OpenCloudOS-Kernel/drivers/net/phy/mscc/mscc_main.c

2688 lines
72 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* Driver for Microsemi VSC85xx PHYs
*
* Author: Nagaraju Lakkaraju
* License: Dual MIT/GPL
* Copyright (c) 2016 Microsemi Corporation
*/
#include <linux/firmware.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mdio.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <linux/netdevice.h>
#include <dt-bindings/net/mscc-phy-vsc8531.h>
#include "mscc_serdes.h"
#include "mscc.h"
static const struct vsc85xx_hw_stat vsc85xx_hw_stats[] = {
{
.string = "phy_receive_errors",
.reg = MSCC_PHY_ERR_RX_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_false_carrier",
.reg = MSCC_PHY_ERR_FALSE_CARRIER_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_link_disconnect",
.reg = MSCC_PHY_ERR_LINK_DISCONNECT_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_crc_good_count",
.reg = MSCC_PHY_CU_MEDIA_CRC_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_cu_media_crc_error_count",
.reg = MSCC_PHY_EXT_PHY_CNTL_4,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = ERR_CNT_MASK,
},
};
static const struct vsc85xx_hw_stat vsc8584_hw_stats[] = {
{
.string = "phy_receive_errors",
.reg = MSCC_PHY_ERR_RX_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_false_carrier",
.reg = MSCC_PHY_ERR_FALSE_CARRIER_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_link_disconnect",
.reg = MSCC_PHY_ERR_LINK_DISCONNECT_CNT,
.page = MSCC_PHY_PAGE_STANDARD,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_cu_media_crc_good_count",
.reg = MSCC_PHY_CU_MEDIA_CRC_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_cu_media_crc_error_count",
.reg = MSCC_PHY_EXT_PHY_CNTL_4,
.page = MSCC_PHY_PAGE_EXTENDED,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_serdes_tx_good_pkt_count",
.reg = MSCC_PHY_SERDES_TX_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_serdes_tx_bad_crc_count",
.reg = MSCC_PHY_SERDES_TX_CRC_ERR_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = ERR_CNT_MASK,
}, {
.string = "phy_serdes_rx_good_pkt_count",
.reg = MSCC_PHY_SERDES_RX_VALID_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = VALID_CRC_CNT_CRC_MASK,
}, {
.string = "phy_serdes_rx_bad_crc_count",
.reg = MSCC_PHY_SERDES_RX_CRC_ERR_CNT,
.page = MSCC_PHY_PAGE_EXTENDED_3,
.mask = ERR_CNT_MASK,
},
};
#if IS_ENABLED(CONFIG_OF_MDIO)
static const struct vsc8531_edge_rate_table edge_table[] = {
{MSCC_VDDMAC_3300, { 0, 2, 4, 7, 10, 17, 29, 53} },
{MSCC_VDDMAC_2500, { 0, 3, 6, 10, 14, 23, 37, 63} },
{MSCC_VDDMAC_1800, { 0, 5, 9, 16, 23, 35, 52, 76} },
{MSCC_VDDMAC_1500, { 0, 6, 14, 21, 29, 42, 58, 77} },
};
#endif
static int vsc85xx_phy_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, MSCC_EXT_PAGE_ACCESS);
}
static int vsc85xx_phy_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, MSCC_EXT_PAGE_ACCESS, page);
}
static int vsc85xx_get_sset_count(struct phy_device *phydev)
{
struct vsc8531_private *priv = phydev->priv;
if (!priv)
return 0;
return priv->nstats;
}
static void vsc85xx_get_strings(struct phy_device *phydev, u8 *data)
{
struct vsc8531_private *priv = phydev->priv;
int i;
if (!priv)
return;
for (i = 0; i < priv->nstats; i++)
strlcpy(data + i * ETH_GSTRING_LEN, priv->hw_stats[i].string,
ETH_GSTRING_LEN);
}
static u64 vsc85xx_get_stat(struct phy_device *phydev, int i)
{
struct vsc8531_private *priv = phydev->priv;
int val;
val = phy_read_paged(phydev, priv->hw_stats[i].page,
priv->hw_stats[i].reg);
if (val < 0)
return U64_MAX;
val = val & priv->hw_stats[i].mask;
priv->stats[i] += val;
return priv->stats[i];
}
static void vsc85xx_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
struct vsc8531_private *priv = phydev->priv;
int i;
if (!priv)
return;
for (i = 0; i < priv->nstats; i++)
data[i] = vsc85xx_get_stat(phydev, i);
}
static int vsc85xx_led_cntl_set(struct phy_device *phydev,
u8 led_num,
u8 mode)
{
int rc;
u16 reg_val;
mutex_lock(&phydev->lock);
reg_val = phy_read(phydev, MSCC_PHY_LED_MODE_SEL);
reg_val &= ~LED_MODE_SEL_MASK(led_num);
reg_val |= LED_MODE_SEL(led_num, (u16)mode);
rc = phy_write(phydev, MSCC_PHY_LED_MODE_SEL, reg_val);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_mdix_get(struct phy_device *phydev, u8 *mdix)
{
u16 reg_val;
reg_val = phy_read(phydev, MSCC_PHY_DEV_AUX_CNTL);
if (reg_val & HP_AUTO_MDIX_X_OVER_IND_MASK)
*mdix = ETH_TP_MDI_X;
else
*mdix = ETH_TP_MDI;
return 0;
}
static int vsc85xx_mdix_set(struct phy_device *phydev, u8 mdix)
{
int rc;
u16 reg_val;
reg_val = phy_read(phydev, MSCC_PHY_BYPASS_CONTROL);
if (mdix == ETH_TP_MDI || mdix == ETH_TP_MDI_X) {
reg_val |= (DISABLE_PAIR_SWAP_CORR_MASK |
DISABLE_POLARITY_CORR_MASK |
DISABLE_HP_AUTO_MDIX_MASK);
} else {
reg_val &= ~(DISABLE_PAIR_SWAP_CORR_MASK |
DISABLE_POLARITY_CORR_MASK |
DISABLE_HP_AUTO_MDIX_MASK);
}
rc = phy_write(phydev, MSCC_PHY_BYPASS_CONTROL, reg_val);
if (rc)
return rc;
reg_val = 0;
if (mdix == ETH_TP_MDI)
reg_val = FORCE_MDI_CROSSOVER_MDI;
else if (mdix == ETH_TP_MDI_X)
reg_val = FORCE_MDI_CROSSOVER_MDIX;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_EXT_MODE_CNTL, FORCE_MDI_CROSSOVER_MASK,
reg_val);
if (rc < 0)
return rc;
return genphy_restart_aneg(phydev);
}
static int vsc85xx_downshift_get(struct phy_device *phydev, u8 *count)
{
int reg_val;
reg_val = phy_read_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_ACTIPHY_CNTL);
if (reg_val < 0)
return reg_val;
reg_val &= DOWNSHIFT_CNTL_MASK;
if (!(reg_val & DOWNSHIFT_EN))
*count = DOWNSHIFT_DEV_DISABLE;
else
*count = ((reg_val & ~DOWNSHIFT_EN) >> DOWNSHIFT_CNTL_POS) + 2;
return 0;
}
static int vsc85xx_downshift_set(struct phy_device *phydev, u8 count)
{
if (count == DOWNSHIFT_DEV_DEFAULT_COUNT) {
/* Default downshift count 3 (i.e. Bit3:2 = 0b01) */
count = ((1 << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN);
} else if (count > DOWNSHIFT_COUNT_MAX || count == 1) {
phydev_err(phydev, "Downshift count should be 2,3,4 or 5\n");
return -ERANGE;
} else if (count) {
/* Downshift count is either 2,3,4 or 5 */
count = (((count - 2) << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN);
}
return phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED,
MSCC_PHY_ACTIPHY_CNTL, DOWNSHIFT_CNTL_MASK,
count);
}
static int vsc85xx_wol_set(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int rc;
u16 reg_val;
u8 i;
u16 pwd[3] = {0, 0, 0};
struct ethtool_wolinfo *wol_conf = wol;
u8 *mac_addr = phydev->attached_dev->dev_addr;
mutex_lock(&phydev->lock);
rc = phy_select_page(phydev, MSCC_PHY_PAGE_EXTENDED_2);
if (rc < 0) {
rc = phy_restore_page(phydev, rc, rc);
goto out_unlock;
}
if (wol->wolopts & WAKE_MAGIC) {
/* Store the device address for the magic packet */
for (i = 0; i < ARRAY_SIZE(pwd); i++)
pwd[i] = mac_addr[5 - (i * 2 + 1)] << 8 |
mac_addr[5 - i * 2];
__phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, pwd[0]);
__phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, pwd[1]);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, pwd[2]);
} else {
__phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, 0);
__phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, 0);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, 0);
}
if (wol_conf->wolopts & WAKE_MAGICSECURE) {
for (i = 0; i < ARRAY_SIZE(pwd); i++)
pwd[i] = wol_conf->sopass[5 - (i * 2 + 1)] << 8 |
wol_conf->sopass[5 - i * 2];
__phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, pwd[0]);
__phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, pwd[1]);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, pwd[2]);
} else {
__phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, 0);
__phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, 0);
__phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, 0);
}
reg_val = __phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL);
if (wol_conf->wolopts & WAKE_MAGICSECURE)
reg_val |= SECURE_ON_ENABLE;
else
reg_val &= ~SECURE_ON_ENABLE;
__phy_write(phydev, MSCC_PHY_WOL_MAC_CONTROL, reg_val);
rc = phy_restore_page(phydev, rc, rc > 0 ? 0 : rc);
if (rc < 0)
goto out_unlock;
if (wol->wolopts & WAKE_MAGIC) {
/* Enable the WOL interrupt */
reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK);
reg_val |= MII_VSC85XX_INT_MASK_WOL;
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val);
if (rc)
goto out_unlock;
} else {
/* Disable the WOL interrupt */
reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK);
reg_val &= (~MII_VSC85XX_INT_MASK_WOL);
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val);
if (rc)
goto out_unlock;
}
/* Clear WOL iterrupt status */
reg_val = phy_read(phydev, MII_VSC85XX_INT_STATUS);
out_unlock:
mutex_unlock(&phydev->lock);
return rc;
}
static void vsc85xx_wol_get(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int rc;
u16 reg_val;
u8 i;
u16 pwd[3] = {0, 0, 0};
struct ethtool_wolinfo *wol_conf = wol;
mutex_lock(&phydev->lock);
rc = phy_select_page(phydev, MSCC_PHY_PAGE_EXTENDED_2);
if (rc < 0)
goto out_unlock;
reg_val = __phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL);
if (reg_val & SECURE_ON_ENABLE)
wol_conf->wolopts |= WAKE_MAGICSECURE;
if (wol_conf->wolopts & WAKE_MAGICSECURE) {
pwd[0] = __phy_read(phydev, MSCC_PHY_WOL_LOWER_PASSWD);
pwd[1] = __phy_read(phydev, MSCC_PHY_WOL_MID_PASSWD);
pwd[2] = __phy_read(phydev, MSCC_PHY_WOL_UPPER_PASSWD);
for (i = 0; i < ARRAY_SIZE(pwd); i++) {
wol_conf->sopass[5 - i * 2] = pwd[i] & 0x00ff;
wol_conf->sopass[5 - (i * 2 + 1)] = (pwd[i] & 0xff00)
>> 8;
}
}
out_unlock:
phy_restore_page(phydev, rc, rc > 0 ? 0 : rc);
mutex_unlock(&phydev->lock);
}
#if IS_ENABLED(CONFIG_OF_MDIO)
static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev)
{
u32 vdd, sd;
int i, j;
struct device *dev = &phydev->mdio.dev;
struct device_node *of_node = dev->of_node;
u8 sd_array_size = ARRAY_SIZE(edge_table[0].slowdown);
if (!of_node)
return -ENODEV;
if (of_property_read_u32(of_node, "vsc8531,vddmac", &vdd))
vdd = MSCC_VDDMAC_3300;
if (of_property_read_u32(of_node, "vsc8531,edge-slowdown", &sd))
sd = 0;
for (i = 0; i < ARRAY_SIZE(edge_table); i++)
if (edge_table[i].vddmac == vdd)
for (j = 0; j < sd_array_size; j++)
if (edge_table[i].slowdown[j] == sd)
return (sd_array_size - j - 1);
return -EINVAL;
}
static int vsc85xx_dt_led_mode_get(struct phy_device *phydev,
char *led,
u32 default_mode)
{
struct vsc8531_private *priv = phydev->priv;
struct device *dev = &phydev->mdio.dev;
struct device_node *of_node = dev->of_node;
u32 led_mode;
int err;
if (!of_node)
return -ENODEV;
led_mode = default_mode;
err = of_property_read_u32(of_node, led, &led_mode);
if (!err && !(BIT(led_mode) & priv->supp_led_modes)) {
phydev_err(phydev, "DT %s invalid\n", led);
return -EINVAL;
}
return led_mode;
}
#else
static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev)
{
return 0;
}
static int vsc85xx_dt_led_mode_get(struct phy_device *phydev,
char *led,
u8 default_mode)
{
return default_mode;
}
#endif /* CONFIG_OF_MDIO */
static int vsc85xx_dt_led_modes_get(struct phy_device *phydev,
u32 *default_mode)
{
struct vsc8531_private *priv = phydev->priv;
char led_dt_prop[28];
int i, ret;
for (i = 0; i < priv->nleds; i++) {
ret = sprintf(led_dt_prop, "vsc8531,led-%d-mode", i);
if (ret < 0)
return ret;
ret = vsc85xx_dt_led_mode_get(phydev, led_dt_prop,
default_mode[i]);
if (ret < 0)
return ret;
priv->leds_mode[i] = ret;
}
return 0;
}
static int vsc85xx_edge_rate_cntl_set(struct phy_device *phydev, u8 edge_rate)
{
int rc;
mutex_lock(&phydev->lock);
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED_2,
MSCC_PHY_WOL_MAC_CONTROL, EDGE_RATE_CNTL_MASK,
edge_rate << EDGE_RATE_CNTL_POS);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_mac_if_set(struct phy_device *phydev,
phy_interface_t interface)
{
int rc;
u16 reg_val;
mutex_lock(&phydev->lock);
reg_val = phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_1);
reg_val &= ~(MAC_IF_SELECTION_MASK);
switch (interface) {
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
reg_val |= (MAC_IF_SELECTION_RGMII << MAC_IF_SELECTION_POS);
break;
case PHY_INTERFACE_MODE_RMII:
reg_val |= (MAC_IF_SELECTION_RMII << MAC_IF_SELECTION_POS);
break;
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
reg_val |= (MAC_IF_SELECTION_GMII << MAC_IF_SELECTION_POS);
break;
default:
rc = -EINVAL;
goto out_unlock;
}
rc = phy_write(phydev, MSCC_PHY_EXT_PHY_CNTL_1, reg_val);
if (rc)
goto out_unlock;
rc = genphy_soft_reset(phydev);
out_unlock:
mutex_unlock(&phydev->lock);
return rc;
}
/* Set the RGMII RX and TX clock skews individually, according to the PHY
* interface type, to:
* * 0.2 ns (their default, and lowest, hardware value) if delays should
* not be enabled
* * 2.0 ns (which causes the data to be sampled at exactly half way between
* clock transitions at 1000 Mbps) if delays should be enabled
*/
static int vsc85xx_rgmii_set_skews(struct phy_device *phydev, u32 rgmii_cntl,
u16 rgmii_rx_delay_mask,
u16 rgmii_tx_delay_mask)
{
u16 rgmii_rx_delay_pos = ffs(rgmii_rx_delay_mask) - 1;
u16 rgmii_tx_delay_pos = ffs(rgmii_tx_delay_mask) - 1;
u16 reg_val = 0;
int rc;
mutex_lock(&phydev->lock);
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
reg_val |= RGMII_CLK_DELAY_2_0_NS << rgmii_rx_delay_pos;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
reg_val |= RGMII_CLK_DELAY_2_0_NS << rgmii_tx_delay_pos;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_EXTENDED_2,
rgmii_cntl,
rgmii_rx_delay_mask | rgmii_tx_delay_mask,
reg_val);
mutex_unlock(&phydev->lock);
return rc;
}
static int vsc85xx_default_config(struct phy_device *phydev)
{
int rc;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
if (phy_interface_mode_is_rgmii(phydev->interface)) {
rc = vsc85xx_rgmii_set_skews(phydev, VSC8502_RGMII_CNTL,
VSC8502_RGMII_RX_DELAY_MASK,
VSC8502_RGMII_TX_DELAY_MASK);
if (rc)
return rc;
}
return 0;
}
static int vsc85xx_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return vsc85xx_downshift_get(phydev, (u8 *)data);
default:
return -EINVAL;
}
}
static int vsc85xx_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna,
const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return vsc85xx_downshift_set(phydev, *(u8 *)data);
default:
return -EINVAL;
}
}
/* mdiobus lock should be locked when using this function */
static void vsc85xx_tr_write(struct phy_device *phydev, u16 addr, u32 val)
{
__phy_write(phydev, MSCC_PHY_TR_MSB, val >> 16);
__phy_write(phydev, MSCC_PHY_TR_LSB, val & GENMASK(15, 0));
__phy_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(addr));
}
static int vsc8531_pre_init_seq_set(struct phy_device *phydev)
{
int rc;
static const struct reg_val init_seq[] = {
{0x0f90, 0x00688980},
{0x0696, 0x00000003},
{0x07fa, 0x0050100f},
{0x1686, 0x00000004},
};
unsigned int i;
int oldpage;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_STANDARD,
MSCC_PHY_EXT_CNTL_STATUS, SMI_BROADCAST_WR_EN,
SMI_BROADCAST_WR_EN);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_24, 0, 0x0400);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_5, 0x0a00, 0x0e00);
if (rc < 0)
return rc;
rc = phy_modify_paged(phydev, MSCC_PHY_PAGE_TEST,
MSCC_PHY_TEST_PAGE_8, TR_CLK_DISABLE, TR_CLK_DISABLE);
if (rc < 0)
return rc;
mutex_lock(&phydev->lock);
oldpage = phy_select_page(phydev, MSCC_PHY_PAGE_TR);
if (oldpage < 0)
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(init_seq); i++)
vsc85xx_tr_write(phydev, init_seq[i].reg, init_seq[i].val);
out_unlock:
oldpage = phy_restore_page(phydev, oldpage, oldpage);
mutex_unlock(&phydev->lock);
return oldpage;
}
static int vsc85xx_eee_init_seq_set(struct phy_device *phydev)
{
static const struct reg_val init_eee[] = {
{0x0f82, 0x0012b00a},
{0x1686, 0x00000004},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a0, 0x00eeffdd},
{0x16a6, 0x00071448},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x0f80, 0x00000af4},
{0x0fec, 0x00901809},
{0x0fee, 0x0000a6a1},
{0x0ffe, 0x00b01007},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
};
unsigned int i;
int oldpage;
mutex_lock(&phydev->lock);
oldpage = phy_select_page(phydev, MSCC_PHY_PAGE_TR);
if (oldpage < 0)
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(init_eee); i++)
vsc85xx_tr_write(phydev, init_eee[i].reg, init_eee[i].val);
out_unlock:
oldpage = phy_restore_page(phydev, oldpage, oldpage);
mutex_unlock(&phydev->lock);
return oldpage;
}
/* phydev->bus->mdio_lock should be locked when using this function */
int phy_base_write(struct phy_device *phydev, u32 regnum, u16 val)
{
if (unlikely(!mutex_is_locked(&phydev->mdio.bus->mdio_lock))) {
dev_err(&phydev->mdio.dev, "MDIO bus lock not held!\n");
dump_stack();
}
return __phy_package_write(phydev, regnum, val);
}
/* phydev->bus->mdio_lock should be locked when using this function */
int phy_base_read(struct phy_device *phydev, u32 regnum)
{
if (unlikely(!mutex_is_locked(&phydev->mdio.bus->mdio_lock))) {
dev_err(&phydev->mdio.dev, "MDIO bus lock not held!\n");
dump_stack();
}
return __phy_package_read(phydev, regnum);
}
u32 vsc85xx_csr_read(struct phy_device *phydev,
enum csr_target target, u32 reg)
{
unsigned long deadline;
u32 val, val_l, val_h;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_CSR_CNTL);
/* CSR registers are grouped under different Target IDs.
* 6-bit Target_ID is split between MSCC_EXT_PAGE_CSR_CNTL_20 and
* MSCC_EXT_PAGE_CSR_CNTL_19 registers.
* Target_ID[5:2] maps to bits[3:0] of MSCC_EXT_PAGE_CSR_CNTL_20
* and Target_ID[1:0] maps to bits[13:12] of MSCC_EXT_PAGE_CSR_CNTL_19.
*/
/* Setup the Target ID */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_20,
MSCC_PHY_CSR_CNTL_20_TARGET(target >> 2));
if ((target >> 2 == 0x1) || (target >> 2 == 0x3))
/* non-MACsec access */
target &= 0x3;
else
target = 0;
/* Trigger CSR Action - Read into the CSR's */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_19,
MSCC_PHY_CSR_CNTL_19_CMD | MSCC_PHY_CSR_CNTL_19_READ |
MSCC_PHY_CSR_CNTL_19_REG_ADDR(reg) |
MSCC_PHY_CSR_CNTL_19_TARGET(target));
/* Wait for register access*/
deadline = jiffies + msecs_to_jiffies(PROC_CMD_NCOMPLETED_TIMEOUT_MS);
do {
usleep_range(500, 1000);
val = phy_base_read(phydev, MSCC_EXT_PAGE_CSR_CNTL_19);
} while (time_before(jiffies, deadline) &&
!(val & MSCC_PHY_CSR_CNTL_19_CMD));
if (!(val & MSCC_PHY_CSR_CNTL_19_CMD))
return 0xffffffff;
/* Read the Least Significant Word (LSW) (17) */
val_l = phy_base_read(phydev, MSCC_EXT_PAGE_CSR_CNTL_17);
/* Read the Most Significant Word (MSW) (18) */
val_h = phy_base_read(phydev, MSCC_EXT_PAGE_CSR_CNTL_18);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_STANDARD);
return (val_h << 16) | val_l;
}
int vsc85xx_csr_write(struct phy_device *phydev,
enum csr_target target, u32 reg, u32 val)
{
unsigned long deadline;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_CSR_CNTL);
/* CSR registers are grouped under different Target IDs.
* 6-bit Target_ID is split between MSCC_EXT_PAGE_CSR_CNTL_20 and
* MSCC_EXT_PAGE_CSR_CNTL_19 registers.
* Target_ID[5:2] maps to bits[3:0] of MSCC_EXT_PAGE_CSR_CNTL_20
* and Target_ID[1:0] maps to bits[13:12] of MSCC_EXT_PAGE_CSR_CNTL_19.
*/
/* Setup the Target ID */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_20,
MSCC_PHY_CSR_CNTL_20_TARGET(target >> 2));
/* Write the Least Significant Word (LSW) (17) */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_17, (u16)val);
/* Write the Most Significant Word (MSW) (18) */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_18, (u16)(val >> 16));
if ((target >> 2 == 0x1) || (target >> 2 == 0x3))
/* non-MACsec access */
target &= 0x3;
else
target = 0;
/* Trigger CSR Action - Write into the CSR's */
phy_base_write(phydev, MSCC_EXT_PAGE_CSR_CNTL_19,
MSCC_PHY_CSR_CNTL_19_CMD |
MSCC_PHY_CSR_CNTL_19_REG_ADDR(reg) |
MSCC_PHY_CSR_CNTL_19_TARGET(target));
/* Wait for register access */
deadline = jiffies + msecs_to_jiffies(PROC_CMD_NCOMPLETED_TIMEOUT_MS);
do {
usleep_range(500, 1000);
val = phy_base_read(phydev, MSCC_EXT_PAGE_CSR_CNTL_19);
} while (time_before(jiffies, deadline) &&
!(val & MSCC_PHY_CSR_CNTL_19_CMD));
if (!(val & MSCC_PHY_CSR_CNTL_19_CMD))
return -ETIMEDOUT;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static void vsc8584_csr_write(struct phy_device *phydev, u16 addr, u32 val)
{
phy_base_write(phydev, MSCC_PHY_TR_MSB, val >> 16);
phy_base_write(phydev, MSCC_PHY_TR_LSB, val & GENMASK(15, 0));
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(addr));
}
/* bus->mdio_lock should be locked when using this function */
int vsc8584_cmd(struct phy_device *phydev, u16 val)
{
unsigned long deadline;
u16 reg_val;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_NCOMPLETED | val);
deadline = jiffies + msecs_to_jiffies(PROC_CMD_NCOMPLETED_TIMEOUT_MS);
do {
reg_val = phy_base_read(phydev, MSCC_PHY_PROC_CMD);
} while (time_before(jiffies, deadline) &&
(reg_val & PROC_CMD_NCOMPLETED) &&
!(reg_val & PROC_CMD_FAILED));
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
if (reg_val & PROC_CMD_FAILED)
return -EIO;
if (reg_val & PROC_CMD_NCOMPLETED)
return -ETIMEDOUT;
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_micro_deassert_reset(struct phy_device *phydev,
bool patch_en)
{
u32 enable, release;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
enable = RUN_FROM_INT_ROM | MICRO_CLK_EN | DW8051_CLK_EN;
release = MICRO_NSOFT_RESET | RUN_FROM_INT_ROM | DW8051_CLK_EN |
MICRO_CLK_EN;
if (patch_en) {
enable |= MICRO_PATCH_EN;
release |= MICRO_PATCH_EN;
/* Clear all patches */
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_RAM);
}
/* Enable 8051 Micro clock; CLEAR/SET patch present; disable PRAM clock
* override and addr. auto-incr; operate at 125 MHz
*/
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, enable);
/* Release 8051 Micro SW reset */
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, release);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_micro_assert_reset(struct phy_device *phydev)
{
int ret;
u16 reg;
ret = vsc8584_cmd(phydev, PROC_CMD_NOP);
if (ret)
return ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg &= ~EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(4), 0x005b);
phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(4), 0x005b);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg |= EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_NOP);
reg = phy_base_read(phydev, MSCC_DW8051_CNTL_STATUS);
reg &= ~MICRO_NSOFT_RESET;
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, reg);
phy_base_write(phydev, MSCC_PHY_PROC_CMD, PROC_CMD_MCB_ACCESS_MAC_CONF |
PROC_CMD_SGMII_PORT(0) | PROC_CMD_NO_MAC_CONF |
PROC_CMD_READ);
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg &= ~EN_PATCH_RAM_TRAP_ADDR(4);
phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_get_fw_crc(struct phy_device *phydev, u16 start, u16 size,
u16 *crc)
{
int ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
phy_base_write(phydev, MSCC_PHY_VERIPHY_CNTL_2, start);
phy_base_write(phydev, MSCC_PHY_VERIPHY_CNTL_3, size);
/* Start Micro command */
ret = vsc8584_cmd(phydev, PROC_CMD_CRC16);
if (ret)
goto out;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
*crc = phy_base_read(phydev, MSCC_PHY_VERIPHY_CNTL_2);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return ret;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_patch_fw(struct phy_device *phydev,
const struct firmware *fw)
{
int i, ret;
ret = vsc8584_micro_assert_reset(phydev);
if (ret) {
dev_err(&phydev->mdio.dev,
"%s: failed to assert reset of micro\n", __func__);
return ret;
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
/* Hold 8051 Micro in SW Reset, Enable auto incr address and patch clock
* Disable the 8051 Micro clock
*/
phy_base_write(phydev, MSCC_DW8051_CNTL_STATUS, RUN_FROM_INT_ROM |
AUTOINC_ADDR | PATCH_RAM_CLK | MICRO_CLK_EN |
MICRO_CLK_DIVIDE(2));
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_PRAM | INT_MEM_WRITE_EN |
INT_MEM_DATA(2));
phy_base_write(phydev, MSCC_INT_MEM_ADDR, 0x0000);
for (i = 0; i < fw->size; i++)
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_PRAM |
INT_MEM_WRITE_EN | fw->data[i]);
/* Clear internal memory access */
phy_base_write(phydev, MSCC_INT_MEM_CNTL, READ_RAM);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return 0;
}
/* bus->mdio_lock should be locked when using this function */
static bool vsc8574_is_serdes_init(struct phy_device *phydev)
{
u16 reg;
bool ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
reg = phy_base_read(phydev, MSCC_TRAP_ROM_ADDR(1));
if (reg != 0x3eb7) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_PATCH_RAM_ADDR(1));
if (reg != 0x4012) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
if (reg != EN_PATCH_RAM_TRAP_ADDR(1)) {
ret = false;
goto out;
}
reg = phy_base_read(phydev, MSCC_DW8051_CNTL_STATUS);
if ((MICRO_NSOFT_RESET | RUN_FROM_INT_ROM | DW8051_CLK_EN |
MICRO_CLK_EN) != (reg & MSCC_DW8051_VLD_MASK)) {
ret = false;
goto out;
}
ret = true;
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
return ret;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8574_config_pre_init(struct phy_device *phydev)
{
static const struct reg_val pre_init1[] = {
{0x0fae, 0x000401bd},
{0x0fac, 0x000f000f},
{0x17a0, 0x00a0f147},
{0x0fe4, 0x00052f54},
{0x1792, 0x0027303d},
{0x07fe, 0x00000704},
{0x0fe0, 0x00060150},
{0x0f82, 0x0012b00a},
{0x0f80, 0x00000d74},
{0x02e0, 0x00000012},
{0x03a2, 0x00050208},
{0x03b2, 0x00009186},
{0x0fb0, 0x000e3700},
{0x1688, 0x00049f81},
{0x0fd2, 0x0000ffff},
{0x168a, 0x00039fa2},
{0x1690, 0x0020640b},
{0x0258, 0x00002220},
{0x025a, 0x00002a20},
{0x025c, 0x00003060},
{0x025e, 0x00003fa0},
{0x03a6, 0x0000e0f0},
{0x0f92, 0x00001489},
{0x16a2, 0x00007000},
{0x16a6, 0x00071448},
{0x16a0, 0x00eeffdd},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
{0x0f90, 0x00688980},
{0x03a4, 0x0000d8f0},
{0x0fc0, 0x00000400},
{0x07fa, 0x0050100f},
{0x0796, 0x00000003},
{0x07f8, 0x00c3ff98},
{0x0fa4, 0x0018292a},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fec, 0x00901c09},
{0x0fee, 0x0004a6a1},
{0x0ffe, 0x00b01807},
};
static const struct reg_val pre_init2[] = {
{0x0486, 0x0008a518},
{0x0488, 0x006dc696},
{0x048a, 0x00000912},
{0x048e, 0x00000db6},
{0x049c, 0x00596596},
{0x049e, 0x00000514},
{0x04a2, 0x00410280},
{0x04a4, 0x00000000},
{0x04a6, 0x00000000},
{0x04a8, 0x00000000},
{0x04aa, 0x00000000},
{0x04ae, 0x007df7dd},
{0x04b0, 0x006d95d4},
{0x04b2, 0x00492410},
};
struct device *dev = &phydev->mdio.dev;
const struct firmware *fw;
unsigned int i;
u16 crc, reg;
bool serdes_init;
int ret;
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* all writes below are broadcasted to all PHYs in the same package */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg |= SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
phy_base_write(phydev, MII_VSC85XX_INT_MASK, 0);
/* The below register writes are tweaking analog and electrical
* configuration that were determined through characterization by PHY
* engineers. These don't mean anything more than "these are the best
* values".
*/
phy_base_write(phydev, MSCC_PHY_EXT_PHY_CNTL_2, 0x0040);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_20, 0x4320);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_24, 0x0c00);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_9, 0x18ca);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_5, 0x1b20);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg |= TR_CLK_DISABLE;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init1); i++)
vsc8584_csr_write(phydev, pre_init1[i].reg, pre_init1[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_2);
phy_base_write(phydev, MSCC_PHY_CU_PMD_TX_CNTL, 0x028e);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init2); i++)
vsc8584_csr_write(phydev, pre_init2[i].reg, pre_init2[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg &= ~TR_CLK_DISABLE;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* end of write broadcasting */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg &= ~SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
ret = request_firmware(&fw, MSCC_VSC8574_REVB_INT8051_FW, dev);
if (ret) {
dev_err(dev, "failed to load firmware %s, ret: %d\n",
MSCC_VSC8574_REVB_INT8051_FW, ret);
return ret;
}
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8574_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc == MSCC_VSC8574_REVB_INT8051_FW_CRC) {
serdes_init = vsc8574_is_serdes_init(phydev);
if (!serdes_init) {
ret = vsc8584_micro_assert_reset(phydev);
if (ret) {
dev_err(dev,
"%s: failed to assert reset of micro\n",
__func__);
goto out;
}
}
} else {
dev_dbg(dev, "FW CRC is not the expected one, patching FW\n");
serdes_init = false;
if (vsc8584_patch_fw(phydev, fw))
dev_warn(dev,
"failed to patch FW, expect non-optimal device\n");
}
if (!serdes_init) {
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(1), 0x3eb7);
phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(1), 0x4012);
phy_base_write(phydev, MSCC_INT_MEM_CNTL,
EN_PATCH_RAM_TRAP_ADDR(1));
vsc8584_micro_deassert_reset(phydev, false);
/* Add one byte to size for the one added by the patch_fw
* function
*/
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8574_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8574_REVB_INT8051_FW_CRC)
dev_warn(dev,
"FW CRC after patching is not the expected one, expect non-optimal device\n");
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
ret = vsc8584_cmd(phydev, PROC_CMD_1588_DEFAULT_INIT |
PROC_CMD_PHY_INIT);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
release_firmware(fw);
return ret;
}
/* Access LCPLL Cfg_2 */
static void vsc8584_pll5g_cfg2_wr(struct phy_device *phydev,
bool disable_fsm)
{
u32 rd_dat;
rd_dat = vsc85xx_csr_read(phydev, MACRO_CTRL, PHY_S6G_PLL5G_CFG2);
rd_dat &= ~BIT(PHY_S6G_CFG2_FSM_DIS);
rd_dat |= (disable_fsm << PHY_S6G_CFG2_FSM_DIS);
vsc85xx_csr_write(phydev, MACRO_CTRL, PHY_S6G_PLL5G_CFG2, rd_dat);
}
/* trigger a read to the spcified MCB */
static int vsc8584_mcb_rd_trig(struct phy_device *phydev,
u32 mcb_reg_addr, u8 mcb_slave_num)
{
u32 rd_dat = 0;
/* read MCB */
vsc85xx_csr_write(phydev, MACRO_CTRL, mcb_reg_addr,
(0x40000000 | (1L << mcb_slave_num)));
return read_poll_timeout(vsc85xx_csr_read, rd_dat,
!(rd_dat & 0x40000000),
4000, 200000, 0,
phydev, MACRO_CTRL, mcb_reg_addr);
}
/* trigger a write to the spcified MCB */
static int vsc8584_mcb_wr_trig(struct phy_device *phydev,
u32 mcb_reg_addr,
u8 mcb_slave_num)
{
u32 rd_dat = 0;
/* write back MCB */
vsc85xx_csr_write(phydev, MACRO_CTRL, mcb_reg_addr,
(0x80000000 | (1L << mcb_slave_num)));
return read_poll_timeout(vsc85xx_csr_read, rd_dat,
!(rd_dat & 0x80000000),
4000, 200000, 0,
phydev, MACRO_CTRL, mcb_reg_addr);
}
/* Sequence to Reset LCPLL for the VIPER and ELISE PHY */
static int vsc8584_pll5g_reset(struct phy_device *phydev)
{
bool dis_fsm;
int ret = 0;
ret = vsc8584_mcb_rd_trig(phydev, 0x11, 0);
if (ret < 0)
goto done;
dis_fsm = 1;
/* Reset LCPLL */
vsc8584_pll5g_cfg2_wr(phydev, dis_fsm);
/* write back LCPLL MCB */
ret = vsc8584_mcb_wr_trig(phydev, 0x11, 0);
if (ret < 0)
goto done;
/* 10 mSec sleep while LCPLL is hold in reset */
usleep_range(10000, 20000);
/* read LCPLL MCB into CSRs */
ret = vsc8584_mcb_rd_trig(phydev, 0x11, 0);
if (ret < 0)
goto done;
dis_fsm = 0;
/* Release the Reset of LCPLL */
vsc8584_pll5g_cfg2_wr(phydev, dis_fsm);
/* write back LCPLL MCB */
ret = vsc8584_mcb_wr_trig(phydev, 0x11, 0);
if (ret < 0)
goto done;
usleep_range(110000, 200000);
done:
return ret;
}
/* bus->mdio_lock should be locked when using this function */
static int vsc8584_config_pre_init(struct phy_device *phydev)
{
static const struct reg_val pre_init1[] = {
{0x07fa, 0x0050100f},
{0x1688, 0x00049f81},
{0x0f90, 0x00688980},
{0x03a4, 0x0000d8f0},
{0x0fc0, 0x00000400},
{0x0f82, 0x0012b002},
{0x1686, 0x00000004},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a0, 0x00eeffdd},
{0x16a6, 0x00071448},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x0f80, 0x00fffaff},
{0x0fec, 0x00901809},
{0x0ffe, 0x00b01007},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
};
static const struct reg_val pre_init2[] = {
{0x0486, 0x0008a518},
{0x0488, 0x006dc696},
{0x048a, 0x00000912},
};
const struct firmware *fw;
struct device *dev = &phydev->mdio.dev;
unsigned int i;
u16 crc, reg;
int ret;
ret = vsc8584_pll5g_reset(phydev);
if (ret < 0) {
dev_err(dev, "failed LCPLL reset, ret: %d\n", ret);
return ret;
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* all writes below are broadcasted to all PHYs in the same package */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg |= SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
phy_base_write(phydev, MII_VSC85XX_INT_MASK, 0);
reg = phy_base_read(phydev, MSCC_PHY_BYPASS_CONTROL);
reg |= PARALLEL_DET_IGNORE_ADVERTISED;
phy_base_write(phydev, MSCC_PHY_BYPASS_CONTROL, reg);
/* The below register writes are tweaking analog and electrical
* configuration that were determined through characterization by PHY
* engineers. These don't mean anything more than "these are the best
* values".
*/
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_3);
phy_base_write(phydev, MSCC_PHY_SERDES_TX_CRC_ERR_CNT, 0x2000);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_5, 0x1f20);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg |= TR_CLK_DISABLE;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(0x2fa4));
reg = phy_base_read(phydev, MSCC_PHY_TR_MSB);
reg &= ~0x007f;
reg |= 0x0019;
phy_base_write(phydev, MSCC_PHY_TR_MSB, reg);
phy_base_write(phydev, MSCC_PHY_TR_CNTL, TR_WRITE | TR_ADDR(0x0fa4));
for (i = 0; i < ARRAY_SIZE(pre_init1); i++)
vsc8584_csr_write(phydev, pre_init1[i].reg, pre_init1[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_2);
phy_base_write(phydev, MSCC_PHY_CU_PMD_TX_CNTL, 0x028e);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init2); i++)
vsc8584_csr_write(phydev, pre_init2[i].reg, pre_init2[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg &= ~TR_CLK_DISABLE;
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* end of write broadcasting */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg &= ~SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
ret = request_firmware(&fw, MSCC_VSC8584_REVB_INT8051_FW, dev);
if (ret) {
dev_err(dev, "failed to load firmware %s, ret: %d\n",
MSCC_VSC8584_REVB_INT8051_FW, ret);
return ret;
}
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8584_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8584_REVB_INT8051_FW_CRC) {
dev_dbg(dev, "FW CRC is not the expected one, patching FW\n");
if (vsc8584_patch_fw(phydev, fw))
dev_warn(dev,
"failed to patch FW, expect non-optimal device\n");
}
vsc8584_micro_deassert_reset(phydev, false);
/* Add one byte to size for the one added by the patch_fw function */
ret = vsc8584_get_fw_crc(phydev,
MSCC_VSC8584_REVB_INT8051_FW_START_ADDR,
fw->size + 1, &crc);
if (ret)
goto out;
if (crc != MSCC_VSC8584_REVB_INT8051_FW_CRC)
dev_warn(dev,
"FW CRC after patching is not the expected one, expect non-optimal device\n");
ret = vsc8584_micro_assert_reset(phydev);
if (ret)
goto out;
/* Write patch vector 0, to skip IB cal polling */
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED_GPIO);
reg = MSCC_ROM_TRAP_SERDES_6G_CFG; /* ROM address to trap, for patch vector 0 */
ret = phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(1), reg);
if (ret)
goto out;
reg = MSCC_RAM_TRAP_SERDES_6G_CFG; /* RAM address to jump to, when patch vector 0 enabled */
ret = phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(1), reg);
if (ret)
goto out;
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg |= PATCH_VEC_ZERO_EN; /* bit 8, enable patch vector 0 */
ret = phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
if (ret)
goto out;
vsc8584_micro_deassert_reset(phydev, true);
out:
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
release_firmware(fw);
return ret;
}
static void vsc8584_get_base_addr(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
u16 val, addr;
phy_lock_mdio_bus(phydev);
__phy_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_EXTENDED);
addr = __phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_4);
addr >>= PHY_CNTL_4_ADDR_POS;
val = __phy_read(phydev, MSCC_PHY_ACTIPHY_CNTL);
__phy_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
phy_unlock_mdio_bus(phydev);
/* In the package, there are two pairs of PHYs (PHY0 + PHY2 and
* PHY1 + PHY3). The first PHY of each pair (PHY0 and PHY1) is
* the base PHY for timestamping operations.
*/
vsc8531->ts_base_addr = phydev->mdio.addr;
vsc8531->ts_base_phy = addr;
if (val & PHY_ADDR_REVERSED) {
vsc8531->base_addr = phydev->mdio.addr + addr;
if (addr > 1) {
vsc8531->ts_base_addr += 2;
vsc8531->ts_base_phy += 2;
}
} else {
vsc8531->base_addr = phydev->mdio.addr - addr;
if (addr > 1) {
vsc8531->ts_base_addr -= 2;
vsc8531->ts_base_phy -= 2;
}
}
vsc8531->addr = addr;
}
static void vsc85xx_coma_mode_release(struct phy_device *phydev)
{
/* The coma mode (pin or reg) provides an optional feature that
* may be used to control when the PHYs become active.
* Alternatively the COMA_MODE pin may be connected low
* so that the PHYs are fully active once out of reset.
*/
/* Enable output (mode=0) and write zero to it */
vsc85xx_phy_write_page(phydev, MSCC_PHY_PAGE_EXTENDED_GPIO);
__phy_modify(phydev, MSCC_PHY_GPIO_CONTROL_2,
MSCC_PHY_COMA_MODE | MSCC_PHY_COMA_OUTPUT, 0);
vsc85xx_phy_write_page(phydev, MSCC_PHY_PAGE_STANDARD);
}
static int vsc8584_config_host_serdes(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
int ret;
u16 val;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
if (ret)
return ret;
val = phy_base_read(phydev, MSCC_PHY_MAC_CFG_FASTLINK);
val &= ~MAC_CFG_MASK;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) {
val |= MAC_CFG_QSGMII;
} else if (phydev->interface == PHY_INTERFACE_MODE_SGMII) {
val |= MAC_CFG_SGMII;
} else {
ret = -EINVAL;
return ret;
}
ret = phy_base_write(phydev, MSCC_PHY_MAC_CFG_FASTLINK, val);
if (ret)
return ret;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_STANDARD);
if (ret)
return ret;
val = PROC_CMD_MCB_ACCESS_MAC_CONF | PROC_CMD_RST_CONF_PORT |
PROC_CMD_READ_MOD_WRITE_PORT;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII)
val |= PROC_CMD_QSGMII_MAC;
else
val |= PROC_CMD_SGMII_MAC;
ret = vsc8584_cmd(phydev, val);
if (ret)
return ret;
usleep_range(10000, 20000);
/* Disable SerDes for 100Base-FX */
ret = vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(vsc8531->addr) |
PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_100BASE_FX);
if (ret)
return ret;
/* Disable SerDes for 1000Base-X */
ret = vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(vsc8531->addr) |
PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_1000BASE_X);
if (ret)
return ret;
return vsc85xx_sd6g_config_v2(phydev);
}
static int vsc8574_config_host_serdes(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
int ret;
u16 val;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
if (ret)
return ret;
val = phy_base_read(phydev, MSCC_PHY_MAC_CFG_FASTLINK);
val &= ~MAC_CFG_MASK;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) {
val |= MAC_CFG_QSGMII;
} else if (phydev->interface == PHY_INTERFACE_MODE_SGMII) {
val |= MAC_CFG_SGMII;
} else if (phy_interface_is_rgmii(phydev)) {
val |= MAC_CFG_RGMII;
} else {
ret = -EINVAL;
return ret;
}
ret = phy_base_write(phydev, MSCC_PHY_MAC_CFG_FASTLINK, val);
if (ret)
return ret;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_STANDARD);
if (ret)
return ret;
if (!phy_interface_is_rgmii(phydev)) {
val = PROC_CMD_MCB_ACCESS_MAC_CONF | PROC_CMD_RST_CONF_PORT |
PROC_CMD_READ_MOD_WRITE_PORT;
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII)
val |= PROC_CMD_QSGMII_MAC;
else
val |= PROC_CMD_SGMII_MAC;
ret = vsc8584_cmd(phydev, val);
if (ret)
return ret;
usleep_range(10000, 20000);
}
/* Disable SerDes for 100Base-FX */
ret = vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(vsc8531->addr) |
PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_100BASE_FX);
if (ret)
return ret;
/* Disable SerDes for 1000Base-X */
return vsc8584_cmd(phydev, PROC_CMD_FIBER_MEDIA_CONF |
PROC_CMD_FIBER_PORT(vsc8531->addr) |
PROC_CMD_FIBER_DISABLE |
PROC_CMD_READ_MOD_WRITE_PORT |
PROC_CMD_RST_CONF_PORT | PROC_CMD_FIBER_1000BASE_X);
}
static int vsc8584_config_init(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
int ret, i;
u16 val;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
phy_lock_mdio_bus(phydev);
/* Some parts of the init sequence are identical for every PHY in the
* package. Some parts are modifying the GPIO register bank which is a
* set of registers that are affecting all PHYs, a few resetting the
* microprocessor common to all PHYs. The CRC check responsible of the
* checking the firmware within the 8051 microprocessor can only be
* accessed via the PHY whose internal address in the package is 0.
* All PHYs' interrupts mask register has to be zeroed before enabling
* any PHY's interrupt in this register.
* For all these reasons, we need to do the init sequence once and only
* once whatever is the first PHY in the package that is initialized and
* do the correct init sequence for all PHYs that are package-critical
* in this pre-init function.
*/
if (phy_package_init_once(phydev)) {
/* The following switch statement assumes that the lowest
* nibble of the phy_id_mask is always 0. This works because
* the lowest nibble of the PHY_ID's below are also 0.
*/
WARN_ON(phydev->drv->phy_id_mask & 0xf);
switch (phydev->phy_id & phydev->drv->phy_id_mask) {
case PHY_ID_VSC8504:
case PHY_ID_VSC8552:
case PHY_ID_VSC8572:
case PHY_ID_VSC8574:
ret = vsc8574_config_pre_init(phydev);
if (ret)
goto err;
ret = vsc8574_config_host_serdes(phydev);
if (ret)
goto err;
break;
case PHY_ID_VSC856X:
case PHY_ID_VSC8575:
case PHY_ID_VSC8582:
case PHY_ID_VSC8584:
ret = vsc8584_config_pre_init(phydev);
if (ret)
goto err;
ret = vsc8584_config_host_serdes(phydev);
if (ret)
goto err;
vsc85xx_coma_mode_release(phydev);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
goto err;
}
phy_unlock_mdio_bus(phydev);
ret = vsc8584_macsec_init(phydev);
if (ret)
return ret;
ret = vsc8584_ptp_init(phydev);
if (ret)
return ret;
val = phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_1);
val &= ~(MEDIA_OP_MODE_MASK | VSC8584_MAC_IF_SELECTION_MASK);
val |= (MEDIA_OP_MODE_COPPER << MEDIA_OP_MODE_POS) |
(VSC8584_MAC_IF_SELECTION_SGMII << VSC8584_MAC_IF_SELECTION_POS);
ret = phy_write(phydev, MSCC_PHY_EXT_PHY_CNTL_1, val);
if (ret)
return ret;
if (phy_interface_is_rgmii(phydev)) {
ret = vsc85xx_rgmii_set_skews(phydev, VSC8572_RGMII_CNTL,
VSC8572_RGMII_RX_DELAY_MASK,
VSC8572_RGMII_TX_DELAY_MASK);
if (ret)
return ret;
}
ret = genphy_soft_reset(phydev);
if (ret)
return ret;
for (i = 0; i < vsc8531->nleds; i++) {
ret = vsc85xx_led_cntl_set(phydev, i, vsc8531->leds_mode[i]);
if (ret)
return ret;
}
return 0;
err:
phy_unlock_mdio_bus(phydev);
return ret;
}
static irqreturn_t vsc8584_handle_interrupt(struct phy_device *phydev)
{
irqreturn_t ret;
int irq_status;
irq_status = phy_read(phydev, MII_VSC85XX_INT_STATUS);
if (irq_status < 0)
return IRQ_NONE;
/* Timestamping IRQ does not set a bit in the global INT_STATUS, so
* irq_status would be 0.
*/
ret = vsc8584_handle_ts_interrupt(phydev);
if (!(irq_status & MII_VSC85XX_INT_MASK_MASK))
return ret;
if (irq_status & MII_VSC85XX_INT_MASK_EXT)
vsc8584_handle_macsec_interrupt(phydev);
if (irq_status & MII_VSC85XX_INT_MASK_LINK_CHG)
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int vsc85xx_config_init(struct phy_device *phydev)
{
int rc, i, phy_id;
struct vsc8531_private *vsc8531 = phydev->priv;
rc = vsc85xx_default_config(phydev);
if (rc)
return rc;
rc = vsc85xx_mac_if_set(phydev, phydev->interface);
if (rc)
return rc;
rc = vsc85xx_edge_rate_cntl_set(phydev, vsc8531->rate_magic);
if (rc)
return rc;
phy_id = phydev->drv->phy_id & phydev->drv->phy_id_mask;
if (PHY_ID_VSC8531 == phy_id || PHY_ID_VSC8541 == phy_id ||
PHY_ID_VSC8530 == phy_id || PHY_ID_VSC8540 == phy_id) {
rc = vsc8531_pre_init_seq_set(phydev);
if (rc)
return rc;
}
rc = vsc85xx_eee_init_seq_set(phydev);
if (rc)
return rc;
for (i = 0; i < vsc8531->nleds; i++) {
rc = vsc85xx_led_cntl_set(phydev, i, vsc8531->leds_mode[i]);
if (rc)
return rc;
}
return 0;
}
static int __phy_write_mcb_s6g(struct phy_device *phydev, u32 reg, u8 mcb,
u32 op)
{
unsigned long deadline;
u32 val;
int ret;
ret = vsc85xx_csr_write(phydev, PHY_MCB_TARGET, reg,
op | (1 << mcb));
if (ret)
return -EINVAL;
deadline = jiffies + msecs_to_jiffies(PROC_CMD_NCOMPLETED_TIMEOUT_MS);
do {
usleep_range(500, 1000);
val = vsc85xx_csr_read(phydev, PHY_MCB_TARGET, reg);
if (val == 0xffffffff)
return -EIO;
} while (time_before(jiffies, deadline) && (val & op));
if (val & op)
return -ETIMEDOUT;
return 0;
}
/* Trigger a read to the specified MCB */
int phy_update_mcb_s6g(struct phy_device *phydev, u32 reg, u8 mcb)
{
return __phy_write_mcb_s6g(phydev, reg, mcb, PHY_MCB_S6G_READ);
}
/* Trigger a write to the specified MCB */
int phy_commit_mcb_s6g(struct phy_device *phydev, u32 reg, u8 mcb)
{
return __phy_write_mcb_s6g(phydev, reg, mcb, PHY_MCB_S6G_WRITE);
}
static int vsc8514_config_host_serdes(struct phy_device *phydev)
{
int ret;
u16 val;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
if (ret)
return ret;
val = phy_base_read(phydev, MSCC_PHY_MAC_CFG_FASTLINK);
val &= ~MAC_CFG_MASK;
val |= MAC_CFG_QSGMII;
ret = phy_base_write(phydev, MSCC_PHY_MAC_CFG_FASTLINK, val);
if (ret)
return ret;
ret = phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_STANDARD);
if (ret)
return ret;
ret = vsc8584_cmd(phydev, PROC_CMD_NOP);
if (ret)
return ret;
ret = vsc8584_cmd(phydev,
PROC_CMD_MCB_ACCESS_MAC_CONF |
PROC_CMD_RST_CONF_PORT |
PROC_CMD_READ_MOD_WRITE_PORT | PROC_CMD_QSGMII_MAC);
if (ret) {
dev_err(&phydev->mdio.dev, "%s: QSGMII error: %d\n",
__func__, ret);
return ret;
}
/* Apply 6G SerDes FOJI Algorithm
* Initial condition requirement:
* 1. hold 8051 in reset
* 2. disable patch vector 0, in order to allow IB cal poll during FoJi
* 3. deassert 8051 reset after change patch vector status
* 4. proceed with FoJi (vsc85xx_sd6g_config_v2)
*/
vsc8584_micro_assert_reset(phydev);
val = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
/* clear bit 8, to disable patch vector 0 */
val &= ~PATCH_VEC_ZERO_EN;
ret = phy_base_write(phydev, MSCC_INT_MEM_CNTL, val);
/* Enable 8051 clock, don't set patch present, disable PRAM clock override */
vsc8584_micro_deassert_reset(phydev, false);
return vsc85xx_sd6g_config_v2(phydev);
}
static int vsc8514_config_pre_init(struct phy_device *phydev)
{
/* These are the settings to override the silicon default
* values to handle hardware performance of PHY. They
* are set at Power-On state and remain until PHY Reset.
*/
static const struct reg_val pre_init1[] = {
{0x0f90, 0x00688980},
{0x0786, 0x00000003},
{0x07fa, 0x0050100f},
{0x0f82, 0x0012b002},
{0x1686, 0x00000004},
{0x168c, 0x00d2c46f},
{0x17a2, 0x00000620},
{0x16a0, 0x00eeffdd},
{0x16a6, 0x00071448},
{0x16a4, 0x0013132f},
{0x16a8, 0x00000000},
{0x0ffc, 0x00c0a028},
{0x0fe8, 0x0091b06c},
{0x0fea, 0x00041600},
{0x0f80, 0x00fffaff},
{0x0fec, 0x00901809},
{0x0ffe, 0x00b01007},
{0x16b0, 0x00eeff00},
{0x16b2, 0x00007000},
{0x16b4, 0x00000814},
};
struct device *dev = &phydev->mdio.dev;
unsigned int i;
u16 reg;
int ret;
ret = vsc8584_pll5g_reset(phydev);
if (ret < 0) {
dev_err(dev, "failed LCPLL reset, ret: %d\n", ret);
return ret;
}
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
/* all writes below are broadcasted to all PHYs in the same package */
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg |= SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg |= BIT(15);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TR);
for (i = 0; i < ARRAY_SIZE(pre_init1); i++)
vsc8584_csr_write(phydev, pre_init1[i].reg, pre_init1[i].val);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_TEST);
reg = phy_base_read(phydev, MSCC_PHY_TEST_PAGE_8);
reg &= ~BIT(15);
phy_base_write(phydev, MSCC_PHY_TEST_PAGE_8, reg);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS, MSCC_PHY_PAGE_STANDARD);
reg = phy_base_read(phydev, MSCC_PHY_EXT_CNTL_STATUS);
reg &= ~SMI_BROADCAST_WR_EN;
phy_base_write(phydev, MSCC_PHY_EXT_CNTL_STATUS, reg);
/* Add pre-patching commands to:
* 1. enable 8051 clock, operate 8051 clock at 125 MHz
* instead of HW default 62.5MHz
* 2. write patch vector 0, to skip IB cal polling executed
* as part of the 0x80E0 ROM command
*/
vsc8584_micro_deassert_reset(phydev, false);
vsc8584_micro_assert_reset(phydev);
phy_base_write(phydev, MSCC_EXT_PAGE_ACCESS,
MSCC_PHY_PAGE_EXTENDED_GPIO);
/* ROM address to trap, for patch vector 0 */
reg = MSCC_ROM_TRAP_SERDES_6G_CFG;
ret = phy_base_write(phydev, MSCC_TRAP_ROM_ADDR(1), reg);
if (ret)
goto err;
/* RAM address to jump to, when patch vector 0 enabled */
reg = MSCC_RAM_TRAP_SERDES_6G_CFG;
ret = phy_base_write(phydev, MSCC_PATCH_RAM_ADDR(1), reg);
if (ret)
goto err;
reg = phy_base_read(phydev, MSCC_INT_MEM_CNTL);
reg |= PATCH_VEC_ZERO_EN; /* bit 8, enable patch vector 0 */
ret = phy_base_write(phydev, MSCC_INT_MEM_CNTL, reg);
if (ret)
goto err;
/* Enable 8051 clock, don't set patch present
* yet, disable PRAM clock override
*/
vsc8584_micro_deassert_reset(phydev, false);
return ret;
err:
/* restore 8051 and bail w error */
vsc8584_micro_deassert_reset(phydev, false);
return ret;
}
static int vsc8514_config_init(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531 = phydev->priv;
int ret, i;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
phy_lock_mdio_bus(phydev);
/* Some parts of the init sequence are identical for every PHY in the
* package. Some parts are modifying the GPIO register bank which is a
* set of registers that are affecting all PHYs, a few resetting the
* microprocessor common to all PHYs.
* All PHYs' interrupts mask register has to be zeroed before enabling
* any PHY's interrupt in this register.
* For all these reasons, we need to do the init sequence once and only
* once whatever is the first PHY in the package that is initialized and
* do the correct init sequence for all PHYs that are package-critical
* in this pre-init function.
*/
if (phy_package_init_once(phydev)) {
ret = vsc8514_config_pre_init(phydev);
if (ret)
goto err;
ret = vsc8514_config_host_serdes(phydev);
if (ret)
goto err;
vsc85xx_coma_mode_release(phydev);
}
phy_unlock_mdio_bus(phydev);
ret = phy_modify(phydev, MSCC_PHY_EXT_PHY_CNTL_1, MEDIA_OP_MODE_MASK,
MEDIA_OP_MODE_COPPER << MEDIA_OP_MODE_POS);
if (ret)
return ret;
ret = genphy_soft_reset(phydev);
if (ret)
return ret;
for (i = 0; i < vsc8531->nleds; i++) {
ret = vsc85xx_led_cntl_set(phydev, i, vsc8531->leds_mode[i]);
if (ret)
return ret;
}
return ret;
err:
phy_unlock_mdio_bus(phydev);
return ret;
}
static int vsc85xx_ack_interrupt(struct phy_device *phydev)
{
int rc = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
rc = phy_read(phydev, MII_VSC85XX_INT_STATUS);
return (rc < 0) ? rc : 0;
}
static int vsc85xx_config_intr(struct phy_device *phydev)
{
int rc;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
rc = vsc85xx_ack_interrupt(phydev);
if (rc)
return rc;
vsc8584_config_macsec_intr(phydev);
vsc8584_config_ts_intr(phydev);
rc = phy_write(phydev, MII_VSC85XX_INT_MASK,
MII_VSC85XX_INT_MASK_MASK);
} else {
rc = phy_write(phydev, MII_VSC85XX_INT_MASK, 0);
if (rc < 0)
return rc;
rc = phy_read(phydev, MII_VSC85XX_INT_STATUS);
if (rc < 0)
return rc;
rc = vsc85xx_ack_interrupt(phydev);
}
return rc;
}
static irqreturn_t vsc85xx_handle_interrupt(struct phy_device *phydev)
{
int irq_status;
irq_status = phy_read(phydev, MII_VSC85XX_INT_STATUS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(irq_status & MII_VSC85XX_INT_MASK_MASK))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int vsc85xx_config_aneg(struct phy_device *phydev)
{
int rc;
rc = vsc85xx_mdix_set(phydev, phydev->mdix_ctrl);
if (rc < 0)
return rc;
return genphy_config_aneg(phydev);
}
static int vsc85xx_read_status(struct phy_device *phydev)
{
int rc;
rc = vsc85xx_mdix_get(phydev, &phydev->mdix);
if (rc < 0)
return rc;
return genphy_read_status(phydev);
}
static int vsc8514_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
u32 default_mode[4] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY, VSC8531_LINK_ACTIVITY,
VSC8531_DUPLEX_COLLISION};
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8584_get_base_addr(phydev);
devm_phy_package_join(&phydev->mdio.dev, phydev,
vsc8531->base_addr, 0);
vsc8531->nleds = 4;
vsc8531->supp_led_modes = VSC85XX_SUPP_LED_MODES;
vsc8531->hw_stats = vsc85xx_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc85xx_hw_stats);
vsc8531->stats = devm_kcalloc(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
static int vsc8574_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
u32 default_mode[4] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY, VSC8531_LINK_ACTIVITY,
VSC8531_DUPLEX_COLLISION};
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8584_get_base_addr(phydev);
devm_phy_package_join(&phydev->mdio.dev, phydev,
vsc8531->base_addr, 0);
vsc8531->nleds = 4;
vsc8531->supp_led_modes = VSC8584_SUPP_LED_MODES;
vsc8531->hw_stats = vsc8584_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc8584_hw_stats);
vsc8531->stats = devm_kcalloc(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
static int vsc8584_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
u32 default_mode[4] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY, VSC8531_LINK_ACTIVITY,
VSC8531_DUPLEX_COLLISION};
int ret;
if ((phydev->phy_id & MSCC_DEV_REV_MASK) != VSC8584_REVB) {
dev_err(&phydev->mdio.dev, "Only VSC8584 revB is supported.\n");
return -ENOTSUPP;
}
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8584_get_base_addr(phydev);
devm_phy_package_join(&phydev->mdio.dev, phydev, vsc8531->base_addr,
sizeof(struct vsc85xx_shared_private));
vsc8531->nleds = 4;
vsc8531->supp_led_modes = VSC8584_SUPP_LED_MODES;
vsc8531->hw_stats = vsc8584_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc8584_hw_stats);
vsc8531->stats = devm_kcalloc(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
if (phy_package_probe_once(phydev)) {
ret = vsc8584_ptp_probe_once(phydev);
if (ret)
return ret;
}
ret = vsc8584_ptp_probe(phydev);
if (ret)
return ret;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
static int vsc85xx_probe(struct phy_device *phydev)
{
struct vsc8531_private *vsc8531;
int rate_magic;
u32 default_mode[2] = {VSC8531_LINK_1000_ACTIVITY,
VSC8531_LINK_100_ACTIVITY};
rate_magic = vsc85xx_edge_rate_magic_get(phydev);
if (rate_magic < 0)
return rate_magic;
vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL);
if (!vsc8531)
return -ENOMEM;
phydev->priv = vsc8531;
vsc8531->rate_magic = rate_magic;
vsc8531->nleds = 2;
vsc8531->supp_led_modes = VSC85XX_SUPP_LED_MODES;
vsc8531->hw_stats = vsc85xx_hw_stats;
vsc8531->nstats = ARRAY_SIZE(vsc85xx_hw_stats);
vsc8531->stats = devm_kcalloc(&phydev->mdio.dev, vsc8531->nstats,
sizeof(u64), GFP_KERNEL);
if (!vsc8531->stats)
return -ENOMEM;
return vsc85xx_dt_led_modes_get(phydev, default_mode);
}
/* Microsemi VSC85xx PHYs */
static struct phy_driver vsc85xx_driver[] = {
{
.phy_id = PHY_ID_VSC8502,
.name = "Microsemi GE VSC8502 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_BASIC_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8504,
.name = "Microsemi GE VSC8504 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8574_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8514,
.name = "Microsemi GE VSC8514 SyncE",
.phy_id_mask = 0xfffffff0,
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8514_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8514_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8530,
.name = "Microsemi FE VSC8530",
.phy_id_mask = 0xfffffff0,
/* PHY_BASIC_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8531,
.name = "Microsemi VSC8531",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8540,
.name = "Microsemi FE VSC8540 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_BASIC_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8541,
.name = "Microsemi VSC8541 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc85xx_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc85xx_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8552,
.name = "Microsemi GE VSC8552 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8574_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC856X,
.name = "Microsemi GE VSC856X SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8584_probe,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8572,
.name = "Microsemi GE VSC8572 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = &vsc8584_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8574_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8574,
.name = "Microsemi GE VSC8574 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = vsc85xx_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8574_probe,
.set_wol = &vsc85xx_wol_set,
.get_wol = &vsc85xx_wol_get,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8575,
.name = "Microsemi GE VSC8575 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = &vsc8584_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8584_probe,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8582,
.name = "Microsemi GE VSC8582 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = &vsc8584_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8584_probe,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
},
{
.phy_id = PHY_ID_VSC8584,
.name = "Microsemi GE VSC8584 SyncE",
.phy_id_mask = 0xfffffff0,
/* PHY_GBIT_FEATURES */
.soft_reset = &genphy_soft_reset,
.config_init = &vsc8584_config_init,
.config_aneg = &vsc85xx_config_aneg,
.aneg_done = &genphy_aneg_done,
.read_status = &vsc85xx_read_status,
.handle_interrupt = &vsc8584_handle_interrupt,
.config_intr = &vsc85xx_config_intr,
.suspend = &genphy_suspend,
.resume = &genphy_resume,
.probe = &vsc8584_probe,
.get_tunable = &vsc85xx_get_tunable,
.set_tunable = &vsc85xx_set_tunable,
.read_page = &vsc85xx_phy_read_page,
.write_page = &vsc85xx_phy_write_page,
.get_sset_count = &vsc85xx_get_sset_count,
.get_strings = &vsc85xx_get_strings,
.get_stats = &vsc85xx_get_stats,
.link_change_notify = &vsc85xx_link_change_notify,
}
};
module_phy_driver(vsc85xx_driver);
static struct mdio_device_id __maybe_unused vsc85xx_tbl[] = {
{ PHY_ID_VSC8504, 0xfffffff0, },
{ PHY_ID_VSC8514, 0xfffffff0, },
{ PHY_ID_VSC8530, 0xfffffff0, },
{ PHY_ID_VSC8531, 0xfffffff0, },
{ PHY_ID_VSC8540, 0xfffffff0, },
{ PHY_ID_VSC8541, 0xfffffff0, },
{ PHY_ID_VSC8552, 0xfffffff0, },
{ PHY_ID_VSC856X, 0xfffffff0, },
{ PHY_ID_VSC8572, 0xfffffff0, },
{ PHY_ID_VSC8574, 0xfffffff0, },
{ PHY_ID_VSC8575, 0xfffffff0, },
{ PHY_ID_VSC8582, 0xfffffff0, },
{ PHY_ID_VSC8584, 0xfffffff0, },
{ }
};
MODULE_DEVICE_TABLE(mdio, vsc85xx_tbl);
MODULE_DESCRIPTION("Microsemi VSC85xx PHY driver");
MODULE_AUTHOR("Nagaraju Lakkaraju");
MODULE_LICENSE("Dual MIT/GPL");