494 lines
14 KiB
C
494 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file contains common KASAN code.
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
*
|
|
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
|
* Andrey Konovalov <andreyknvl@gmail.com>
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
|
|
#include "kasan.h"
|
|
#include "../slab.h"
|
|
|
|
depot_stack_handle_t kasan_save_stack(gfp_t flags)
|
|
{
|
|
unsigned long entries[KASAN_STACK_DEPTH];
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
|
|
nr_entries = filter_irq_stacks(entries, nr_entries);
|
|
return stack_depot_save(entries, nr_entries, flags);
|
|
}
|
|
|
|
void kasan_set_track(struct kasan_track *track, gfp_t flags)
|
|
{
|
|
track->pid = current->pid;
|
|
track->stack = kasan_save_stack(flags);
|
|
}
|
|
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
|
void kasan_enable_current(void)
|
|
{
|
|
current->kasan_depth++;
|
|
}
|
|
|
|
void kasan_disable_current(void)
|
|
{
|
|
current->kasan_depth--;
|
|
}
|
|
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
|
|
|
|
void __kasan_unpoison_range(const void *address, size_t size)
|
|
{
|
|
unpoison_range(address, size);
|
|
}
|
|
|
|
#if CONFIG_KASAN_STACK
|
|
/* Unpoison the entire stack for a task. */
|
|
void kasan_unpoison_task_stack(struct task_struct *task)
|
|
{
|
|
void *base = task_stack_page(task);
|
|
|
|
unpoison_range(base, THREAD_SIZE);
|
|
}
|
|
|
|
/* Unpoison the stack for the current task beyond a watermark sp value. */
|
|
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
|
|
{
|
|
/*
|
|
* Calculate the task stack base address. Avoid using 'current'
|
|
* because this function is called by early resume code which hasn't
|
|
* yet set up the percpu register (%gs).
|
|
*/
|
|
void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
|
|
|
|
unpoison_range(base, watermark - base);
|
|
}
|
|
#endif /* CONFIG_KASAN_STACK */
|
|
|
|
/*
|
|
* Only allow cache merging when stack collection is disabled and no metadata
|
|
* is present.
|
|
*/
|
|
slab_flags_t __kasan_never_merge(void)
|
|
{
|
|
if (kasan_stack_collection_enabled())
|
|
return SLAB_KASAN;
|
|
return 0;
|
|
}
|
|
|
|
void __kasan_alloc_pages(struct page *page, unsigned int order)
|
|
{
|
|
u8 tag;
|
|
unsigned long i;
|
|
|
|
if (unlikely(PageHighMem(page)))
|
|
return;
|
|
|
|
tag = random_tag();
|
|
for (i = 0; i < (1 << order); i++)
|
|
page_kasan_tag_set(page + i, tag);
|
|
unpoison_range(page_address(page), PAGE_SIZE << order);
|
|
}
|
|
|
|
void __kasan_free_pages(struct page *page, unsigned int order)
|
|
{
|
|
if (likely(!PageHighMem(page)))
|
|
poison_range(page_address(page),
|
|
PAGE_SIZE << order,
|
|
KASAN_FREE_PAGE);
|
|
}
|
|
|
|
/*
|
|
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
|
|
* For larger allocations larger redzones are used.
|
|
*/
|
|
static inline unsigned int optimal_redzone(unsigned int object_size)
|
|
{
|
|
return
|
|
object_size <= 64 - 16 ? 16 :
|
|
object_size <= 128 - 32 ? 32 :
|
|
object_size <= 512 - 64 ? 64 :
|
|
object_size <= 4096 - 128 ? 128 :
|
|
object_size <= (1 << 14) - 256 ? 256 :
|
|
object_size <= (1 << 15) - 512 ? 512 :
|
|
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
|
|
}
|
|
|
|
void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
|
|
slab_flags_t *flags)
|
|
{
|
|
unsigned int ok_size;
|
|
unsigned int optimal_size;
|
|
|
|
/*
|
|
* SLAB_KASAN is used to mark caches as ones that are sanitized by
|
|
* KASAN. Currently this flag is used in two places:
|
|
* 1. In slab_ksize() when calculating the size of the accessible
|
|
* memory within the object.
|
|
* 2. In slab_common.c to prevent merging of sanitized caches.
|
|
*/
|
|
*flags |= SLAB_KASAN;
|
|
|
|
if (!kasan_stack_collection_enabled())
|
|
return;
|
|
|
|
ok_size = *size;
|
|
|
|
/* Add alloc meta into redzone. */
|
|
cache->kasan_info.alloc_meta_offset = *size;
|
|
*size += sizeof(struct kasan_alloc_meta);
|
|
|
|
/*
|
|
* If alloc meta doesn't fit, don't add it.
|
|
* This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
|
|
* to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
|
|
* larger sizes.
|
|
*/
|
|
if (*size > KMALLOC_MAX_SIZE) {
|
|
cache->kasan_info.alloc_meta_offset = 0;
|
|
*size = ok_size;
|
|
/* Continue, since free meta might still fit. */
|
|
}
|
|
|
|
/* Only the generic mode uses free meta or flexible redzones. */
|
|
if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
|
|
cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Add free meta into redzone when it's not possible to store
|
|
* it in the object. This is the case when:
|
|
* 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
|
|
* be touched after it was freed, or
|
|
* 2. Object has a constructor, which means it's expected to
|
|
* retain its content until the next allocation, or
|
|
* 3. Object is too small.
|
|
* Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
|
|
*/
|
|
if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
|
|
cache->object_size < sizeof(struct kasan_free_meta)) {
|
|
ok_size = *size;
|
|
|
|
cache->kasan_info.free_meta_offset = *size;
|
|
*size += sizeof(struct kasan_free_meta);
|
|
|
|
/* If free meta doesn't fit, don't add it. */
|
|
if (*size > KMALLOC_MAX_SIZE) {
|
|
cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
|
|
*size = ok_size;
|
|
}
|
|
}
|
|
|
|
/* Calculate size with optimal redzone. */
|
|
optimal_size = cache->object_size + optimal_redzone(cache->object_size);
|
|
/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
|
|
if (optimal_size > KMALLOC_MAX_SIZE)
|
|
optimal_size = KMALLOC_MAX_SIZE;
|
|
/* Use optimal size if the size with added metas is not large enough. */
|
|
if (*size < optimal_size)
|
|
*size = optimal_size;
|
|
}
|
|
|
|
size_t __kasan_metadata_size(struct kmem_cache *cache)
|
|
{
|
|
if (!kasan_stack_collection_enabled())
|
|
return 0;
|
|
return (cache->kasan_info.alloc_meta_offset ?
|
|
sizeof(struct kasan_alloc_meta) : 0) +
|
|
(cache->kasan_info.free_meta_offset ?
|
|
sizeof(struct kasan_free_meta) : 0);
|
|
}
|
|
|
|
struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
if (!cache->kasan_info.alloc_meta_offset)
|
|
return NULL;
|
|
return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_GENERIC
|
|
struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
|
|
if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
|
|
return NULL;
|
|
return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
|
|
}
|
|
#endif
|
|
|
|
void __kasan_poison_slab(struct page *page)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < compound_nr(page); i++)
|
|
page_kasan_tag_reset(page + i);
|
|
poison_range(page_address(page), page_size(page),
|
|
KASAN_KMALLOC_REDZONE);
|
|
}
|
|
|
|
void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
|
|
{
|
|
unpoison_range(object, cache->object_size);
|
|
}
|
|
|
|
void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
|
|
{
|
|
poison_range(object, cache->object_size, KASAN_KMALLOC_REDZONE);
|
|
}
|
|
|
|
/*
|
|
* This function assigns a tag to an object considering the following:
|
|
* 1. A cache might have a constructor, which might save a pointer to a slab
|
|
* object somewhere (e.g. in the object itself). We preassign a tag for
|
|
* each object in caches with constructors during slab creation and reuse
|
|
* the same tag each time a particular object is allocated.
|
|
* 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
|
|
* accessed after being freed. We preassign tags for objects in these
|
|
* caches as well.
|
|
* 3. For SLAB allocator we can't preassign tags randomly since the freelist
|
|
* is stored as an array of indexes instead of a linked list. Assign tags
|
|
* based on objects indexes, so that objects that are next to each other
|
|
* get different tags.
|
|
*/
|
|
static u8 assign_tag(struct kmem_cache *cache, const void *object,
|
|
bool init, bool keep_tag)
|
|
{
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
return 0xff;
|
|
|
|
/*
|
|
* 1. When an object is kmalloc()'ed, two hooks are called:
|
|
* kasan_slab_alloc() and kasan_kmalloc(). We assign the
|
|
* tag only in the first one.
|
|
* 2. We reuse the same tag for krealloc'ed objects.
|
|
*/
|
|
if (keep_tag)
|
|
return get_tag(object);
|
|
|
|
/*
|
|
* If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
|
|
* set, assign a tag when the object is being allocated (init == false).
|
|
*/
|
|
if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
|
return init ? KASAN_TAG_KERNEL : random_tag();
|
|
|
|
/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
|
|
#ifdef CONFIG_SLAB
|
|
/* For SLAB assign tags based on the object index in the freelist. */
|
|
return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
|
|
#else
|
|
/*
|
|
* For SLUB assign a random tag during slab creation, otherwise reuse
|
|
* the already assigned tag.
|
|
*/
|
|
return init ? random_tag() : get_tag(object);
|
|
#endif
|
|
}
|
|
|
|
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
struct kasan_alloc_meta *alloc_meta;
|
|
|
|
if (kasan_stack_collection_enabled()) {
|
|
alloc_meta = kasan_get_alloc_meta(cache, object);
|
|
if (alloc_meta)
|
|
__memset(alloc_meta, 0, sizeof(*alloc_meta));
|
|
}
|
|
|
|
/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
|
|
object = set_tag(object, assign_tag(cache, object, true, false));
|
|
|
|
return (void *)object;
|
|
}
|
|
|
|
static bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
|
|
unsigned long ip, bool quarantine)
|
|
{
|
|
u8 tag;
|
|
void *tagged_object;
|
|
|
|
tag = get_tag(object);
|
|
tagged_object = object;
|
|
object = kasan_reset_tag(object);
|
|
|
|
if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
|
|
object)) {
|
|
kasan_report_invalid_free(tagged_object, ip);
|
|
return true;
|
|
}
|
|
|
|
/* RCU slabs could be legally used after free within the RCU period */
|
|
if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
|
return false;
|
|
|
|
if (check_invalid_free(tagged_object)) {
|
|
kasan_report_invalid_free(tagged_object, ip);
|
|
return true;
|
|
}
|
|
|
|
poison_range(object, cache->object_size, KASAN_KMALLOC_FREE);
|
|
|
|
if (!kasan_stack_collection_enabled())
|
|
return false;
|
|
|
|
if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
|
|
return false;
|
|
|
|
kasan_set_free_info(cache, object, tag);
|
|
|
|
return quarantine_put(cache, object);
|
|
}
|
|
|
|
bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
|
|
{
|
|
return ____kasan_slab_free(cache, object, ip, true);
|
|
}
|
|
|
|
void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
|
|
{
|
|
struct page *page;
|
|
|
|
page = virt_to_head_page(ptr);
|
|
|
|
/*
|
|
* Even though this function is only called for kmem_cache_alloc and
|
|
* kmalloc backed mempool allocations, those allocations can still be
|
|
* !PageSlab() when the size provided to kmalloc is larger than
|
|
* KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
|
|
*/
|
|
if (unlikely(!PageSlab(page))) {
|
|
if (ptr != page_address(page)) {
|
|
kasan_report_invalid_free(ptr, ip);
|
|
return;
|
|
}
|
|
poison_range(ptr, page_size(page), KASAN_FREE_PAGE);
|
|
} else {
|
|
____kasan_slab_free(page->slab_cache, ptr, ip, false);
|
|
}
|
|
}
|
|
|
|
static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
|
|
{
|
|
struct kasan_alloc_meta *alloc_meta;
|
|
|
|
alloc_meta = kasan_get_alloc_meta(cache, object);
|
|
if (alloc_meta)
|
|
kasan_set_track(&alloc_meta->alloc_track, flags);
|
|
}
|
|
|
|
static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object,
|
|
size_t size, gfp_t flags, bool keep_tag)
|
|
{
|
|
unsigned long redzone_start;
|
|
unsigned long redzone_end;
|
|
u8 tag;
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
|
quarantine_reduce();
|
|
|
|
if (unlikely(object == NULL))
|
|
return NULL;
|
|
|
|
redzone_start = round_up((unsigned long)(object + size),
|
|
KASAN_GRANULE_SIZE);
|
|
redzone_end = round_up((unsigned long)object + cache->object_size,
|
|
KASAN_GRANULE_SIZE);
|
|
tag = assign_tag(cache, object, false, keep_tag);
|
|
|
|
/* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */
|
|
unpoison_range(set_tag(object, tag), size);
|
|
poison_range((void *)redzone_start, redzone_end - redzone_start,
|
|
KASAN_KMALLOC_REDZONE);
|
|
|
|
if (kasan_stack_collection_enabled())
|
|
set_alloc_info(cache, (void *)object, flags);
|
|
|
|
return set_tag(object, tag);
|
|
}
|
|
|
|
void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
|
|
void *object, gfp_t flags)
|
|
{
|
|
return ____kasan_kmalloc(cache, object, cache->object_size, flags, false);
|
|
}
|
|
|
|
void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
|
|
size_t size, gfp_t flags)
|
|
{
|
|
return ____kasan_kmalloc(cache, object, size, flags, true);
|
|
}
|
|
EXPORT_SYMBOL(__kasan_kmalloc);
|
|
|
|
void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
|
|
gfp_t flags)
|
|
{
|
|
struct page *page;
|
|
unsigned long redzone_start;
|
|
unsigned long redzone_end;
|
|
|
|
if (gfpflags_allow_blocking(flags))
|
|
quarantine_reduce();
|
|
|
|
if (unlikely(ptr == NULL))
|
|
return NULL;
|
|
|
|
page = virt_to_page(ptr);
|
|
redzone_start = round_up((unsigned long)(ptr + size),
|
|
KASAN_GRANULE_SIZE);
|
|
redzone_end = (unsigned long)ptr + page_size(page);
|
|
|
|
unpoison_range(ptr, size);
|
|
poison_range((void *)redzone_start, redzone_end - redzone_start,
|
|
KASAN_PAGE_REDZONE);
|
|
|
|
return (void *)ptr;
|
|
}
|
|
|
|
void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
|
|
{
|
|
struct page *page;
|
|
|
|
if (unlikely(object == ZERO_SIZE_PTR))
|
|
return (void *)object;
|
|
|
|
page = virt_to_head_page(object);
|
|
|
|
if (unlikely(!PageSlab(page)))
|
|
return __kasan_kmalloc_large(object, size, flags);
|
|
else
|
|
return ____kasan_kmalloc(page->slab_cache, object, size,
|
|
flags, true);
|
|
}
|
|
|
|
void __kasan_kfree_large(void *ptr, unsigned long ip)
|
|
{
|
|
if (ptr != page_address(virt_to_head_page(ptr)))
|
|
kasan_report_invalid_free(ptr, ip);
|
|
/* The object will be poisoned by kasan_free_pages(). */
|
|
}
|