tty->flags);
|
|
|
|
info->flags &= ~ASYNC_INITIALIZED;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* This routine is called to set the UART divisor registers to match
|
|
* the specified baud rate for a serial port.
|
|
*/
|
|
static void change_speed(ser_info_t *info)
|
|
{
|
|
int baud_rate;
|
|
unsigned cflag, cval, scval, prev_mode;
|
|
int i, bits, sbits, idx;
|
|
unsigned long flags;
|
|
struct serial_state *state;
|
|
volatile struct smc_regs *smcp;
|
|
volatile struct scc_regs *sccp;
|
|
|
|
if (!info->tty || !info->tty->termios)
|
|
return;
|
|
cflag = info->tty->termios->c_cflag;
|
|
|
|
state = info->state;
|
|
|
|
/* Character length programmed into the mode register is the
|
|
* sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
|
|
* 1 or 2 stop bits, minus 1.
|
|
* The value 'bits' counts this for us.
|
|
*/
|
|
cval = 0;
|
|
scval = 0;
|
|
|
|
/* byte size and parity */
|
|
switch (cflag & CSIZE) {
|
|
case CS5: bits = 5; break;
|
|
case CS6: bits = 6; break;
|
|
case CS7: bits = 7; break;
|
|
case CS8: bits = 8; break;
|
|
/* Never happens, but GCC is too dumb to figure it out */
|
|
default: bits = 8; break;
|
|
}
|
|
sbits = bits - 5;
|
|
|
|
if (cflag & CSTOPB) {
|
|
cval |= SMCMR_SL; /* Two stops */
|
|
scval |= SCU_PMSR_SL;
|
|
bits++;
|
|
}
|
|
if (cflag & PARENB) {
|
|
cval |= SMCMR_PEN;
|
|
scval |= SCU_PMSR_PEN;
|
|
bits++;
|
|
}
|
|
if (!(cflag & PARODD)) {
|
|
cval |= SMCMR_PM_EVEN;
|
|
scval |= (SCU_PMSR_REVP | SCU_PMSR_TEVP);
|
|
}
|
|
|
|
/* Determine divisor based on baud rate */
|
|
i = cflag & CBAUD;
|
|
if (i >= (sizeof(baud_table)/sizeof(int)))
|
|
baud_rate = 9600;
|
|
else
|
|
baud_rate = baud_table[i];
|
|
|
|
info->timeout = (TX_BUF_SIZE*HZ*bits);
|
|
info->timeout += HZ/50; /* Add .02 seconds of slop */
|
|
|
|
#ifdef modem_control
|
|
/* CTS flow control flag and modem status interrupts */
|
|
info->IER &= ~UART_IER_MSI;
|
|
if (info->flags & ASYNC_HARDPPS_CD)
|
|
info->IER |= UART_IER_MSI;
|
|
if (cflag & CRTSCTS) {
|
|
info->flags |= ASYNC_CTS_FLOW;
|
|
info->IER |= UART_IER_MSI;
|
|
} else
|
|
info->flags &= ~ASYNC_CTS_FLOW;
|
|
if (cflag & CLOCAL)
|
|
info->flags &= ~ASYNC_CHECK_CD;
|
|
else {
|
|
info->flags |= ASYNC_CHECK_CD;
|
|
info->IER |= UART_IER_MSI;
|
|
}
|
|
serial_out(info, UART_IER, info->IER);
|
|
#endif
|
|
|
|
/*
|
|
* Set up parity check flag
|
|
*/
|
|
#define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
|
|
|
|
info->read_status_mask = (BD_SC_EMPTY | BD_SC_OV);
|
|
if (I_INPCK(info->tty))
|
|
info->read_status_mask |= BD_SC_FR | BD_SC_PR;
|
|
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
|
|
info->read_status_mask |= BD_SC_BR;
|
|
|
|
/*
|
|
* Characters to ignore
|
|
*/
|
|
info->ignore_status_mask = 0;
|
|
if (I_IGNPAR(info->tty))
|
|
info->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
|
|
if (I_IGNBRK(info->tty)) {
|
|
info->ignore_status_mask |= BD_SC_BR;
|
|
/*
|
|
* If we're ignore parity and break indicators, ignore
|
|
* overruns too. (For real raw support).
|
|
*/
|
|
if (I_IGNPAR(info->tty))
|
|
info->ignore_status_mask |= BD_SC_OV;
|
|
}
|
|
/*
|
|
* !!! ignore all characters if CREAD is not set
|
|
*/
|
|
if ((cflag & CREAD) == 0)
|
|
info->read_status_mask &= ~BD_SC_EMPTY;
|
|
local_irq_save(flags);
|
|
|
|
/* Start bit has not been added (so don't, because we would just
|
|
* subtract it later), and we need to add one for the number of
|
|
* stops bits (there is always at least one).
|
|
*/
|
|
bits++;
|
|
idx = PORT_NUM(state->smc_scc_num);
|
|
if (state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
sccp->scc_psmr = (sbits << 12) | scval;
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
|
|
/* Set the mode register. We want to keep a copy of the
|
|
* enables, because we want to put them back if they were
|
|
* present.
|
|
*/
|
|
prev_mode = smcp->smc_smcmr;
|
|
smcp->smc_smcmr = smcr_mk_clen(bits) | cval | SMCMR_SM_UART;
|
|
smcp->smc_smcmr |= (prev_mode & (SMCMR_REN | SMCMR_TEN));
|
|
}
|
|
|
|
m360_cpm_setbrg((state - rs_table), baud_rate);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void rs_360_put_char(struct tty_struct *tty, unsigned char ch)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
volatile QUICC_BD *bdp;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_put_char"))
|
|
return;
|
|
|
|
if (!tty)
|
|
return;
|
|
|
|
bdp = info->tx_cur;
|
|
while (bdp->status & BD_SC_READY);
|
|
|
|
/* *((char *)__va(bdp->buf)) = ch; */
|
|
*((char *)bdp->buf) = ch;
|
|
bdp->length = 1;
|
|
bdp->status |= BD_SC_READY;
|
|
|
|
/* Get next BD.
|
|
*/
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = info->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
info->tx_cur = (QUICC_BD *)bdp;
|
|
|
|
}
|
|
|
|
static int rs_360_write(struct tty_struct * tty,
|
|
const unsigned char *buf, int count)
|
|
{
|
|
int c, ret = 0;
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
volatile QUICC_BD *bdp;
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/* Try to let stub handle output. Returns true if it did. */
|
|
if (kgdb_output_string(buf, count))
|
|
return ret;
|
|
#endif
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_write"))
|
|
return 0;
|
|
|
|
if (!tty)
|
|
return 0;
|
|
|
|
bdp = info->tx_cur;
|
|
|
|
while (1) {
|
|
c = min(count, TX_BUF_SIZE);
|
|
|
|
if (c <= 0)
|
|
break;
|
|
|
|
if (bdp->status & BD_SC_READY) {
|
|
info->flags |= TX_WAKEUP;
|
|
break;
|
|
}
|
|
|
|
/* memcpy(__va(bdp->buf), buf, c); */
|
|
memcpy((void *)bdp->buf, buf, c);
|
|
|
|
bdp->length = c;
|
|
bdp->status |= BD_SC_READY;
|
|
|
|
buf += c;
|
|
count -= c;
|
|
ret += c;
|
|
|
|
/* Get next BD.
|
|
*/
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = info->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
info->tx_cur = (QUICC_BD *)bdp;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int rs_360_write_room(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
int ret;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_write_room"))
|
|
return 0;
|
|
|
|
if ((info->tx_cur->status & BD_SC_READY) == 0) {
|
|
info->flags &= ~TX_WAKEUP;
|
|
ret = TX_BUF_SIZE;
|
|
}
|
|
else {
|
|
info->flags |= TX_WAKEUP;
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* I could track this with transmit counters....maybe later.
|
|
*/
|
|
static int rs_360_chars_in_buffer(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer"))
|
|
return 0;
|
|
return 0;
|
|
}
|
|
|
|
static void rs_360_flush_buffer(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_flush_buffer"))
|
|
return;
|
|
|
|
/* There is nothing to "flush", whatever we gave the CPM
|
|
* is on its way out.
|
|
*/
|
|
tty_wakeup(tty);
|
|
info->flags &= ~TX_WAKEUP;
|
|
}
|
|
|
|
/*
|
|
* This function is used to send a high-priority XON/XOFF character to
|
|
* the device
|
|
*/
|
|
static void rs_360_send_xchar(struct tty_struct *tty, char ch)
|
|
{
|
|
volatile QUICC_BD *bdp;
|
|
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_send_char"))
|
|
return;
|
|
|
|
bdp = info->tx_cur;
|
|
while (bdp->status & BD_SC_READY);
|
|
|
|
/* *((char *)__va(bdp->buf)) = ch; */
|
|
*((char *)bdp->buf) = ch;
|
|
bdp->length = 1;
|
|
bdp->status |= BD_SC_READY;
|
|
|
|
/* Get next BD.
|
|
*/
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = info->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
info->tx_cur = (QUICC_BD *)bdp;
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_throttle()
|
|
*
|
|
* This routine is called by the upper-layer tty layer to signal that
|
|
* incoming characters should be throttled.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_360_throttle(struct tty_struct * tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
#ifdef SERIAL_DEBUG_THROTTLE
|
|
char buf[64];
|
|
|
|
printk("throttle %s: %d....\n", _tty_name(tty, buf),
|
|
tty->ldisc.chars_in_buffer(tty));
|
|
#endif
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_throttle"))
|
|
return;
|
|
|
|
if (I_IXOFF(tty))
|
|
rs_360_send_xchar(tty, STOP_CHAR(tty));
|
|
|
|
#ifdef modem_control
|
|
if (tty->termios->c_cflag & CRTSCTS)
|
|
info->MCR &= ~UART_MCR_RTS;
|
|
|
|
local_irq_disable();
|
|
serial_out(info, UART_MCR, info->MCR);
|
|
local_irq_enable();
|
|
#endif
|
|
}
|
|
|
|
static void rs_360_unthrottle(struct tty_struct * tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
#ifdef SERIAL_DEBUG_THROTTLE
|
|
char buf[64];
|
|
|
|
printk("unthrottle %s: %d....\n", _tty_name(tty, buf),
|
|
tty->ldisc.chars_in_buffer(tty));
|
|
#endif
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_unthrottle"))
|
|
return;
|
|
|
|
if (I_IXOFF(tty)) {
|
|
if (info->x_char)
|
|
info->x_char = 0;
|
|
else
|
|
rs_360_send_xchar(tty, START_CHAR(tty));
|
|
}
|
|
#ifdef modem_control
|
|
if (tty->termios->c_cflag & CRTSCTS)
|
|
info->MCR |= UART_MCR_RTS;
|
|
local_irq_disable();
|
|
serial_out(info, UART_MCR, info->MCR);
|
|
local_irq_enable();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_ioctl() and friends
|
|
* ------------------------------------------------------------
|
|
*/
|
|
|
|
#ifdef maybe
|
|
/*
|
|
* get_lsr_info - get line status register info
|
|
*
|
|
* Purpose: Let user call ioctl() to get info when the UART physically
|
|
* is emptied. On bus types like RS485, the transmitter must
|
|
* release the bus after transmitting. This must be done when
|
|
* the transmit shift register is empty, not be done when the
|
|
* transmit holding register is empty. This functionality
|
|
* allows an RS485 driver to be written in user space.
|
|
*/
|
|
static int get_lsr_info(struct async_struct * info, unsigned int *value)
|
|
{
|
|
unsigned char status;
|
|
unsigned int result;
|
|
|
|
local_irq_disable();
|
|
status = serial_in(info, UART_LSR);
|
|
local_irq_enable();
|
|
result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0);
|
|
return put_user(result,value);
|
|
}
|
|
#endif
|
|
|
|
static int rs_360_tiocmget(struct tty_struct *tty, struct file *file)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
unsigned int result = 0;
|
|
#ifdef modem_control
|
|
unsigned char control, status;
|
|
|
|
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
|
|
return -ENODEV;
|
|
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
|
|
control = info->MCR;
|
|
local_irq_disable();
|
|
status = serial_in(info, UART_MSR);
|
|
local_irq_enable();
|
|
result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0)
|
|
| ((control & UART_MCR_DTR) ? TIOCM_DTR : 0)
|
|
#ifdef TIOCM_OUT1
|
|
| ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0)
|
|
| ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0)
|
|
#endif
|
|
| ((status & UART_MSR_DCD) ? TIOCM_CAR : 0)
|
|
| ((status & UART_MSR_RI) ? TIOCM_RNG : 0)
|
|
| ((status & UART_MSR_DSR) ? TIOCM_DSR : 0)
|
|
| ((status & UART_MSR_CTS) ? TIOCM_CTS : 0);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
static int rs_360_tiocmset(struct tty_struct *tty, struct file *file,
|
|
unsigned int set, unsigned int clear)
|
|
{
|
|
#ifdef modem_control
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
unsigned int arg;
|
|
|
|
if (serial_paranoia_check(info, tty->name, __FUNCTION__))
|
|
return -ENODEV;
|
|
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
|
|
if (set & TIOCM_RTS)
|
|
info->mcr |= UART_MCR_RTS;
|
|
if (set & TIOCM_DTR)
|
|
info->mcr |= UART_MCR_DTR;
|
|
if (clear & TIOCM_RTS)
|
|
info->MCR &= ~UART_MCR_RTS;
|
|
if (clear & TIOCM_DTR)
|
|
info->MCR &= ~UART_MCR_DTR;
|
|
|
|
#ifdef TIOCM_OUT1
|
|
if (set & TIOCM_OUT1)
|
|
info->MCR |= UART_MCR_OUT1;
|
|
if (set & TIOCM_OUT2)
|
|
info->MCR |= UART_MCR_OUT2;
|
|
if (clear & TIOCM_OUT1)
|
|
info->MCR &= ~UART_MCR_OUT1;
|
|
if (clear & TIOCM_OUT2)
|
|
info->MCR &= ~UART_MCR_OUT2;
|
|
#endif
|
|
|
|
local_irq_disable();
|
|
serial_out(info, UART_MCR, info->MCR);
|
|
local_irq_enable();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Sending a break is a two step process on the SMC/SCC. It is accomplished
|
|
* by sending a STOP TRANSMIT command followed by a RESTART TRANSMIT
|
|
* command. We take advantage of the begin/end functions to make this
|
|
* happen.
|
|
*/
|
|
static ushort smc_chan_map[] = {
|
|
CPM_CR_CH_SMC1,
|
|
CPM_CR_CH_SMC2
|
|
};
|
|
|
|
static ushort scc_chan_map[] = {
|
|
CPM_CR_CH_SCC1,
|
|
CPM_CR_CH_SCC2,
|
|
CPM_CR_CH_SCC3,
|
|
CPM_CR_CH_SCC4
|
|
};
|
|
|
|
static void begin_break(ser_info_t *info)
|
|
{
|
|
volatile QUICC *cp;
|
|
ushort chan;
|
|
int idx;
|
|
|
|
cp = pquicc;
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC)
|
|
chan = scc_chan_map[idx];
|
|
else
|
|
chan = smc_chan_map[idx];
|
|
|
|
cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG;
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
}
|
|
|
|
static void end_break(ser_info_t *info)
|
|
{
|
|
volatile QUICC *cp;
|
|
ushort chan;
|
|
int idx;
|
|
|
|
cp = pquicc;
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC)
|
|
chan = scc_chan_map[idx];
|
|
else
|
|
chan = smc_chan_map[idx];
|
|
|
|
cp->cp_cr = mk_cr_cmd(chan, CPM_CR_RESTART_TX) | CPM_CR_FLG;
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
}
|
|
|
|
/*
|
|
* This routine sends a break character out the serial port.
|
|
*/
|
|
static void send_break(ser_info_t *info, unsigned int duration)
|
|
{
|
|
#ifdef SERIAL_DEBUG_SEND_BREAK
|
|
printk("rs_send_break(%d) jiff=%lu...", duration, jiffies);
|
|
#endif
|
|
begin_break(info);
|
|
msleep_interruptible(duration);
|
|
end_break(info);
|
|
#ifdef SERIAL_DEBUG_SEND_BREAK
|
|
printk("done jiffies=%lu\n", jiffies);
|
|
#endif
|
|
}
|
|
|
|
|
|
static int rs_360_ioctl(struct tty_struct *tty, struct file * file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
int error;
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
int retval;
|
|
struct async_icount cnow;
|
|
/* struct async_icount_24 cnow;*/ /* kernel counter temps */
|
|
struct serial_icounter_struct *p_cuser; /* user space */
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_ioctl"))
|
|
return -ENODEV;
|
|
|
|
if ((cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
|
|
if (tty->flags & (1 << TTY_IO_ERROR))
|
|
return -EIO;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case TCSBRK: /* SVID version: non-zero arg --> no break */
|
|
retval = tty_check_change(tty);
|
|
if (retval)
|
|
return retval;
|
|
tty_wait_until_sent(tty, 0);
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
if (!arg) {
|
|
send_break(info, 250); /* 1/4 second */
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
}
|
|
return 0;
|
|
case TCSBRKP: /* support for POSIX tcsendbreak() */
|
|
retval = tty_check_change(tty);
|
|
if (retval)
|
|
return retval;
|
|
tty_wait_until_sent(tty, 0);
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
send_break(info, arg ? arg*100 : 250);
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
return 0;
|
|
case TIOCSBRK:
|
|
retval = tty_check_change(tty);
|
|
if (retval)
|
|
return retval;
|
|
tty_wait_until_sent(tty, 0);
|
|
begin_break(info);
|
|
return 0;
|
|
case TIOCCBRK:
|
|
retval = tty_check_change(tty);
|
|
if (retval)
|
|
return retval;
|
|
end_break(info);
|
|
return 0;
|
|
case TIOCGSOFTCAR:
|
|
/* return put_user(C_CLOCAL(tty) ? 1 : 0, (int *) arg); */
|
|
put_user(C_CLOCAL(tty) ? 1 : 0, (int *) arg);
|
|
return 0;
|
|
case TIOCSSOFTCAR:
|
|
error = get_user(arg, (unsigned int *) arg);
|
|
if (error)
|
|
return error;
|
|
tty->termios->c_cflag =
|
|
((tty->termios->c_cflag & ~CLOCAL) |
|
|
(arg ? CLOCAL : 0));
|
|
return 0;
|
|
#ifdef maybe
|
|
case TIOCSERGETLSR: /* Get line status register */
|
|
return get_lsr_info(info, (unsigned int *) arg);
|
|
#endif
|
|
/*
|
|
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
|
|
* - mask passed in arg for lines of interest
|
|
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
|
|
* Caller should use TIOCGICOUNT to see which one it was
|
|
*/
|
|
case TIOCMIWAIT:
|
|
#ifdef modem_control
|
|
local_irq_disable();
|
|
/* note the counters on entry */
|
|
cprev = info->state->icount;
|
|
local_irq_enable();
|
|
while (1) {
|
|
interruptible_sleep_on(&info->delta_msr_wait);
|
|
/* see if a signal did it */
|
|
if (signal_pending(current))
|
|
return -ERESTARTSYS;
|
|
local_irq_disable();
|
|
cnow = info->state->icount; /* atomic copy */
|
|
local_irq_enable();
|
|
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
|
|
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts)
|
|
return -EIO; /* no change => error */
|
|
if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
|
|
((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
|
|
((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
|
|
((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {
|
|
return 0;
|
|
}
|
|
cprev = cnow;
|
|
}
|
|
/* NOTREACHED */
|
|
#else
|
|
return 0;
|
|
#endif
|
|
|
|
/*
|
|
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
|
|
* Return: write counters to the user passed counter struct
|
|
* NB: both 1->0 and 0->1 transitions are counted except for
|
|
* RI where only 0->1 is counted.
|
|
*/
|
|
case TIOCGICOUNT:
|
|
local_irq_disable();
|
|
cnow = info->state->icount;
|
|
local_irq_enable();
|
|
p_cuser = (struct serial_icounter_struct *) arg;
|
|
/* error = put_user(cnow.cts, &p_cuser->cts); */
|
|
/* if (error) return error; */
|
|
/* error = put_user(cnow.dsr, &p_cuser->dsr); */
|
|
/* if (error) return error; */
|
|
/* error = put_user(cnow.rng, &p_cuser->rng); */
|
|
/* if (error) return error; */
|
|
/* error = put_user(cnow.dcd, &p_cuser->dcd); */
|
|
/* if (error) return error; */
|
|
|
|
put_user(cnow.cts, &p_cuser->cts);
|
|
put_user(cnow.dsr, &p_cuser->dsr);
|
|
put_user(cnow.rng, &p_cuser->rng);
|
|
put_user(cnow.dcd, &p_cuser->dcd);
|
|
return 0;
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* FIX UP modem control here someday......
|
|
*/
|
|
static void rs_360_set_termios(struct tty_struct *tty, struct termios *old_termios)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
|
|
if ( (tty->termios->c_cflag == old_termios->c_cflag)
|
|
&& ( RELEVANT_IFLAG(tty->termios->c_iflag)
|
|
== RELEVANT_IFLAG(old_termios->c_iflag)))
|
|
return;
|
|
|
|
change_speed(info);
|
|
|
|
#ifdef modem_control
|
|
/* Handle transition to B0 status */
|
|
if ((old_termios->c_cflag & CBAUD) &&
|
|
!(tty->termios->c_cflag & CBAUD)) {
|
|
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
|
|
local_irq_disable();
|
|
serial_out(info, UART_MCR, info->MCR);
|
|
local_irq_enable();
|
|
}
|
|
|
|
/* Handle transition away from B0 status */
|
|
if (!(old_termios->c_cflag & CBAUD) &&
|
|
(tty->termios->c_cflag & CBAUD)) {
|
|
info->MCR |= UART_MCR_DTR;
|
|
if (!tty->hw_stopped ||
|
|
!(tty->termios->c_cflag & CRTSCTS)) {
|
|
info->MCR |= UART_MCR_RTS;
|
|
}
|
|
local_irq_disable();
|
|
serial_out(info, UART_MCR, info->MCR);
|
|
local_irq_enable();
|
|
}
|
|
|
|
/* Handle turning off CRTSCTS */
|
|
if ((old_termios->c_cflag & CRTSCTS) &&
|
|
!(tty->termios->c_cflag & CRTSCTS)) {
|
|
tty->hw_stopped = 0;
|
|
rs_360_start(tty);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
* No need to wake up processes in open wait, since they
|
|
* sample the CLOCAL flag once, and don't recheck it.
|
|
* XXX It's not clear whether the current behavior is correct
|
|
* or not. Hence, this may change.....
|
|
*/
|
|
if (!(old_termios->c_cflag & CLOCAL) &&
|
|
(tty->termios->c_cflag & CLOCAL))
|
|
wake_up_interruptible(&info->open_wait);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_close()
|
|
*
|
|
* This routine is called when the serial port gets closed. First, we
|
|
* wait for the last remaining data to be sent. Then, we unlink its
|
|
* async structure from the interrupt chain if necessary, and we free
|
|
* that IRQ if nothing is left in the chain.
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static void rs_360_close(struct tty_struct *tty, struct file * filp)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
/* struct async_state *state; */
|
|
struct serial_state *state;
|
|
unsigned long flags;
|
|
int idx;
|
|
volatile struct smc_regs *smcp;
|
|
volatile struct scc_regs *sccp;
|
|
|
|
if (!info || serial_paranoia_check(info, tty->name, "rs_close"))
|
|
return;
|
|
|
|
state = info->state;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (tty_hung_up_p(filp)) {
|
|
DBG_CNT("before DEC-hung");
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_close ttys%d, count = %d\n", info->line, state->count);
|
|
#endif
|
|
if ((tty->count == 1) && (state->count != 1)) {
|
|
/*
|
|
* Uh, oh. tty->count is 1, which means that the tty
|
|
* structure will be freed. state->count should always
|
|
* be one in these conditions. If it's greater than
|
|
* one, we've got real problems, since it means the
|
|
* serial port won't be shutdown.
|
|
*/
|
|
printk("rs_close: bad serial port count; tty->count is 1, "
|
|
"state->count is %d\n", state->count);
|
|
state->count = 1;
|
|
}
|
|
if (--state->count < 0) {
|
|
printk("rs_close: bad serial port count for ttys%d: %d\n",
|
|
info->line, state->count);
|
|
state->count = 0;
|
|
}
|
|
if (state->count) {
|
|
DBG_CNT("before DEC-2");
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
info->flags |= ASYNC_CLOSING;
|
|
/*
|
|
* Now we wait for the transmit buffer to clear; and we notify
|
|
* the line discipline to only process XON/XOFF characters.
|
|
*/
|
|
tty->closing = 1;
|
|
if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE)
|
|
tty_wait_until_sent(tty, info->closing_wait);
|
|
/*
|
|
* At this point we stop accepting input. To do this, we
|
|
* disable the receive line status interrupts, and tell the
|
|
* interrupt driver to stop checking the data ready bit in the
|
|
* line status register.
|
|
*/
|
|
info->read_status_mask &= ~BD_SC_EMPTY;
|
|
if (info->flags & ASYNC_INITIALIZED) {
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
sccp = &pquicc->scc_regs[idx];
|
|
sccp->scc_sccm &= ~UART_SCCM_RX;
|
|
sccp->scc_gsmr.w.low &= ~SCC_GSMRL_ENR;
|
|
} else {
|
|
smcp = &pquicc->smc_regs[idx];
|
|
smcp->smc_smcm &= ~SMCM_RX;
|
|
smcp->smc_smcmr &= ~SMCMR_REN;
|
|
}
|
|
/*
|
|
* Before we drop DTR, make sure the UART transmitter
|
|
* has completely drained; this is especially
|
|
* important if there is a transmit FIFO!
|
|
*/
|
|
rs_360_wait_until_sent(tty, info->timeout);
|
|
}
|
|
shutdown(info);
|
|
if (tty->driver->flush_buffer)
|
|
tty->driver->flush_buffer(tty);
|
|
tty_ldisc_flush(tty);
|
|
tty->closing = 0;
|
|
info->event = 0;
|
|
info->tty = 0;
|
|
if (info->blocked_open) {
|
|
if (info->close_delay) {
|
|
msleep_interruptible(jiffies_to_msecs(info->close_delay));
|
|
}
|
|
wake_up_interruptible(&info->open_wait);
|
|
}
|
|
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
|
|
wake_up_interruptible(&info->close_wait);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* rs_wait_until_sent() --- wait until the transmitter is empty
|
|
*/
|
|
static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
unsigned long orig_jiffies, char_time;
|
|
/*int lsr;*/
|
|
volatile QUICC_BD *bdp;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent"))
|
|
return;
|
|
|
|
#ifdef maybe
|
|
if (info->state->type == PORT_UNKNOWN)
|
|
return;
|
|
#endif
|
|
|
|
orig_jiffies = jiffies;
|
|
/*
|
|
* Set the check interval to be 1/5 of the estimated time to
|
|
* send a single character, and make it at least 1. The check
|
|
* interval should also be less than the timeout.
|
|
*
|
|
* Note: we have to use pretty tight timings here to satisfy
|
|
* the NIST-PCTS.
|
|
*/
|
|
char_time = 1;
|
|
if (timeout)
|
|
char_time = min(char_time, (unsigned long)timeout);
|
|
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
|
|
printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time);
|
|
printk("jiff=%lu...", jiffies);
|
|
#endif
|
|
|
|
/* We go through the loop at least once because we can't tell
|
|
* exactly when the last character exits the shifter. There can
|
|
* be at least two characters waiting to be sent after the buffers
|
|
* are empty.
|
|
*/
|
|
do {
|
|
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
|
|
printk("lsr = %d (jiff=%lu)...", lsr, jiffies);
|
|
#endif
|
|
/* current->counter = 0; make us low-priority */
|
|
msleep_interruptible(jiffies_to_msecs(char_time));
|
|
if (signal_pending(current))
|
|
break;
|
|
if (timeout && ((orig_jiffies + timeout) < jiffies))
|
|
break;
|
|
/* The 'tx_cur' is really the next buffer to send. We
|
|
* have to back up to the previous BD and wait for it
|
|
* to go. This isn't perfect, because all this indicates
|
|
* is the buffer is available. There are still characters
|
|
* in the CPM FIFO.
|
|
*/
|
|
bdp = info->tx_cur;
|
|
if (bdp == info->tx_bd_base)
|
|
bdp += (TX_NUM_FIFO-1);
|
|
else
|
|
bdp--;
|
|
} while (bdp->status & BD_SC_READY);
|
|
current->state = TASK_RUNNING;
|
|
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
|
|
printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
|
|
*/
|
|
static void rs_360_hangup(struct tty_struct *tty)
|
|
{
|
|
ser_info_t *info = (ser_info_t *)tty->driver_data;
|
|
struct serial_state *state = info->state;
|
|
|
|
if (serial_paranoia_check(info, tty->name, "rs_hangup"))
|
|
return;
|
|
|
|
state = info->state;
|
|
|
|
rs_360_flush_buffer(tty);
|
|
shutdown(info);
|
|
info->event = 0;
|
|
state->count = 0;
|
|
info->flags &= ~ASYNC_NORMAL_ACTIVE;
|
|
info->tty = 0;
|
|
wake_up_interruptible(&info->open_wait);
|
|
}
|
|
|
|
/*
|
|
* ------------------------------------------------------------
|
|
* rs_open() and friends
|
|
* ------------------------------------------------------------
|
|
*/
|
|
static int block_til_ready(struct tty_struct *tty, struct file * filp,
|
|
ser_info_t *info)
|
|
{
|
|
#ifdef DO_THIS_LATER
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
#endif
|
|
struct serial_state *state = info->state;
|
|
int retval;
|
|
int do_clocal = 0;
|
|
|
|
/*
|
|
* If the device is in the middle of being closed, then block
|
|
* until it's done, and then try again.
|
|
*/
|
|
if (tty_hung_up_p(filp) ||
|
|
(info->flags & ASYNC_CLOSING)) {
|
|
if (info->flags & ASYNC_CLOSING)
|
|
interruptible_sleep_on(&info->close_wait);
|
|
#ifdef SERIAL_DO_RESTART
|
|
if (info->flags & ASYNC_HUP_NOTIFY)
|
|
return -EAGAIN;
|
|
else
|
|
return -ERESTARTSYS;
|
|
#else
|
|
return -EAGAIN;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If non-blocking mode is set, or the port is not enabled,
|
|
* then make the check up front and then exit.
|
|
* If this is an SMC port, we don't have modem control to wait
|
|
* for, so just get out here.
|
|
*/
|
|
if ((filp->f_flags & O_NONBLOCK) ||
|
|
(tty->flags & (1 << TTY_IO_ERROR)) ||
|
|
!(info->state->smc_scc_num & NUM_IS_SCC)) {
|
|
info->flags |= ASYNC_NORMAL_ACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
if (tty->termios->c_cflag & CLOCAL)
|
|
do_clocal = 1;
|
|
|
|
/*
|
|
* Block waiting for the carrier detect and the line to become
|
|
* free (i.e., not in use by the callout). While we are in
|
|
* this loop, state->count is dropped by one, so that
|
|
* rs_close() knows when to free things. We restore it upon
|
|
* exit, either normal or abnormal.
|
|
*/
|
|
retval = 0;
|
|
#ifdef DO_THIS_LATER
|
|
add_wait_queue(&info->open_wait, &wait);
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready before block: ttys%d, count = %d\n",
|
|
state->line, state->count);
|
|
#endif
|
|
local_irq_disable();
|
|
if (!tty_hung_up_p(filp))
|
|
state->count--;
|
|
local_irq_enable();
|
|
info->blocked_open++;
|
|
while (1) {
|
|
local_irq_disable();
|
|
if (tty->termios->c_cflag & CBAUD)
|
|
serial_out(info, UART_MCR,
|
|
serial_inp(info, UART_MCR) |
|
|
(UART_MCR_DTR | UART_MCR_RTS));
|
|
local_irq_enable();
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (tty_hung_up_p(filp) ||
|
|
!(info->flags & ASYNC_INITIALIZED)) {
|
|
#ifdef SERIAL_DO_RESTART
|
|
if (info->flags & ASYNC_HUP_NOTIFY)
|
|
retval = -EAGAIN;
|
|
else
|
|
retval = -ERESTARTSYS;
|
|
#else
|
|
retval = -EAGAIN;
|
|
#endif
|
|
break;
|
|
}
|
|
if (!(info->flags & ASYNC_CLOSING) &&
|
|
(do_clocal || (serial_in(info, UART_MSR) &
|
|
UART_MSR_DCD)))
|
|
break;
|
|
if (signal_pending(current)) {
|
|
retval = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready blocking: ttys%d, count = %d\n",
|
|
info->line, state->count);
|
|
#endif
|
|
schedule();
|
|
}
|
|
current->state = TASK_RUNNING;
|
|
remove_wait_queue(&info->open_wait, &wait);
|
|
if (!tty_hung_up_p(filp))
|
|
state->count++;
|
|
info->blocked_open--;
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("block_til_ready after blocking: ttys%d, count = %d\n",
|
|
info->line, state->count);
|
|
#endif
|
|
#endif /* DO_THIS_LATER */
|
|
if (retval)
|
|
return retval;
|
|
info->flags |= ASYNC_NORMAL_ACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
static int get_async_struct(int line, ser_info_t **ret_info)
|
|
{
|
|
struct serial_state *sstate;
|
|
|
|
sstate = rs_table + line;
|
|
if (sstate->info) {
|
|
sstate->count++;
|
|
*ret_info = (ser_info_t *)sstate->info;
|
|
return 0;
|
|
}
|
|
else {
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine is called whenever a serial port is opened. It
|
|
* enables interrupts for a serial port, linking in its async structure into
|
|
* the IRQ chain. It also performs the serial-specific
|
|
* initialization for the tty structure.
|
|
*/
|
|
static int rs_360_open(struct tty_struct *tty, struct file * filp)
|
|
{
|
|
ser_info_t *info;
|
|
int retval, line;
|
|
|
|
line = tty->index;
|
|
if ((line < 0) || (line >= NR_PORTS))
|
|
return -ENODEV;
|
|
retval = get_async_struct(line, &info);
|
|
if (retval)
|
|
return retval;
|
|
if (serial_paranoia_check(info, tty->name, "rs_open"))
|
|
return -ENODEV;
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open %s, count = %d\n", tty->name, info->state->count);
|
|
#endif
|
|
tty->driver_data = info;
|
|
info->tty = tty;
|
|
|
|
/*
|
|
* Start up serial port
|
|
*/
|
|
retval = startup(info);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = block_til_ready(tty, filp, info);
|
|
if (retval) {
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open returning after block_til_ready with %d\n",
|
|
retval);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
#ifdef SERIAL_DEBUG_OPEN
|
|
printk("rs_open %s successful...", tty->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* /proc fs routines....
|
|
*/
|
|
|
|
static inline int line_info(char *buf, struct serial_state *state)
|
|
{
|
|
#ifdef notdef
|
|
struct async_struct *info = state->info, scr_info;
|
|
char stat_buf[30], control, status;
|
|
#endif
|
|
int ret;
|
|
|
|
ret = sprintf(buf, "%d: uart:%s port:%X irq:%d",
|
|
state->line,
|
|
(state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC",
|
|
(unsigned int)(state->port), state->irq);
|
|
|
|
if (!state->port || (state->type == PORT_UNKNOWN)) {
|
|
ret += sprintf(buf+ret, "\n");
|
|
return ret;
|
|
}
|
|
|
|
#ifdef notdef
|
|
/*
|
|
* Figure out the current RS-232 lines
|
|
*/
|
|
if (!info) {
|
|
info = &scr_info; /* This is just for serial_{in,out} */
|
|
|
|
info->magic = SERIAL_MAGIC;
|
|
info->port = state->port;
|
|
info->flags = state->flags;
|
|
info->quot = 0;
|
|
info->tty = 0;
|
|
}
|
|
local_irq_disable();
|
|
status = serial_in(info, UART_MSR);
|
|
control = info ? info->MCR : serial_in(info, UART_MCR);
|
|
local_irq_enable();
|
|
|
|
stat_buf[0] = 0;
|
|
stat_buf[1] = 0;
|
|
if (control & UART_MCR_RTS)
|
|
strcat(stat_buf, "|RTS");
|
|
if (status & UART_MSR_CTS)
|
|
strcat(stat_buf, "|CTS");
|
|
if (control & UART_MCR_DTR)
|
|
strcat(stat_buf, "|DTR");
|
|
if (status & UART_MSR_DSR)
|
|
strcat(stat_buf, "|DSR");
|
|
if (status & UART_MSR_DCD)
|
|
strcat(stat_buf, "|CD");
|
|
if (status & UART_MSR_RI)
|
|
strcat(stat_buf, "|RI");
|
|
|
|
if (info->quot) {
|
|
ret += sprintf(buf+ret, " baud:%d",
|
|
state->baud_base / info->quot);
|
|
}
|
|
|
|
ret += sprintf(buf+ret, " tx:%d rx:%d",
|
|
state->icount.tx, state->icount.rx);
|
|
|
|
if (state->icount.frame)
|
|
ret += sprintf(buf+ret, " fe:%d", state->icount.frame);
|
|
|
|
if (state->icount.parity)
|
|
ret += sprintf(buf+ret, " pe:%d", state->icount.parity);
|
|
|
|
if (state->icount.brk)
|
|
ret += sprintf(buf+ret, " brk:%d", state->icount.brk);
|
|
|
|
if (state->icount.overrun)
|
|
ret += sprintf(buf+ret, " oe:%d", state->icount.overrun);
|
|
|
|
/*
|
|
* Last thing is the RS-232 status lines
|
|
*/
|
|
ret += sprintf(buf+ret, " %s\n", stat_buf+1);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int rs_360_read_proc(char *page, char **start, off_t off, int count,
|
|
int *eof, void *data)
|
|
{
|
|
int i, len = 0;
|
|
off_t begin = 0;
|
|
|
|
len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version);
|
|
for (i = 0; i < NR_PORTS && len < 4000; i++) {
|
|
len += line_info(page + len, &rs_table[i]);
|
|
if (len+begin > off+count)
|
|
goto done;
|
|
if (len+begin < off) {
|
|
begin += len;
|
|
len = 0;
|
|
}
|
|
}
|
|
*eof = 1;
|
|
done:
|
|
if (off >= len+begin)
|
|
return 0;
|
|
*start = page + (begin-off);
|
|
return ((count < begin+len-off) ? count : begin+len-off);
|
|
}
|
|
|
|
/*
|
|
* ---------------------------------------------------------------------
|
|
* rs_init() and friends
|
|
*
|
|
* rs_init() is called at boot-time to initialize the serial driver.
|
|
* ---------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* This routine prints out the appropriate serial driver version
|
|
* number, and identifies which options were configured into this
|
|
* driver.
|
|
*/
|
|
static _INLINE_ void show_serial_version(void)
|
|
{
|
|
printk(KERN_INFO "%s version %s\n", serial_name, serial_version);
|
|
}
|
|
|
|
|
|
/*
|
|
* The serial console driver used during boot. Note that these names
|
|
* clash with those found in "serial.c", so we currently can't support
|
|
* the 16xxx uarts and these at the same time. I will fix this to become
|
|
* an indirect function call from tty_io.c (or something).
|
|
*/
|
|
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
|
|
/*
|
|
* Print a string to the serial port trying not to disturb any possible
|
|
* real use of the port...
|
|
*/
|
|
static void my_console_write(int idx, const char *s,
|
|
unsigned count)
|
|
{
|
|
struct serial_state *ser;
|
|
ser_info_t *info;
|
|
unsigned i;
|
|
QUICC_BD *bdp, *bdbase;
|
|
volatile struct smc_uart_pram *up;
|
|
volatile u_char *cp;
|
|
|
|
ser = rs_table + idx;
|
|
|
|
|
|
/* If the port has been initialized for general use, we have
|
|
* to use the buffer descriptors allocated there. Otherwise,
|
|
* we simply use the single buffer allocated.
|
|
*/
|
|
if ((info = (ser_info_t *)ser->info) != NULL) {
|
|
bdp = info->tx_cur;
|
|
bdbase = info->tx_bd_base;
|
|
}
|
|
else {
|
|
/* Pointer to UART in parameter ram.
|
|
*/
|
|
/* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */
|
|
up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u;
|
|
|
|
/* Get the address of the host memory buffer.
|
|
*/
|
|
bdp = bdbase = (QUICC_BD *)((uint)pquicc + (uint)up->tbase);
|
|
}
|
|
|
|
/*
|
|
* We need to gracefully shut down the transmitter, disable
|
|
* interrupts, then send our bytes out.
|
|
*/
|
|
|
|
/*
|
|
* Now, do each character. This is not as bad as it looks
|
|
* since this is a holding FIFO and not a transmitting FIFO.
|
|
* We could add the complexity of filling the entire transmit
|
|
* buffer, but we would just wait longer between accesses......
|
|
*/
|
|
for (i = 0; i < count; i++, s++) {
|
|
/* Wait for transmitter fifo to empty.
|
|
* Ready indicates output is ready, and xmt is doing
|
|
* that, not that it is ready for us to send.
|
|
*/
|
|
while (bdp->status & BD_SC_READY);
|
|
|
|
/* Send the character out.
|
|
*/
|
|
cp = bdp->buf;
|
|
*cp = *s;
|
|
|
|
bdp->length = 1;
|
|
bdp->status |= BD_SC_READY;
|
|
|
|
if (bdp->status & BD_SC_WRAP)
|
|
bdp = bdbase;
|
|
else
|
|
bdp++;
|
|
|
|
/* if a LF, also do CR... */
|
|
if (*s == 10) {
|
|
while (bdp->status & BD_SC_READY);
|
|
/* cp = __va(bdp->buf); */
|
|
cp = bdp->buf;
|
|
*cp = 13;
|
|
bdp->length = 1;
|
|
bdp->status |= BD_SC_READY;
|
|
|
|
if (bdp->status & BD_SC_WRAP) {
|
|
bdp = bdbase;
|
|
}
|
|
else {
|
|
bdp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, Wait for transmitter & holding register to empty
|
|
* and restore the IER
|
|
*/
|
|
while (bdp->status & BD_SC_READY);
|
|
|
|
if (info)
|
|
info->tx_cur = (QUICC_BD *)bdp;
|
|
}
|
|
|
|
static void serial_console_write(struct console *c, const char *s,
|
|
unsigned count)
|
|
{
|
|
#ifdef CONFIG_KGDB
|
|
/* Try to let stub handle output. Returns true if it did. */
|
|
if (kgdb_output_string(s, count))
|
|
return;
|
|
#endif
|
|
my_console_write(c->index, s, count);
|
|
}
|
|
|
|
|
|
|
|
/*void console_print_68360(const char *p)
|
|
{
|
|
const char *cp = p;
|
|
int i;
|
|
|
|
for (i=0;cp[i]!=0;i++);
|
|
|
|
serial_console_write (p, i);
|
|
|
|
//Comment this if you want to have a strict interrupt-driven output
|
|
//rs_fair_output();
|
|
|
|
return;
|
|
}*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_XMON
|
|
int
|
|
xmon_360_write(const char *s, unsigned count)
|
|
{
|
|
my_console_write(0, s, count);
|
|
return(count);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KGDB
|
|
void
|
|
putDebugChar(char ch)
|
|
{
|
|
my_console_write(0, &ch, 1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Receive character from the serial port. This only works well
|
|
* before the port is initialized for real use.
|
|
*/
|
|
static int my_console_wait_key(int idx, int xmon, char *obuf)
|
|
{
|
|
struct serial_state *ser;
|
|
u_char c, *cp;
|
|
ser_info_t *info;
|
|
QUICC_BD *bdp;
|
|
volatile struct smc_uart_pram *up;
|
|
int i;
|
|
|
|
ser = rs_table + idx;
|
|
|
|
/* Get the address of the host memory buffer.
|
|
* If the port has been initialized for general use, we must
|
|
* use information from the port structure.
|
|
*/
|
|
if ((info = (ser_info_t *)ser->info))
|
|
bdp = info->rx_cur;
|
|
else
|
|
/* bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase]; */
|
|
bdp = (QUICC_BD *)((uint)pquicc + (uint)up->tbase);
|
|
|
|
/* Pointer to UART in parameter ram.
|
|
*/
|
|
/* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */
|
|
up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u;
|
|
|
|
/*
|
|
* We need to gracefully shut down the receiver, disable
|
|
* interrupts, then read the input.
|
|
* XMON just wants a poll. If no character, return -1, else
|
|
* return the character.
|
|
*/
|
|
if (!xmon) {
|
|
while (bdp->status & BD_SC_EMPTY);
|
|
}
|
|
else {
|
|
if (bdp->status & BD_SC_EMPTY)
|
|
return -1;
|
|
}
|
|
|
|
cp = (char *)bdp->buf;
|
|
|
|
if (obuf) {
|
|
i = c = bdp->length;
|
|
while (i-- > 0)
|
|
*obuf++ = *cp++;
|
|
}
|
|
else {
|
|
c = *cp;
|
|
}
|
|
bdp->status |= BD_SC_EMPTY;
|
|
|
|
if (info) {
|
|
if (bdp->status & BD_SC_WRAP) {
|
|
bdp = info->rx_bd_base;
|
|
}
|
|
else {
|
|
bdp++;
|
|
}
|
|
info->rx_cur = (QUICC_BD *)bdp;
|
|
}
|
|
|
|
return((int)c);
|
|
}
|
|
|
|
static int serial_console_wait_key(struct console *co)
|
|
{
|
|
return(my_console_wait_key(co->index, 0, NULL));
|
|
}
|
|
|
|
#ifdef CONFIG_XMON
|
|
int
|
|
xmon_360_read_poll(void)
|
|
{
|
|
return(my_console_wait_key(0, 1, NULL));
|
|
}
|
|
|
|
int
|
|
xmon_360_read_char(void)
|
|
{
|
|
return(my_console_wait_key(0, 0, NULL));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KGDB
|
|
static char kgdb_buf[RX_BUF_SIZE], *kgdp;
|
|
static int kgdb_chars;
|
|
|
|
unsigned char
|
|
getDebugChar(void)
|
|
{
|
|
if (kgdb_chars <= 0) {
|
|
kgdb_chars = my_console_wait_key(0, 0, kgdb_buf);
|
|
kgdp = kgdb_buf;
|
|
}
|
|
kgdb_chars--;
|
|
|
|
return(*kgdp++);
|
|
}
|
|
|
|
void kgdb_interruptible(int state)
|
|
{
|
|
}
|
|
void kgdb_map_scc(void)
|
|
{
|
|
struct serial_state *ser;
|
|
uint mem_addr;
|
|
volatile QUICC_BD *bdp;
|
|
volatile smc_uart_t *up;
|
|
|
|
cpmp = (cpm360_t *)&(((immap_t *)IMAP_ADDR)->im_cpm);
|
|
|
|
/* To avoid data cache CPM DMA coherency problems, allocate a
|
|
* buffer in the CPM DPRAM. This will work until the CPM and
|
|
* serial ports are initialized. At that time a memory buffer
|
|
* will be allocated.
|
|
* The port is already initialized from the boot procedure, all
|
|
* we do here is give it a different buffer and make it a FIFO.
|
|
*/
|
|
|
|
ser = rs_table;
|
|
|
|
/* Right now, assume we are using SMCs.
|
|
*/
|
|
up = (smc_uart_t *)&cpmp->cp_dparam[ser->port];
|
|
|
|
/* Allocate space for an input FIFO, plus a few bytes for output.
|
|
* Allocate bytes to maintain word alignment.
|
|
*/
|
|
mem_addr = (uint)(&cpmp->cp_dpmem[0x1000]);
|
|
|
|
/* Set the physical address of the host memory buffers in
|
|
* the buffer descriptors.
|
|
*/
|
|
bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase];
|
|
bdp->buf = mem_addr;
|
|
|
|
bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_tbase];
|
|
bdp->buf = mem_addr+RX_BUF_SIZE;
|
|
|
|
up->smc_mrblr = RX_BUF_SIZE; /* receive buffer length */
|
|
up->smc_maxidl = RX_BUF_SIZE;
|
|
}
|
|
#endif
|
|
|
|
static struct tty_struct *serial_console_device(struct console *c, int *index)
|
|
{
|
|
*index = c->index;
|
|
return serial_driver;
|
|
}
|
|
|
|
|
|
struct console sercons = {
|
|
.name = "ttyS",
|
|
.write = serial_console_write,
|
|
.device = serial_console_device,
|
|
.wait_key = serial_console_wait_key,
|
|
.setup = serial_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = CONFIG_SERIAL_CONSOLE_PORT,
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
* Register console.
|
|
*/
|
|
long console_360_init(long kmem_start, long kmem_end)
|
|
{
|
|
register_console(&sercons);
|
|
/*register_console (console_print_68360); - 2.0.38 only required a write
|
|
function pointer. */
|
|
return kmem_start;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Index in baud rate table of the default console baud rate.
|
|
*/
|
|
static int baud_idx;
|
|
|
|
static const struct tty_operations rs_360_ops = {
|
|
.owner = THIS_MODULE,
|
|
.open = rs_360_open,
|
|
.close = rs_360_close,
|
|
.write = rs_360_write,
|
|
.put_char = rs_360_put_char,
|
|
.write_room = rs_360_write_room,
|
|
.chars_in_buffer = rs_360_chars_in_buffer,
|
|
.flush_buffer = rs_360_flush_buffer,
|
|
.ioctl = rs_360_ioctl,
|
|
.throttle = rs_360_throttle,
|
|
.unthrottle = rs_360_unthrottle,
|
|
/* .send_xchar = rs_360_send_xchar, */
|
|
.set_termios = rs_360_set_termios,
|
|
.stop = rs_360_stop,
|
|
.start = rs_360_start,
|
|
.hangup = rs_360_hangup,
|
|
/* .wait_until_sent = rs_360_wait_until_sent, */
|
|
/* .read_proc = rs_360_read_proc, */
|
|
.tiocmget = rs_360_tiocmget,
|
|
.tiocmset = rs_360_tiocmset,
|
|
};
|
|
|
|
static int __init rs_360_init(void)
|
|
{
|
|
struct serial_state * state;
|
|
ser_info_t *info;
|
|
void *mem_addr;
|
|
uint dp_addr, iobits;
|
|
int i, j, idx;
|
|
ushort chan;
|
|
QUICC_BD *bdp;
|
|
volatile QUICC *cp;
|
|
volatile struct smc_regs *sp;
|
|
volatile struct smc_uart_pram *up;
|
|
volatile struct scc_regs *scp;
|
|
volatile struct uart_pram *sup;
|
|
/* volatile immap_t *immap; */
|
|
|
|
serial_driver = alloc_tty_driver(NR_PORTS);
|
|
if (!serial_driver)
|
|
return -1;
|
|
|
|
show_serial_version();
|
|
|
|
serial_driver->name = "ttyS";
|
|
serial_driver->major = TTY_MAJOR;
|
|
serial_driver->minor_start = 64;
|
|
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
|
|
serial_driver->subtype = SERIAL_TYPE_NORMAL;
|
|
serial_driver->init_termios = tty_std_termios;
|
|
serial_driver->init_termios.c_cflag =
|
|
baud_idx | CS8 | CREAD | HUPCL | CLOCAL;
|
|
serial_driver->flags = TTY_DRIVER_REAL_RAW;
|
|
tty_set_operations(serial_driver, &rs_360_ops);
|
|
|
|
if (tty_register_driver(serial_driver))
|
|
panic("Couldn't register serial driver\n");
|
|
|
|
cp = pquicc; /* Get pointer to Communication Processor */
|
|
/* immap = (immap_t *)IMAP_ADDR; */ /* and to internal registers */
|
|
|
|
|
|
/* Configure SCC2, SCC3, and SCC4 instead of port A parallel I/O.
|
|
*/
|
|
/* The "standard" configuration through the 860.
|
|
*/
|
|
/* immap->im_ioport.iop_papar |= 0x00fc; */
|
|
/* immap->im_ioport.iop_padir &= ~0x00fc; */
|
|
/* immap->im_ioport.iop_paodr &= ~0x00fc; */
|
|
cp->pio_papar |= 0x00fc;
|
|
cp->pio_padir &= ~0x00fc;
|
|
/* cp->pio_paodr &= ~0x00fc; */
|
|
|
|
|
|
/* Since we don't yet do modem control, connect the port C pins
|
|
* as general purpose I/O. This will assert CTS and CD for the
|
|
* SCC ports.
|
|
*/
|
|
/* FIXME: see 360um p.7-365 and 860um p.34-12
|
|
* I can't make sense of these bits - mleslie*/
|
|
/* immap->im_ioport.iop_pcdir |= 0x03c6; */
|
|
/* immap->im_ioport.iop_pcpar &= ~0x03c6; */
|
|
|
|
/* cp->pio_pcdir |= 0x03c6; */
|
|
/* cp->pio_pcpar &= ~0x03c6; */
|
|
|
|
|
|
|
|
/* Connect SCC2 and SCC3 to NMSI. Connect BRG3 to SCC2 and
|
|
* BRG4 to SCC3.
|
|
*/
|
|
cp->si_sicr &= ~0x00ffff00;
|
|
cp->si_sicr |= 0x001b1200;
|
|
|
|
#ifdef CONFIG_PP04
|
|
/* Frequentis PP04 forced to RS-232 until we know better.
|
|
* Port C 12 and 13 low enables RS-232 on SCC3 and SCC4.
|
|
*/
|
|
immap->im_ioport.iop_pcdir |= 0x000c;
|
|
immap->im_ioport.iop_pcpar &= ~0x000c;
|
|
immap->im_ioport.iop_pcdat &= ~0x000c;
|
|
|
|
/* This enables the TX driver.
|
|
*/
|
|
cp->cp_pbpar &= ~0x6000;
|
|
cp->cp_pbdat &= ~0x6000;
|
|
#endif
|
|
|
|
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
|
|
state->magic = SSTATE_MAGIC;
|
|
state->line = i;
|
|
state->type = PORT_UNKNOWN;
|
|
state->custom_divisor = 0;
|
|
state->close_delay = 5*HZ/10;
|
|
state->closing_wait = 30*HZ;
|
|
state->icount.cts = state->icount.dsr =
|
|
state->icount.rng = state->icount.dcd = 0;
|
|
state->icount.rx = state->icount.tx = 0;
|
|
state->icount.frame = state->icount.parity = 0;
|
|
state->icount.overrun = state->icount.brk = 0;
|
|
printk(KERN_INFO "ttyS%d at irq 0x%02x is an %s\n",
|
|
i, (unsigned int)(state->irq),
|
|
(state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC");
|
|
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
/* If we just printed the message on the console port, and
|
|
* we are about to initialize it for general use, we have
|
|
* to wait a couple of character times for the CR/NL to
|
|
* make it out of the transmit buffer.
|
|
*/
|
|
if (i == CONFIG_SERIAL_CONSOLE_PORT)
|
|
mdelay(8);
|
|
|
|
|
|
/* idx = PORT_NUM(info->state->smc_scc_num); */
|
|
/* if (info->state->smc_scc_num & NUM_IS_SCC) */
|
|
/* chan = scc_chan_map[idx]; */
|
|
/* else */
|
|
/* chan = smc_chan_map[idx]; */
|
|
|
|
/* cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG; */
|
|
/* while (cp->cp_cr & CPM_CR_FLG); */
|
|
|
|
#endif
|
|
/* info = kmalloc(sizeof(ser_info_t), GFP_KERNEL); */
|
|
info = &quicc_ser_info[i];
|
|
if (info) {
|
|
memset (info, 0, sizeof(ser_info_t));
|
|
info->magic = SERIAL_MAGIC;
|
|
info->line = i;
|
|
info->flags = state->flags;
|
|
INIT_WORK(&info->tqueue, do_softint, info);
|
|
INIT_WORK(&info->tqueue_hangup, do_serial_hangup, info);
|
|
init_waitqueue_head(&info->open_wait);
|
|
init_waitqueue_head(&info->close_wait);
|
|
info->state = state;
|
|
state->info = (struct async_struct *)info;
|
|
|
|
/* We need to allocate a transmit and receive buffer
|
|
* descriptors from dual port ram, and a character
|
|
* buffer area from host mem.
|
|
*/
|
|
dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * RX_NUM_FIFO);
|
|
|
|
/* Allocate space for FIFOs in the host memory.
|
|
* (for now this is from a static array of buffers :(
|
|
*/
|
|
/* mem_addr = m360_cpm_hostalloc(RX_NUM_FIFO * RX_BUF_SIZE); */
|
|
/* mem_addr = kmalloc (RX_NUM_FIFO * RX_BUF_SIZE, GFP_BUFFER); */
|
|
mem_addr = &rx_buf_pool[i * RX_NUM_FIFO * RX_BUF_SIZE];
|
|
|
|
/* Set the physical address of the host memory
|
|
* buffers in the buffer descriptors, and the
|
|
* virtual address for us to work with.
|
|
*/
|
|
bdp = (QUICC_BD *)((uint)pquicc + dp_addr);
|
|
info->rx_cur = info->rx_bd_base = bdp;
|
|
|
|
/* initialize rx buffer descriptors */
|
|
for (j=0; j<(RX_NUM_FIFO-1); j++) {
|
|
bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE];
|
|
bdp->status = BD_SC_EMPTY | BD_SC_INTRPT;
|
|
mem_addr += RX_BUF_SIZE;
|
|
bdp++;
|
|
}
|
|
bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE];
|
|
bdp->status = BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT;
|
|
|
|
|
|
idx = PORT_NUM(info->state->smc_scc_num);
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
|
|
#if defined (CONFIG_UCQUICC) && 1
|
|
/* set the transceiver mode to RS232 */
|
|
sipex_mode_bits &= ~(uint)SIPEX_MODE(idx,0x0f); /* clear current mode */
|
|
sipex_mode_bits |= (uint)SIPEX_MODE(idx,0x02);
|
|
*(uint *)_periph_base = sipex_mode_bits;
|
|
/* printk ("sipex bits = 0x%08x\n", sipex_mode_bits); */
|
|
#endif
|
|
}
|
|
|
|
dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * TX_NUM_FIFO);
|
|
|
|
/* Allocate space for FIFOs in the host memory.
|
|
*/
|
|
/* mem_addr = m360_cpm_hostalloc(TX_NUM_FIFO * TX_BUF_SIZE); */
|
|
/* mem_addr = kmalloc (TX_NUM_FIFO * TX_BUF_SIZE, GFP_BUFFER); */
|
|
mem_addr = &tx_buf_pool[i * TX_NUM_FIFO * TX_BUF_SIZE];
|
|
|
|
/* Set the physical address of the host memory
|
|
* buffers in the buffer descriptors, and the
|
|
* virtual address for us to work with.
|
|
*/
|
|
/* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */
|
|
bdp = (QUICC_BD *)((uint)pquicc + dp_addr);
|
|
info->tx_cur = info->tx_bd_base = (QUICC_BD *)bdp;
|
|
|
|
/* initialize tx buffer descriptors */
|
|
for (j=0; j<(TX_NUM_FIFO-1); j++) {
|
|
bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE];
|
|
bdp->status = BD_SC_INTRPT;
|
|
mem_addr += TX_BUF_SIZE;
|
|
bdp++;
|
|
}
|
|
bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE];
|
|
bdp->status = (BD_SC_WRAP | BD_SC_INTRPT);
|
|
|
|
if (info->state->smc_scc_num & NUM_IS_SCC) {
|
|
scp = &pquicc->scc_regs[idx];
|
|
sup = &pquicc->pram[info->state->port].scc.pscc.u;
|
|
sup->rbase = dp_addr;
|
|
sup->tbase = dp_addr;
|
|
|
|
/* Set up the uart parameters in the
|
|
* parameter ram.
|
|
*/
|
|
sup->rfcr = SMC_EB;
|
|
sup->tfcr = SMC_EB;
|
|
|
|
/* Set this to 1 for now, so we get single
|
|
* character interrupts. Using idle charater
|
|
* time requires some additional tuning.
|
|
*/
|
|
sup->mrblr = 1;
|
|
sup->max_idl = 0;
|
|
sup->brkcr = 1;
|
|
sup->parec = 0;
|
|
sup->frmer = 0;
|
|
sup->nosec = 0;
|
|
sup->brkec = 0;
|
|
sup->uaddr1 = 0;
|
|
sup->uaddr2 = 0;
|
|
sup->toseq = 0;
|
|
{
|
|
int i;
|
|
for (i=0;i<8;i++)
|
|
sup->cc[i] = 0x8000;
|
|
}
|
|
sup->rccm = 0xc0ff;
|
|
|
|
/* Send the CPM an initialize command.
|
|
*/
|
|
chan = scc_chan_map[idx];
|
|
|
|
/* execute the INIT RX & TX PARAMS command for this channel. */
|
|
cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
|
|
/* Set UART mode, 8 bit, no parity, one stop.
|
|
* Enable receive and transmit.
|
|
*/
|
|
scp->scc_gsmr.w.high = 0;
|
|
scp->scc_gsmr.w.low =
|
|
(SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16);
|
|
|
|
/* Disable all interrupts and clear all pending
|
|
* events.
|
|
*/
|
|
scp->scc_sccm = 0;
|
|
scp->scc_scce = 0xffff;
|
|
scp->scc_dsr = 0x7e7e;
|
|
scp->scc_psmr = 0x3000;
|
|
|
|
/* If the port is the console, enable Rx and Tx.
|
|
*/
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
if (i == CONFIG_SERIAL_CONSOLE_PORT)
|
|
scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
#endif
|
|
}
|
|
else {
|
|
/* Configure SMCs Tx/Rx instead of port B
|
|
* parallel I/O.
|
|
*/
|
|
up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u;
|
|
up->rbase = dp_addr;
|
|
|
|
iobits = 0xc0 << (idx * 4);
|
|
cp->pip_pbpar |= iobits;
|
|
cp->pip_pbdir &= ~iobits;
|
|
cp->pip_pbodr &= ~iobits;
|
|
|
|
|
|
/* Connect the baud rate generator to the
|
|
* SMC based upon index in rs_table. Also
|
|
* make sure it is connected to NMSI.
|
|
*/
|
|
cp->si_simode &= ~(0xffff << (idx * 16));
|
|
cp->si_simode |= (i << ((idx * 16) + 12));
|
|
|
|
up->tbase = dp_addr;
|
|
|
|
/* Set up the uart parameters in the
|
|
* parameter ram.
|
|
*/
|
|
up->rfcr = SMC_EB;
|
|
up->tfcr = SMC_EB;
|
|
|
|
/* Set this to 1 for now, so we get single
|
|
* character interrupts. Using idle charater
|
|
* time requires some additional tuning.
|
|
*/
|
|
up->mrblr = 1;
|
|
up->max_idl = 0;
|
|
up->brkcr = 1;
|
|
|
|
/* Send the CPM an initialize command.
|
|
*/
|
|
chan = smc_chan_map[idx];
|
|
|
|
cp->cp_cr = mk_cr_cmd(chan,
|
|
CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
if (i == CONFIG_SERIAL_CONSOLE_PORT)
|
|
printk("");
|
|
#endif
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
|
|
/* Set UART mode, 8 bit, no parity, one stop.
|
|
* Enable receive and transmit.
|
|
*/
|
|
sp = &cp->smc_regs[idx];
|
|
sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART;
|
|
|
|
/* Disable all interrupts and clear all pending
|
|
* events.
|
|
*/
|
|
sp->smc_smcm = 0;
|
|
sp->smc_smce = 0xff;
|
|
|
|
/* If the port is the console, enable Rx and Tx.
|
|
*/
|
|
#ifdef CONFIG_SERIAL_CONSOLE
|
|
if (i == CONFIG_SERIAL_CONSOLE_PORT)
|
|
sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN;
|
|
#endif
|
|
}
|
|
|
|
/* Install interrupt handler.
|
|
*/
|
|
/* cpm_install_handler(IRQ_MACHSPEC | state->irq, rs_360_interrupt, info); */
|
|
/*request_irq(IRQ_MACHSPEC | state->irq, rs_360_interrupt, */
|
|
request_irq(state->irq, rs_360_interrupt,
|
|
IRQ_FLG_LOCK, "ttyS", (void *)info);
|
|
|
|
/* Set up the baud rate generator.
|
|
*/
|
|
m360_cpm_setbrg(i, baud_table[baud_idx]);
|
|
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(rs_360_init);
|
|
|
|
/* This must always be called before the rs_360_init() function, otherwise
|
|
* it blows away the port control information.
|
|
*/
|
|
//static int __init serial_console_setup( struct console *co, char *options)
|
|
int serial_console_setup( struct console *co, char *options)
|
|
{
|
|
struct serial_state *ser;
|
|
uint mem_addr, dp_addr, bidx, idx, iobits;
|
|
ushort chan;
|
|
QUICC_BD *bdp;
|
|
volatile QUICC *cp;
|
|
volatile struct smc_regs *sp;
|
|
volatile struct scc_regs *scp;
|
|
volatile struct smc_uart_pram *up;
|
|
volatile struct uart_pram *sup;
|
|
|
|
/* mleslie TODO:
|
|
* add something to the 68k bootloader to store a desired initial console baud rate */
|
|
|
|
/* bd_t *bd; */ /* a board info struct used by EPPC-bug */
|
|
/* bd = (bd_t *)__res; */
|
|
|
|
for (bidx = 0; bidx < (sizeof(baud_table) / sizeof(int)); bidx++)
|
|
/* if (bd->bi_baudrate == baud_table[bidx]) */
|
|
if (CONSOLE_BAUDRATE == baud_table[bidx])
|
|
break;
|
|
|
|
/* co->cflag = CREAD|CLOCAL|bidx|CS8; */
|
|
baud_idx = bidx;
|
|
|
|
ser = rs_table + CONFIG_SERIAL_CONSOLE_PORT;
|
|
|
|
cp = pquicc; /* Get pointer to Communication Processor */
|
|
|
|
idx = PORT_NUM(ser->smc_scc_num);
|
|
if (ser->smc_scc_num & NUM_IS_SCC) {
|
|
|
|
/* TODO: need to set up SCC pin assignment etc. here */
|
|
|
|
}
|
|
else {
|
|
iobits = 0xc0 << (idx * 4);
|
|
cp->pip_pbpar |= iobits;
|
|
cp->pip_pbdir &= ~iobits;
|
|
cp->pip_pbodr &= ~iobits;
|
|
|
|
/* Connect the baud rate generator to the
|
|
* SMC based upon index in rs_table. Also
|
|
* make sure it is connected to NMSI.
|
|
*/
|
|
cp->si_simode &= ~(0xffff << (idx * 16));
|
|
cp->si_simode |= (idx << ((idx * 16) + 12));
|
|
}
|
|
|
|
/* When we get here, the CPM has been reset, so we need
|
|
* to configure the port.
|
|
* We need to allocate a transmit and receive buffer descriptor
|
|
* from dual port ram, and a character buffer area from host mem.
|
|
*/
|
|
|
|
/* Allocate space for two buffer descriptors in the DP ram.
|
|
*/
|
|
dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * CONSOLE_NUM_FIFO);
|
|
|
|
/* Allocate space for two 2 byte FIFOs in the host memory.
|
|
*/
|
|
/* mem_addr = m360_cpm_hostalloc(8); */
|
|
mem_addr = (uint)console_fifos;
|
|
|
|
|
|
/* Set the physical address of the host memory buffers in
|
|
* the buffer descriptors.
|
|
*/
|
|
/* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */
|
|
bdp = (QUICC_BD *)((uint)pquicc + dp_addr);
|
|
bdp->buf = (char *)mem_addr;
|
|
(bdp+1)->buf = (char *)(mem_addr+4);
|
|
|
|
/* For the receive, set empty and wrap.
|
|
* For transmit, set wrap.
|
|
*/
|
|
bdp->status = BD_SC_EMPTY | BD_SC_WRAP;
|
|
(bdp+1)->status = BD_SC_WRAP;
|
|
|
|
/* Set up the uart parameters in the parameter ram.
|
|
*/
|
|
if (ser->smc_scc_num & NUM_IS_SCC) {
|
|
scp = &cp->scc_regs[idx];
|
|
/* sup = (scc_uart_t *)&cp->cp_dparam[ser->port]; */
|
|
sup = &pquicc->pram[ser->port].scc.pscc.u;
|
|
|
|
sup->rbase = dp_addr;
|
|
sup->tbase = dp_addr + sizeof(QUICC_BD);
|
|
|
|
/* Set up the uart parameters in the
|
|
* parameter ram.
|
|
*/
|
|
sup->rfcr = SMC_EB;
|
|
sup->tfcr = SMC_EB;
|
|
|
|
/* Set this to 1 for now, so we get single
|
|
* character interrupts. Using idle charater
|
|
* time requires some additional tuning.
|
|
*/
|
|
sup->mrblr = 1;
|
|
sup->max_idl = 0;
|
|
sup->brkcr = 1;
|
|
sup->parec = 0;
|
|
sup->frmer = 0;
|
|
sup->nosec = 0;
|
|
sup->brkec = 0;
|
|
sup->uaddr1 = 0;
|
|
sup->uaddr2 = 0;
|
|
sup->toseq = 0;
|
|
{
|
|
int i;
|
|
for (i=0;i<8;i++)
|
|
sup->cc[i] = 0x8000;
|
|
}
|
|
sup->rccm = 0xc0ff;
|
|
|
|
/* Send the CPM an initialize command.
|
|
*/
|
|
chan = scc_chan_map[idx];
|
|
|
|
cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
|
|
/* Set UART mode, 8 bit, no parity, one stop.
|
|
* Enable receive and transmit.
|
|
*/
|
|
scp->scc_gsmr.w.high = 0;
|
|
scp->scc_gsmr.w.low =
|
|
(SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16);
|
|
|
|
/* Disable all interrupts and clear all pending
|
|
* events.
|
|
*/
|
|
scp->scc_sccm = 0;
|
|
scp->scc_scce = 0xffff;
|
|
scp->scc_dsr = 0x7e7e;
|
|
scp->scc_psmr = 0x3000;
|
|
|
|
scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
}
|
|
else {
|
|
/* up = (smc_uart_t *)&cp->cp_dparam[ser->port]; */
|
|
up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u;
|
|
|
|
up->rbase = dp_addr; /* Base of receive buffer desc. */
|
|
up->tbase = dp_addr+sizeof(QUICC_BD); /* Base of xmt buffer desc. */
|
|
up->rfcr = SMC_EB;
|
|
up->tfcr = SMC_EB;
|
|
|
|
/* Set this to 1 for now, so we get single character interrupts.
|
|
*/
|
|
up->mrblr = 1; /* receive buffer length */
|
|
up->max_idl = 0; /* wait forever for next char */
|
|
|
|
/* Send the CPM an initialize command.
|
|
*/
|
|
chan = smc_chan_map[idx];
|
|
cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
while (cp->cp_cr & CPM_CR_FLG);
|
|
|
|
/* Set UART mode, 8 bit, no parity, one stop.
|
|
* Enable receive and transmit.
|
|
*/
|
|
sp = &cp->smc_regs[idx];
|
|
sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART;
|
|
|
|
/* And finally, enable Rx and Tx.
|
|
*/
|
|
sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN;
|
|
}
|
|
|
|
/* Set up the baud rate generator.
|
|
*/
|
|
/* m360_cpm_setbrg((ser - rs_table), bd->bi_baudrate); */
|
|
m360_cpm_setbrg((ser - rs_table), CONSOLE_BAUDRATE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 4
|
|
* c-basic-offset: 4
|
|
* tab-width: 4
|
|
* End:
|
|
*/
|