2797 lines
65 KiB
C
2797 lines
65 KiB
C
/*
|
|
* Generic address resolution entity
|
|
*
|
|
* Authors:
|
|
* Pedro Roque <roque@di.fc.ul.pt>
|
|
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Fixes:
|
|
* Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
|
|
* Harald Welte Add neighbour cache statistics like rtstat
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/proc_fs.h>
|
|
#ifdef CONFIG_SYSCTL
|
|
#include <linux/sysctl.h>
|
|
#endif
|
|
#include <linux/times.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/neighbour.h>
|
|
#include <net/dst.h>
|
|
#include <net/sock.h>
|
|
#include <net/netevent.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/random.h>
|
|
#include <linux/string.h>
|
|
#include <linux/log2.h>
|
|
|
|
#define NEIGH_DEBUG 1
|
|
|
|
#define NEIGH_PRINTK(x...) printk(x)
|
|
#define NEIGH_NOPRINTK(x...) do { ; } while(0)
|
|
#define NEIGH_PRINTK0 NEIGH_PRINTK
|
|
#define NEIGH_PRINTK1 NEIGH_NOPRINTK
|
|
#define NEIGH_PRINTK2 NEIGH_NOPRINTK
|
|
|
|
#if NEIGH_DEBUG >= 1
|
|
#undef NEIGH_PRINTK1
|
|
#define NEIGH_PRINTK1 NEIGH_PRINTK
|
|
#endif
|
|
#if NEIGH_DEBUG >= 2
|
|
#undef NEIGH_PRINTK2
|
|
#define NEIGH_PRINTK2 NEIGH_PRINTK
|
|
#endif
|
|
|
|
#define PNEIGH_HASHMASK 0xF
|
|
|
|
static void neigh_timer_handler(unsigned long arg);
|
|
static void __neigh_notify(struct neighbour *n, int type, int flags);
|
|
static void neigh_update_notify(struct neighbour *neigh);
|
|
static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
|
|
void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
|
|
|
|
static struct neigh_table *neigh_tables;
|
|
#ifdef CONFIG_PROC_FS
|
|
static const struct file_operations neigh_stat_seq_fops;
|
|
#endif
|
|
|
|
/*
|
|
Neighbour hash table buckets are protected with rwlock tbl->lock.
|
|
|
|
- All the scans/updates to hash buckets MUST be made under this lock.
|
|
- NOTHING clever should be made under this lock: no callbacks
|
|
to protocol backends, no attempts to send something to network.
|
|
It will result in deadlocks, if backend/driver wants to use neighbour
|
|
cache.
|
|
- If the entry requires some non-trivial actions, increase
|
|
its reference count and release table lock.
|
|
|
|
Neighbour entries are protected:
|
|
- with reference count.
|
|
- with rwlock neigh->lock
|
|
|
|
Reference count prevents destruction.
|
|
|
|
neigh->lock mainly serializes ll address data and its validity state.
|
|
However, the same lock is used to protect another entry fields:
|
|
- timer
|
|
- resolution queue
|
|
|
|
Again, nothing clever shall be made under neigh->lock,
|
|
the most complicated procedure, which we allow is dev->hard_header.
|
|
It is supposed, that dev->hard_header is simplistic and does
|
|
not make callbacks to neighbour tables.
|
|
|
|
The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
|
|
list of neighbour tables. This list is used only in process context,
|
|
*/
|
|
|
|
static DEFINE_RWLOCK(neigh_tbl_lock);
|
|
|
|
static int neigh_blackhole(struct sk_buff *skb)
|
|
{
|
|
kfree_skb(skb);
|
|
return -ENETDOWN;
|
|
}
|
|
|
|
static void neigh_cleanup_and_release(struct neighbour *neigh)
|
|
{
|
|
if (neigh->parms->neigh_cleanup)
|
|
neigh->parms->neigh_cleanup(neigh);
|
|
|
|
__neigh_notify(neigh, RTM_DELNEIGH, 0);
|
|
neigh_release(neigh);
|
|
}
|
|
|
|
/*
|
|
* It is random distribution in the interval (1/2)*base...(3/2)*base.
|
|
* It corresponds to default IPv6 settings and is not overridable,
|
|
* because it is really reasonable choice.
|
|
*/
|
|
|
|
unsigned long neigh_rand_reach_time(unsigned long base)
|
|
{
|
|
return (base ? (net_random() % base) + (base >> 1) : 0);
|
|
}
|
|
|
|
|
|
static int neigh_forced_gc(struct neigh_table *tbl)
|
|
{
|
|
int shrunk = 0;
|
|
int i;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
for (i = 0; i <= tbl->hash_mask; i++) {
|
|
struct neighbour *n, **np;
|
|
|
|
np = &tbl->hash_buckets[i];
|
|
while ((n = *np) != NULL) {
|
|
/* Neighbour record may be discarded if:
|
|
* - nobody refers to it.
|
|
* - it is not permanent
|
|
*/
|
|
write_lock(&n->lock);
|
|
if (atomic_read(&n->refcnt) == 1 &&
|
|
!(n->nud_state & NUD_PERMANENT)) {
|
|
*np = n->next;
|
|
n->dead = 1;
|
|
shrunk = 1;
|
|
write_unlock(&n->lock);
|
|
neigh_cleanup_and_release(n);
|
|
continue;
|
|
}
|
|
write_unlock(&n->lock);
|
|
np = &n->next;
|
|
}
|
|
}
|
|
|
|
tbl->last_flush = jiffies;
|
|
|
|
write_unlock_bh(&tbl->lock);
|
|
|
|
return shrunk;
|
|
}
|
|
|
|
static int neigh_del_timer(struct neighbour *n)
|
|
{
|
|
if ((n->nud_state & NUD_IN_TIMER) &&
|
|
del_timer(&n->timer)) {
|
|
neigh_release(n);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pneigh_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(list)) != NULL) {
|
|
dev_put(skb->dev);
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= tbl->hash_mask; i++) {
|
|
struct neighbour *n, **np = &tbl->hash_buckets[i];
|
|
|
|
while ((n = *np) != NULL) {
|
|
if (dev && n->dev != dev) {
|
|
np = &n->next;
|
|
continue;
|
|
}
|
|
*np = n->next;
|
|
write_lock(&n->lock);
|
|
neigh_del_timer(n);
|
|
n->dead = 1;
|
|
|
|
if (atomic_read(&n->refcnt) != 1) {
|
|
/* The most unpleasant situation.
|
|
We must destroy neighbour entry,
|
|
but someone still uses it.
|
|
|
|
The destroy will be delayed until
|
|
the last user releases us, but
|
|
we must kill timers etc. and move
|
|
it to safe state.
|
|
*/
|
|
skb_queue_purge(&n->arp_queue);
|
|
n->output = neigh_blackhole;
|
|
if (n->nud_state & NUD_VALID)
|
|
n->nud_state = NUD_NOARP;
|
|
else
|
|
n->nud_state = NUD_NONE;
|
|
NEIGH_PRINTK2("neigh %p is stray.\n", n);
|
|
}
|
|
write_unlock(&n->lock);
|
|
neigh_cleanup_and_release(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
write_lock_bh(&tbl->lock);
|
|
neigh_flush_dev(tbl, dev);
|
|
write_unlock_bh(&tbl->lock);
|
|
}
|
|
|
|
int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
write_lock_bh(&tbl->lock);
|
|
neigh_flush_dev(tbl, dev);
|
|
pneigh_ifdown(tbl, dev);
|
|
write_unlock_bh(&tbl->lock);
|
|
|
|
del_timer_sync(&tbl->proxy_timer);
|
|
pneigh_queue_purge(&tbl->proxy_queue);
|
|
return 0;
|
|
}
|
|
|
|
static struct neighbour *neigh_alloc(struct neigh_table *tbl)
|
|
{
|
|
struct neighbour *n = NULL;
|
|
unsigned long now = jiffies;
|
|
int entries;
|
|
|
|
entries = atomic_inc_return(&tbl->entries) - 1;
|
|
if (entries >= tbl->gc_thresh3 ||
|
|
(entries >= tbl->gc_thresh2 &&
|
|
time_after(now, tbl->last_flush + 5 * HZ))) {
|
|
if (!neigh_forced_gc(tbl) &&
|
|
entries >= tbl->gc_thresh3)
|
|
goto out_entries;
|
|
}
|
|
|
|
n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
|
|
if (!n)
|
|
goto out_entries;
|
|
|
|
skb_queue_head_init(&n->arp_queue);
|
|
rwlock_init(&n->lock);
|
|
n->updated = n->used = now;
|
|
n->nud_state = NUD_NONE;
|
|
n->output = neigh_blackhole;
|
|
n->parms = neigh_parms_clone(&tbl->parms);
|
|
init_timer(&n->timer);
|
|
n->timer.function = neigh_timer_handler;
|
|
n->timer.data = (unsigned long)n;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, allocs);
|
|
n->tbl = tbl;
|
|
atomic_set(&n->refcnt, 1);
|
|
n->dead = 1;
|
|
out:
|
|
return n;
|
|
|
|
out_entries:
|
|
atomic_dec(&tbl->entries);
|
|
goto out;
|
|
}
|
|
|
|
static struct neighbour **neigh_hash_alloc(unsigned int entries)
|
|
{
|
|
unsigned long size = entries * sizeof(struct neighbour *);
|
|
struct neighbour **ret;
|
|
|
|
if (size <= PAGE_SIZE) {
|
|
ret = kzalloc(size, GFP_ATOMIC);
|
|
} else {
|
|
ret = (struct neighbour **)
|
|
__get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
|
|
{
|
|
unsigned long size = entries * sizeof(struct neighbour *);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
kfree(hash);
|
|
else
|
|
free_pages((unsigned long)hash, get_order(size));
|
|
}
|
|
|
|
static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
|
|
{
|
|
struct neighbour **new_hash, **old_hash;
|
|
unsigned int i, new_hash_mask, old_entries;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, hash_grows);
|
|
|
|
BUG_ON(!is_power_of_2(new_entries));
|
|
new_hash = neigh_hash_alloc(new_entries);
|
|
if (!new_hash)
|
|
return;
|
|
|
|
old_entries = tbl->hash_mask + 1;
|
|
new_hash_mask = new_entries - 1;
|
|
old_hash = tbl->hash_buckets;
|
|
|
|
get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
|
|
for (i = 0; i < old_entries; i++) {
|
|
struct neighbour *n, *next;
|
|
|
|
for (n = old_hash[i]; n; n = next) {
|
|
unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
|
|
|
|
hash_val &= new_hash_mask;
|
|
next = n->next;
|
|
|
|
n->next = new_hash[hash_val];
|
|
new_hash[hash_val] = n;
|
|
}
|
|
}
|
|
tbl->hash_buckets = new_hash;
|
|
tbl->hash_mask = new_hash_mask;
|
|
|
|
neigh_hash_free(old_hash, old_entries);
|
|
}
|
|
|
|
struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev)
|
|
{
|
|
struct neighbour *n;
|
|
int key_len = tbl->key_len;
|
|
u32 hash_val = tbl->hash(pkey, dev);
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, lookups);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
|
|
if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
|
|
neigh_hold(n);
|
|
NEIGH_CACHE_STAT_INC(tbl, hits);
|
|
break;
|
|
}
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
return n;
|
|
}
|
|
|
|
struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
|
|
{
|
|
struct neighbour *n;
|
|
int key_len = tbl->key_len;
|
|
u32 hash_val = tbl->hash(pkey, NULL);
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, lookups);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
|
|
if (!memcmp(n->primary_key, pkey, key_len)) {
|
|
neigh_hold(n);
|
|
NEIGH_CACHE_STAT_INC(tbl, hits);
|
|
break;
|
|
}
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
return n;
|
|
}
|
|
|
|
struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev)
|
|
{
|
|
u32 hash_val;
|
|
int key_len = tbl->key_len;
|
|
int error;
|
|
struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
|
|
|
|
if (!n) {
|
|
rc = ERR_PTR(-ENOBUFS);
|
|
goto out;
|
|
}
|
|
|
|
memcpy(n->primary_key, pkey, key_len);
|
|
n->dev = dev;
|
|
dev_hold(dev);
|
|
|
|
/* Protocol specific setup. */
|
|
if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
|
|
rc = ERR_PTR(error);
|
|
goto out_neigh_release;
|
|
}
|
|
|
|
/* Device specific setup. */
|
|
if (n->parms->neigh_setup &&
|
|
(error = n->parms->neigh_setup(n)) < 0) {
|
|
rc = ERR_PTR(error);
|
|
goto out_neigh_release;
|
|
}
|
|
|
|
n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
|
|
if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
|
|
neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
|
|
|
|
hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
|
|
|
|
if (n->parms->dead) {
|
|
rc = ERR_PTR(-EINVAL);
|
|
goto out_tbl_unlock;
|
|
}
|
|
|
|
for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
|
|
if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
|
|
neigh_hold(n1);
|
|
rc = n1;
|
|
goto out_tbl_unlock;
|
|
}
|
|
}
|
|
|
|
n->next = tbl->hash_buckets[hash_val];
|
|
tbl->hash_buckets[hash_val] = n;
|
|
n->dead = 0;
|
|
neigh_hold(n);
|
|
write_unlock_bh(&tbl->lock);
|
|
NEIGH_PRINTK2("neigh %p is created.\n", n);
|
|
rc = n;
|
|
out:
|
|
return rc;
|
|
out_tbl_unlock:
|
|
write_unlock_bh(&tbl->lock);
|
|
out_neigh_release:
|
|
neigh_release(n);
|
|
goto out;
|
|
}
|
|
|
|
struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev, int creat)
|
|
{
|
|
struct pneigh_entry *n;
|
|
int key_len = tbl->key_len;
|
|
u32 hash_val = *(u32 *)(pkey + key_len - 4);
|
|
|
|
hash_val ^= (hash_val >> 16);
|
|
hash_val ^= hash_val >> 8;
|
|
hash_val ^= hash_val >> 4;
|
|
hash_val &= PNEIGH_HASHMASK;
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
|
|
for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
|
|
if (!memcmp(n->key, pkey, key_len) &&
|
|
(n->dev == dev || !n->dev)) {
|
|
read_unlock_bh(&tbl->lock);
|
|
goto out;
|
|
}
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
n = NULL;
|
|
if (!creat)
|
|
goto out;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
|
|
if (!n)
|
|
goto out;
|
|
|
|
memcpy(n->key, pkey, key_len);
|
|
n->dev = dev;
|
|
if (dev)
|
|
dev_hold(dev);
|
|
|
|
if (tbl->pconstructor && tbl->pconstructor(n)) {
|
|
if (dev)
|
|
dev_put(dev);
|
|
kfree(n);
|
|
n = NULL;
|
|
goto out;
|
|
}
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
n->next = tbl->phash_buckets[hash_val];
|
|
tbl->phash_buckets[hash_val] = n;
|
|
write_unlock_bh(&tbl->lock);
|
|
out:
|
|
return n;
|
|
}
|
|
|
|
|
|
int pneigh_delete(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev)
|
|
{
|
|
struct pneigh_entry *n, **np;
|
|
int key_len = tbl->key_len;
|
|
u32 hash_val = *(u32 *)(pkey + key_len - 4);
|
|
|
|
hash_val ^= (hash_val >> 16);
|
|
hash_val ^= hash_val >> 8;
|
|
hash_val ^= hash_val >> 4;
|
|
hash_val &= PNEIGH_HASHMASK;
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
|
|
np = &n->next) {
|
|
if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
|
|
*np = n->next;
|
|
write_unlock_bh(&tbl->lock);
|
|
if (tbl->pdestructor)
|
|
tbl->pdestructor(n);
|
|
if (n->dev)
|
|
dev_put(n->dev);
|
|
kfree(n);
|
|
return 0;
|
|
}
|
|
}
|
|
write_unlock_bh(&tbl->lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
struct pneigh_entry *n, **np;
|
|
u32 h;
|
|
|
|
for (h = 0; h <= PNEIGH_HASHMASK; h++) {
|
|
np = &tbl->phash_buckets[h];
|
|
while ((n = *np) != NULL) {
|
|
if (!dev || n->dev == dev) {
|
|
*np = n->next;
|
|
if (tbl->pdestructor)
|
|
tbl->pdestructor(n);
|
|
if (n->dev)
|
|
dev_put(n->dev);
|
|
kfree(n);
|
|
continue;
|
|
}
|
|
np = &n->next;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
|
|
/*
|
|
* neighbour must already be out of the table;
|
|
*
|
|
*/
|
|
void neigh_destroy(struct neighbour *neigh)
|
|
{
|
|
struct hh_cache *hh;
|
|
|
|
NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
|
|
|
|
if (!neigh->dead) {
|
|
printk(KERN_WARNING
|
|
"Destroying alive neighbour %p\n", neigh);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if (neigh_del_timer(neigh))
|
|
printk(KERN_WARNING "Impossible event.\n");
|
|
|
|
while ((hh = neigh->hh) != NULL) {
|
|
neigh->hh = hh->hh_next;
|
|
hh->hh_next = NULL;
|
|
|
|
write_seqlock_bh(&hh->hh_lock);
|
|
hh->hh_output = neigh_blackhole;
|
|
write_sequnlock_bh(&hh->hh_lock);
|
|
if (atomic_dec_and_test(&hh->hh_refcnt))
|
|
kfree(hh);
|
|
}
|
|
|
|
skb_queue_purge(&neigh->arp_queue);
|
|
|
|
dev_put(neigh->dev);
|
|
neigh_parms_put(neigh->parms);
|
|
|
|
NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
|
|
|
|
atomic_dec(&neigh->tbl->entries);
|
|
kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
|
|
}
|
|
|
|
/* Neighbour state is suspicious;
|
|
disable fast path.
|
|
|
|
Called with write_locked neigh.
|
|
*/
|
|
static void neigh_suspect(struct neighbour *neigh)
|
|
{
|
|
struct hh_cache *hh;
|
|
|
|
NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
|
|
|
|
neigh->output = neigh->ops->output;
|
|
|
|
for (hh = neigh->hh; hh; hh = hh->hh_next)
|
|
hh->hh_output = neigh->ops->output;
|
|
}
|
|
|
|
/* Neighbour state is OK;
|
|
enable fast path.
|
|
|
|
Called with write_locked neigh.
|
|
*/
|
|
static void neigh_connect(struct neighbour *neigh)
|
|
{
|
|
struct hh_cache *hh;
|
|
|
|
NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
|
|
|
|
neigh->output = neigh->ops->connected_output;
|
|
|
|
for (hh = neigh->hh; hh; hh = hh->hh_next)
|
|
hh->hh_output = neigh->ops->hh_output;
|
|
}
|
|
|
|
static void neigh_periodic_timer(unsigned long arg)
|
|
{
|
|
struct neigh_table *tbl = (struct neigh_table *)arg;
|
|
struct neighbour *n, **np;
|
|
unsigned long expire, now = jiffies;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
|
|
|
|
write_lock(&tbl->lock);
|
|
|
|
/*
|
|
* periodically recompute ReachableTime from random function
|
|
*/
|
|
|
|
if (time_after(now, tbl->last_rand + 300 * HZ)) {
|
|
struct neigh_parms *p;
|
|
tbl->last_rand = now;
|
|
for (p = &tbl->parms; p; p = p->next)
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(p->base_reachable_time);
|
|
}
|
|
|
|
np = &tbl->hash_buckets[tbl->hash_chain_gc];
|
|
tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
|
|
|
|
while ((n = *np) != NULL) {
|
|
unsigned int state;
|
|
|
|
write_lock(&n->lock);
|
|
|
|
state = n->nud_state;
|
|
if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
|
|
write_unlock(&n->lock);
|
|
goto next_elt;
|
|
}
|
|
|
|
if (time_before(n->used, n->confirmed))
|
|
n->used = n->confirmed;
|
|
|
|
if (atomic_read(&n->refcnt) == 1 &&
|
|
(state == NUD_FAILED ||
|
|
time_after(now, n->used + n->parms->gc_staletime))) {
|
|
*np = n->next;
|
|
n->dead = 1;
|
|
write_unlock(&n->lock);
|
|
neigh_cleanup_and_release(n);
|
|
continue;
|
|
}
|
|
write_unlock(&n->lock);
|
|
|
|
next_elt:
|
|
np = &n->next;
|
|
}
|
|
|
|
/* Cycle through all hash buckets every base_reachable_time/2 ticks.
|
|
* ARP entry timeouts range from 1/2 base_reachable_time to 3/2
|
|
* base_reachable_time.
|
|
*/
|
|
expire = tbl->parms.base_reachable_time >> 1;
|
|
expire /= (tbl->hash_mask + 1);
|
|
if (!expire)
|
|
expire = 1;
|
|
|
|
if (expire>HZ)
|
|
mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
|
|
else
|
|
mod_timer(&tbl->gc_timer, now + expire);
|
|
|
|
write_unlock(&tbl->lock);
|
|
}
|
|
|
|
static __inline__ int neigh_max_probes(struct neighbour *n)
|
|
{
|
|
struct neigh_parms *p = n->parms;
|
|
return (n->nud_state & NUD_PROBE ?
|
|
p->ucast_probes :
|
|
p->ucast_probes + p->app_probes + p->mcast_probes);
|
|
}
|
|
|
|
static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
|
|
{
|
|
if (unlikely(mod_timer(&n->timer, when))) {
|
|
printk("NEIGH: BUG, double timer add, state is %x\n",
|
|
n->nud_state);
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
/* Called when a timer expires for a neighbour entry. */
|
|
|
|
static void neigh_timer_handler(unsigned long arg)
|
|
{
|
|
unsigned long now, next;
|
|
struct neighbour *neigh = (struct neighbour *)arg;
|
|
unsigned state;
|
|
int notify = 0;
|
|
|
|
write_lock(&neigh->lock);
|
|
|
|
state = neigh->nud_state;
|
|
now = jiffies;
|
|
next = now + HZ;
|
|
|
|
if (!(state & NUD_IN_TIMER)) {
|
|
#ifndef CONFIG_SMP
|
|
printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
if (state & NUD_REACHABLE) {
|
|
if (time_before_eq(now,
|
|
neigh->confirmed + neigh->parms->reachable_time)) {
|
|
NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
|
|
next = neigh->confirmed + neigh->parms->reachable_time;
|
|
} else if (time_before_eq(now,
|
|
neigh->used + neigh->parms->delay_probe_time)) {
|
|
NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
|
|
neigh->nud_state = NUD_DELAY;
|
|
neigh->updated = jiffies;
|
|
neigh_suspect(neigh);
|
|
next = now + neigh->parms->delay_probe_time;
|
|
} else {
|
|
NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
|
|
neigh->nud_state = NUD_STALE;
|
|
neigh->updated = jiffies;
|
|
neigh_suspect(neigh);
|
|
notify = 1;
|
|
}
|
|
} else if (state & NUD_DELAY) {
|
|
if (time_before_eq(now,
|
|
neigh->confirmed + neigh->parms->delay_probe_time)) {
|
|
NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
|
|
neigh->nud_state = NUD_REACHABLE;
|
|
neigh->updated = jiffies;
|
|
neigh_connect(neigh);
|
|
notify = 1;
|
|
next = neigh->confirmed + neigh->parms->reachable_time;
|
|
} else {
|
|
NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
|
|
neigh->nud_state = NUD_PROBE;
|
|
neigh->updated = jiffies;
|
|
atomic_set(&neigh->probes, 0);
|
|
next = now + neigh->parms->retrans_time;
|
|
}
|
|
} else {
|
|
/* NUD_PROBE|NUD_INCOMPLETE */
|
|
next = now + neigh->parms->retrans_time;
|
|
}
|
|
|
|
if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
|
|
atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
|
|
struct sk_buff *skb;
|
|
|
|
neigh->nud_state = NUD_FAILED;
|
|
neigh->updated = jiffies;
|
|
notify = 1;
|
|
NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
|
|
NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
|
|
|
|
/* It is very thin place. report_unreachable is very complicated
|
|
routine. Particularly, it can hit the same neighbour entry!
|
|
|
|
So that, we try to be accurate and avoid dead loop. --ANK
|
|
*/
|
|
while (neigh->nud_state == NUD_FAILED &&
|
|
(skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
|
|
write_unlock(&neigh->lock);
|
|
neigh->ops->error_report(neigh, skb);
|
|
write_lock(&neigh->lock);
|
|
}
|
|
skb_queue_purge(&neigh->arp_queue);
|
|
}
|
|
|
|
if (neigh->nud_state & NUD_IN_TIMER) {
|
|
if (time_before(next, jiffies + HZ/2))
|
|
next = jiffies + HZ/2;
|
|
if (!mod_timer(&neigh->timer, next))
|
|
neigh_hold(neigh);
|
|
}
|
|
if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
|
|
struct sk_buff *skb = skb_peek(&neigh->arp_queue);
|
|
/* keep skb alive even if arp_queue overflows */
|
|
if (skb)
|
|
skb_get(skb);
|
|
write_unlock(&neigh->lock);
|
|
neigh->ops->solicit(neigh, skb);
|
|
atomic_inc(&neigh->probes);
|
|
if (skb)
|
|
kfree_skb(skb);
|
|
} else {
|
|
out:
|
|
write_unlock(&neigh->lock);
|
|
}
|
|
|
|
if (notify)
|
|
neigh_update_notify(neigh);
|
|
|
|
neigh_release(neigh);
|
|
}
|
|
|
|
int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
|
|
{
|
|
int rc;
|
|
unsigned long now;
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
|
|
rc = 0;
|
|
if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
|
|
goto out_unlock_bh;
|
|
|
|
now = jiffies;
|
|
|
|
if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
|
|
if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
|
|
atomic_set(&neigh->probes, neigh->parms->ucast_probes);
|
|
neigh->nud_state = NUD_INCOMPLETE;
|
|
neigh->updated = jiffies;
|
|
neigh_hold(neigh);
|
|
neigh_add_timer(neigh, now + 1);
|
|
} else {
|
|
neigh->nud_state = NUD_FAILED;
|
|
neigh->updated = jiffies;
|
|
write_unlock_bh(&neigh->lock);
|
|
|
|
if (skb)
|
|
kfree_skb(skb);
|
|
return 1;
|
|
}
|
|
} else if (neigh->nud_state & NUD_STALE) {
|
|
NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
|
|
neigh_hold(neigh);
|
|
neigh->nud_state = NUD_DELAY;
|
|
neigh->updated = jiffies;
|
|
neigh_add_timer(neigh,
|
|
jiffies + neigh->parms->delay_probe_time);
|
|
}
|
|
|
|
if (neigh->nud_state == NUD_INCOMPLETE) {
|
|
if (skb) {
|
|
if (skb_queue_len(&neigh->arp_queue) >=
|
|
neigh->parms->queue_len) {
|
|
struct sk_buff *buff;
|
|
buff = neigh->arp_queue.next;
|
|
__skb_unlink(buff, &neigh->arp_queue);
|
|
kfree_skb(buff);
|
|
}
|
|
__skb_queue_tail(&neigh->arp_queue, skb);
|
|
}
|
|
rc = 1;
|
|
}
|
|
out_unlock_bh:
|
|
write_unlock_bh(&neigh->lock);
|
|
return rc;
|
|
}
|
|
|
|
static void neigh_update_hhs(struct neighbour *neigh)
|
|
{
|
|
struct hh_cache *hh;
|
|
void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
|
|
= neigh->dev->header_ops->cache_update;
|
|
|
|
if (update) {
|
|
for (hh = neigh->hh; hh; hh = hh->hh_next) {
|
|
write_seqlock_bh(&hh->hh_lock);
|
|
update(hh, neigh->dev, neigh->ha);
|
|
write_sequnlock_bh(&hh->hh_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Generic update routine.
|
|
-- lladdr is new lladdr or NULL, if it is not supplied.
|
|
-- new is new state.
|
|
-- flags
|
|
NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
|
|
if it is different.
|
|
NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
|
|
lladdr instead of overriding it
|
|
if it is different.
|
|
It also allows to retain current state
|
|
if lladdr is unchanged.
|
|
NEIGH_UPDATE_F_ADMIN means that the change is administrative.
|
|
|
|
NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
|
|
NTF_ROUTER flag.
|
|
NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
|
|
a router.
|
|
|
|
Caller MUST hold reference count on the entry.
|
|
*/
|
|
|
|
int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
|
|
u32 flags)
|
|
{
|
|
u8 old;
|
|
int err;
|
|
int notify = 0;
|
|
struct net_device *dev;
|
|
int update_isrouter = 0;
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
|
|
dev = neigh->dev;
|
|
old = neigh->nud_state;
|
|
err = -EPERM;
|
|
|
|
if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
|
|
(old & (NUD_NOARP | NUD_PERMANENT)))
|
|
goto out;
|
|
|
|
if (!(new & NUD_VALID)) {
|
|
neigh_del_timer(neigh);
|
|
if (old & NUD_CONNECTED)
|
|
neigh_suspect(neigh);
|
|
neigh->nud_state = new;
|
|
err = 0;
|
|
notify = old & NUD_VALID;
|
|
goto out;
|
|
}
|
|
|
|
/* Compare new lladdr with cached one */
|
|
if (!dev->addr_len) {
|
|
/* First case: device needs no address. */
|
|
lladdr = neigh->ha;
|
|
} else if (lladdr) {
|
|
/* The second case: if something is already cached
|
|
and a new address is proposed:
|
|
- compare new & old
|
|
- if they are different, check override flag
|
|
*/
|
|
if ((old & NUD_VALID) &&
|
|
!memcmp(lladdr, neigh->ha, dev->addr_len))
|
|
lladdr = neigh->ha;
|
|
} else {
|
|
/* No address is supplied; if we know something,
|
|
use it, otherwise discard the request.
|
|
*/
|
|
err = -EINVAL;
|
|
if (!(old & NUD_VALID))
|
|
goto out;
|
|
lladdr = neigh->ha;
|
|
}
|
|
|
|
if (new & NUD_CONNECTED)
|
|
neigh->confirmed = jiffies;
|
|
neigh->updated = jiffies;
|
|
|
|
/* If entry was valid and address is not changed,
|
|
do not change entry state, if new one is STALE.
|
|
*/
|
|
err = 0;
|
|
update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
|
|
if (old & NUD_VALID) {
|
|
if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
|
|
update_isrouter = 0;
|
|
if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
|
|
(old & NUD_CONNECTED)) {
|
|
lladdr = neigh->ha;
|
|
new = NUD_STALE;
|
|
} else
|
|
goto out;
|
|
} else {
|
|
if (lladdr == neigh->ha && new == NUD_STALE &&
|
|
((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
|
|
(old & NUD_CONNECTED))
|
|
)
|
|
new = old;
|
|
}
|
|
}
|
|
|
|
if (new != old) {
|
|
neigh_del_timer(neigh);
|
|
if (new & NUD_IN_TIMER) {
|
|
neigh_hold(neigh);
|
|
neigh_add_timer(neigh, (jiffies +
|
|
((new & NUD_REACHABLE) ?
|
|
neigh->parms->reachable_time :
|
|
0)));
|
|
}
|
|
neigh->nud_state = new;
|
|
}
|
|
|
|
if (lladdr != neigh->ha) {
|
|
memcpy(&neigh->ha, lladdr, dev->addr_len);
|
|
neigh_update_hhs(neigh);
|
|
if (!(new & NUD_CONNECTED))
|
|
neigh->confirmed = jiffies -
|
|
(neigh->parms->base_reachable_time << 1);
|
|
notify = 1;
|
|
}
|
|
if (new == old)
|
|
goto out;
|
|
if (new & NUD_CONNECTED)
|
|
neigh_connect(neigh);
|
|
else
|
|
neigh_suspect(neigh);
|
|
if (!(old & NUD_VALID)) {
|
|
struct sk_buff *skb;
|
|
|
|
/* Again: avoid dead loop if something went wrong */
|
|
|
|
while (neigh->nud_state & NUD_VALID &&
|
|
(skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
|
|
struct neighbour *n1 = neigh;
|
|
write_unlock_bh(&neigh->lock);
|
|
/* On shaper/eql skb->dst->neighbour != neigh :( */
|
|
if (skb->dst && skb->dst->neighbour)
|
|
n1 = skb->dst->neighbour;
|
|
n1->output(skb);
|
|
write_lock_bh(&neigh->lock);
|
|
}
|
|
skb_queue_purge(&neigh->arp_queue);
|
|
}
|
|
out:
|
|
if (update_isrouter) {
|
|
neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
|
|
(neigh->flags | NTF_ROUTER) :
|
|
(neigh->flags & ~NTF_ROUTER);
|
|
}
|
|
write_unlock_bh(&neigh->lock);
|
|
|
|
if (notify)
|
|
neigh_update_notify(neigh);
|
|
|
|
return err;
|
|
}
|
|
|
|
struct neighbour *neigh_event_ns(struct neigh_table *tbl,
|
|
u8 *lladdr, void *saddr,
|
|
struct net_device *dev)
|
|
{
|
|
struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
|
|
lladdr || !dev->addr_len);
|
|
if (neigh)
|
|
neigh_update(neigh, lladdr, NUD_STALE,
|
|
NEIGH_UPDATE_F_OVERRIDE);
|
|
return neigh;
|
|
}
|
|
|
|
static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
|
|
__be16 protocol)
|
|
{
|
|
struct hh_cache *hh;
|
|
struct net_device *dev = dst->dev;
|
|
|
|
for (hh = n->hh; hh; hh = hh->hh_next)
|
|
if (hh->hh_type == protocol)
|
|
break;
|
|
|
|
if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
|
|
seqlock_init(&hh->hh_lock);
|
|
hh->hh_type = protocol;
|
|
atomic_set(&hh->hh_refcnt, 0);
|
|
hh->hh_next = NULL;
|
|
|
|
if (dev->header_ops->cache(n, hh)) {
|
|
kfree(hh);
|
|
hh = NULL;
|
|
} else {
|
|
atomic_inc(&hh->hh_refcnt);
|
|
hh->hh_next = n->hh;
|
|
n->hh = hh;
|
|
if (n->nud_state & NUD_CONNECTED)
|
|
hh->hh_output = n->ops->hh_output;
|
|
else
|
|
hh->hh_output = n->ops->output;
|
|
}
|
|
}
|
|
if (hh) {
|
|
atomic_inc(&hh->hh_refcnt);
|
|
dst->hh = hh;
|
|
}
|
|
}
|
|
|
|
/* This function can be used in contexts, where only old dev_queue_xmit
|
|
worked, f.e. if you want to override normal output path (eql, shaper),
|
|
but resolution is not made yet.
|
|
*/
|
|
|
|
int neigh_compat_output(struct sk_buff *skb)
|
|
{
|
|
struct net_device *dev = skb->dev;
|
|
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
|
|
if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
|
|
skb->len) < 0 &&
|
|
dev->header_ops->rebuild(skb))
|
|
return 0;
|
|
|
|
return dev_queue_xmit(skb);
|
|
}
|
|
|
|
/* Slow and careful. */
|
|
|
|
int neigh_resolve_output(struct sk_buff *skb)
|
|
{
|
|
struct dst_entry *dst = skb->dst;
|
|
struct neighbour *neigh;
|
|
int rc = 0;
|
|
|
|
if (!dst || !(neigh = dst->neighbour))
|
|
goto discard;
|
|
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
|
|
if (!neigh_event_send(neigh, skb)) {
|
|
int err;
|
|
struct net_device *dev = neigh->dev;
|
|
if (dev->header_ops->cache && !dst->hh) {
|
|
write_lock_bh(&neigh->lock);
|
|
if (!dst->hh)
|
|
neigh_hh_init(neigh, dst, dst->ops->protocol);
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
neigh->ha, NULL, skb->len);
|
|
write_unlock_bh(&neigh->lock);
|
|
} else {
|
|
read_lock_bh(&neigh->lock);
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
neigh->ha, NULL, skb->len);
|
|
read_unlock_bh(&neigh->lock);
|
|
}
|
|
if (err >= 0)
|
|
rc = neigh->ops->queue_xmit(skb);
|
|
else
|
|
goto out_kfree_skb;
|
|
}
|
|
out:
|
|
return rc;
|
|
discard:
|
|
NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
|
|
dst, dst ? dst->neighbour : NULL);
|
|
out_kfree_skb:
|
|
rc = -EINVAL;
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
/* As fast as possible without hh cache */
|
|
|
|
int neigh_connected_output(struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
struct dst_entry *dst = skb->dst;
|
|
struct neighbour *neigh = dst->neighbour;
|
|
struct net_device *dev = neigh->dev;
|
|
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
|
|
read_lock_bh(&neigh->lock);
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
neigh->ha, NULL, skb->len);
|
|
read_unlock_bh(&neigh->lock);
|
|
if (err >= 0)
|
|
err = neigh->ops->queue_xmit(skb);
|
|
else {
|
|
err = -EINVAL;
|
|
kfree_skb(skb);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void neigh_proxy_process(unsigned long arg)
|
|
{
|
|
struct neigh_table *tbl = (struct neigh_table *)arg;
|
|
long sched_next = 0;
|
|
unsigned long now = jiffies;
|
|
struct sk_buff *skb;
|
|
|
|
spin_lock(&tbl->proxy_queue.lock);
|
|
|
|
skb = tbl->proxy_queue.next;
|
|
|
|
while (skb != (struct sk_buff *)&tbl->proxy_queue) {
|
|
struct sk_buff *back = skb;
|
|
long tdif = NEIGH_CB(back)->sched_next - now;
|
|
|
|
skb = skb->next;
|
|
if (tdif <= 0) {
|
|
struct net_device *dev = back->dev;
|
|
__skb_unlink(back, &tbl->proxy_queue);
|
|
if (tbl->proxy_redo && netif_running(dev))
|
|
tbl->proxy_redo(back);
|
|
else
|
|
kfree_skb(back);
|
|
|
|
dev_put(dev);
|
|
} else if (!sched_next || tdif < sched_next)
|
|
sched_next = tdif;
|
|
}
|
|
del_timer(&tbl->proxy_timer);
|
|
if (sched_next)
|
|
mod_timer(&tbl->proxy_timer, jiffies + sched_next);
|
|
spin_unlock(&tbl->proxy_queue.lock);
|
|
}
|
|
|
|
void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long sched_next = now + (net_random() % p->proxy_delay);
|
|
|
|
if (tbl->proxy_queue.qlen > p->proxy_qlen) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
NEIGH_CB(skb)->sched_next = sched_next;
|
|
NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
|
|
|
|
spin_lock(&tbl->proxy_queue.lock);
|
|
if (del_timer(&tbl->proxy_timer)) {
|
|
if (time_before(tbl->proxy_timer.expires, sched_next))
|
|
sched_next = tbl->proxy_timer.expires;
|
|
}
|
|
dst_release(skb->dst);
|
|
skb->dst = NULL;
|
|
dev_hold(skb->dev);
|
|
__skb_queue_tail(&tbl->proxy_queue, skb);
|
|
mod_timer(&tbl->proxy_timer, sched_next);
|
|
spin_unlock(&tbl->proxy_queue.lock);
|
|
}
|
|
|
|
|
|
struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
|
|
struct neigh_table *tbl)
|
|
{
|
|
struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
|
|
|
|
if (p) {
|
|
p->tbl = tbl;
|
|
atomic_set(&p->refcnt, 1);
|
|
INIT_RCU_HEAD(&p->rcu_head);
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(p->base_reachable_time);
|
|
if (dev) {
|
|
if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
|
|
kfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
dev_hold(dev);
|
|
p->dev = dev;
|
|
}
|
|
p->sysctl_table = NULL;
|
|
write_lock_bh(&tbl->lock);
|
|
p->next = tbl->parms.next;
|
|
tbl->parms.next = p;
|
|
write_unlock_bh(&tbl->lock);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static void neigh_rcu_free_parms(struct rcu_head *head)
|
|
{
|
|
struct neigh_parms *parms =
|
|
container_of(head, struct neigh_parms, rcu_head);
|
|
|
|
neigh_parms_put(parms);
|
|
}
|
|
|
|
void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
|
|
{
|
|
struct neigh_parms **p;
|
|
|
|
if (!parms || parms == &tbl->parms)
|
|
return;
|
|
write_lock_bh(&tbl->lock);
|
|
for (p = &tbl->parms.next; *p; p = &(*p)->next) {
|
|
if (*p == parms) {
|
|
*p = parms->next;
|
|
parms->dead = 1;
|
|
write_unlock_bh(&tbl->lock);
|
|
if (parms->dev)
|
|
dev_put(parms->dev);
|
|
call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
|
|
return;
|
|
}
|
|
}
|
|
write_unlock_bh(&tbl->lock);
|
|
NEIGH_PRINTK1("neigh_parms_release: not found\n");
|
|
}
|
|
|
|
void neigh_parms_destroy(struct neigh_parms *parms)
|
|
{
|
|
kfree(parms);
|
|
}
|
|
|
|
static struct lock_class_key neigh_table_proxy_queue_class;
|
|
|
|
void neigh_table_init_no_netlink(struct neigh_table *tbl)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long phsize;
|
|
|
|
atomic_set(&tbl->parms.refcnt, 1);
|
|
INIT_RCU_HEAD(&tbl->parms.rcu_head);
|
|
tbl->parms.reachable_time =
|
|
neigh_rand_reach_time(tbl->parms.base_reachable_time);
|
|
|
|
if (!tbl->kmem_cachep)
|
|
tbl->kmem_cachep =
|
|
kmem_cache_create(tbl->id, tbl->entry_size, 0,
|
|
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
|
|
NULL);
|
|
tbl->stats = alloc_percpu(struct neigh_statistics);
|
|
if (!tbl->stats)
|
|
panic("cannot create neighbour cache statistics");
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
|
|
if (!tbl->pde)
|
|
panic("cannot create neighbour proc dir entry");
|
|
tbl->pde->proc_fops = &neigh_stat_seq_fops;
|
|
tbl->pde->data = tbl;
|
|
#endif
|
|
|
|
tbl->hash_mask = 1;
|
|
tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
|
|
|
|
phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
|
|
tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
|
|
|
|
if (!tbl->hash_buckets || !tbl->phash_buckets)
|
|
panic("cannot allocate neighbour cache hashes");
|
|
|
|
get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
|
|
|
|
rwlock_init(&tbl->lock);
|
|
init_timer(&tbl->gc_timer);
|
|
tbl->gc_timer.data = (unsigned long)tbl;
|
|
tbl->gc_timer.function = neigh_periodic_timer;
|
|
tbl->gc_timer.expires = now + 1;
|
|
add_timer(&tbl->gc_timer);
|
|
|
|
init_timer(&tbl->proxy_timer);
|
|
tbl->proxy_timer.data = (unsigned long)tbl;
|
|
tbl->proxy_timer.function = neigh_proxy_process;
|
|
skb_queue_head_init_class(&tbl->proxy_queue,
|
|
&neigh_table_proxy_queue_class);
|
|
|
|
tbl->last_flush = now;
|
|
tbl->last_rand = now + tbl->parms.reachable_time * 20;
|
|
}
|
|
|
|
void neigh_table_init(struct neigh_table *tbl)
|
|
{
|
|
struct neigh_table *tmp;
|
|
|
|
neigh_table_init_no_netlink(tbl);
|
|
write_lock(&neigh_tbl_lock);
|
|
for (tmp = neigh_tables; tmp; tmp = tmp->next) {
|
|
if (tmp->family == tbl->family)
|
|
break;
|
|
}
|
|
tbl->next = neigh_tables;
|
|
neigh_tables = tbl;
|
|
write_unlock(&neigh_tbl_lock);
|
|
|
|
if (unlikely(tmp)) {
|
|
printk(KERN_ERR "NEIGH: Registering multiple tables for "
|
|
"family %d\n", tbl->family);
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
int neigh_table_clear(struct neigh_table *tbl)
|
|
{
|
|
struct neigh_table **tp;
|
|
|
|
/* It is not clean... Fix it to unload IPv6 module safely */
|
|
del_timer_sync(&tbl->gc_timer);
|
|
del_timer_sync(&tbl->proxy_timer);
|
|
pneigh_queue_purge(&tbl->proxy_queue);
|
|
neigh_ifdown(tbl, NULL);
|
|
if (atomic_read(&tbl->entries))
|
|
printk(KERN_CRIT "neighbour leakage\n");
|
|
write_lock(&neigh_tbl_lock);
|
|
for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
|
|
if (*tp == tbl) {
|
|
*tp = tbl->next;
|
|
break;
|
|
}
|
|
}
|
|
write_unlock(&neigh_tbl_lock);
|
|
|
|
neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
|
|
tbl->hash_buckets = NULL;
|
|
|
|
kfree(tbl->phash_buckets);
|
|
tbl->phash_buckets = NULL;
|
|
|
|
remove_proc_entry(tbl->id, init_net.proc_net_stat);
|
|
|
|
free_percpu(tbl->stats);
|
|
tbl->stats = NULL;
|
|
|
|
kmem_cache_destroy(tbl->kmem_cachep);
|
|
tbl->kmem_cachep = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct net *net = skb->sk->sk_net;
|
|
struct ndmsg *ndm;
|
|
struct nlattr *dst_attr;
|
|
struct neigh_table *tbl;
|
|
struct net_device *dev = NULL;
|
|
int err = -EINVAL;
|
|
|
|
if (nlmsg_len(nlh) < sizeof(*ndm))
|
|
goto out;
|
|
|
|
dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
|
|
if (dst_attr == NULL)
|
|
goto out;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
if (ndm->ndm_ifindex) {
|
|
dev = dev_get_by_index(net, ndm->ndm_ifindex);
|
|
if (dev == NULL) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
read_lock(&neigh_tbl_lock);
|
|
for (tbl = neigh_tables; tbl; tbl = tbl->next) {
|
|
struct neighbour *neigh;
|
|
|
|
if (tbl->family != ndm->ndm_family)
|
|
continue;
|
|
read_unlock(&neigh_tbl_lock);
|
|
|
|
if (nla_len(dst_attr) < tbl->key_len)
|
|
goto out_dev_put;
|
|
|
|
if (ndm->ndm_flags & NTF_PROXY) {
|
|
err = pneigh_delete(tbl, nla_data(dst_attr), dev);
|
|
goto out_dev_put;
|
|
}
|
|
|
|
if (dev == NULL)
|
|
goto out_dev_put;
|
|
|
|
neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
|
|
if (neigh == NULL) {
|
|
err = -ENOENT;
|
|
goto out_dev_put;
|
|
}
|
|
|
|
err = neigh_update(neigh, NULL, NUD_FAILED,
|
|
NEIGH_UPDATE_F_OVERRIDE |
|
|
NEIGH_UPDATE_F_ADMIN);
|
|
neigh_release(neigh);
|
|
goto out_dev_put;
|
|
}
|
|
read_unlock(&neigh_tbl_lock);
|
|
err = -EAFNOSUPPORT;
|
|
|
|
out_dev_put:
|
|
if (dev)
|
|
dev_put(dev);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct net *net = skb->sk->sk_net;
|
|
struct ndmsg *ndm;
|
|
struct nlattr *tb[NDA_MAX+1];
|
|
struct neigh_table *tbl;
|
|
struct net_device *dev = NULL;
|
|
int err;
|
|
|
|
err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = -EINVAL;
|
|
if (tb[NDA_DST] == NULL)
|
|
goto out;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
if (ndm->ndm_ifindex) {
|
|
dev = dev_get_by_index(net, ndm->ndm_ifindex);
|
|
if (dev == NULL) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
|
|
goto out_dev_put;
|
|
}
|
|
|
|
read_lock(&neigh_tbl_lock);
|
|
for (tbl = neigh_tables; tbl; tbl = tbl->next) {
|
|
int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
|
|
struct neighbour *neigh;
|
|
void *dst, *lladdr;
|
|
|
|
if (tbl->family != ndm->ndm_family)
|
|
continue;
|
|
read_unlock(&neigh_tbl_lock);
|
|
|
|
if (nla_len(tb[NDA_DST]) < tbl->key_len)
|
|
goto out_dev_put;
|
|
dst = nla_data(tb[NDA_DST]);
|
|
lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
|
|
|
|
if (ndm->ndm_flags & NTF_PROXY) {
|
|
struct pneigh_entry *pn;
|
|
|
|
err = -ENOBUFS;
|
|
pn = pneigh_lookup(tbl, dst, dev, 1);
|
|
if (pn) {
|
|
pn->flags = ndm->ndm_flags;
|
|
err = 0;
|
|
}
|
|
goto out_dev_put;
|
|
}
|
|
|
|
if (dev == NULL)
|
|
goto out_dev_put;
|
|
|
|
neigh = neigh_lookup(tbl, dst, dev);
|
|
if (neigh == NULL) {
|
|
if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
|
|
err = -ENOENT;
|
|
goto out_dev_put;
|
|
}
|
|
|
|
neigh = __neigh_lookup_errno(tbl, dst, dev);
|
|
if (IS_ERR(neigh)) {
|
|
err = PTR_ERR(neigh);
|
|
goto out_dev_put;
|
|
}
|
|
} else {
|
|
if (nlh->nlmsg_flags & NLM_F_EXCL) {
|
|
err = -EEXIST;
|
|
neigh_release(neigh);
|
|
goto out_dev_put;
|
|
}
|
|
|
|
if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
|
|
flags &= ~NEIGH_UPDATE_F_OVERRIDE;
|
|
}
|
|
|
|
err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
|
|
neigh_release(neigh);
|
|
goto out_dev_put;
|
|
}
|
|
|
|
read_unlock(&neigh_tbl_lock);
|
|
err = -EAFNOSUPPORT;
|
|
|
|
out_dev_put:
|
|
if (dev)
|
|
dev_put(dev);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
|
|
{
|
|
struct nlattr *nest;
|
|
|
|
nest = nla_nest_start(skb, NDTA_PARMS);
|
|
if (nest == NULL)
|
|
return -ENOBUFS;
|
|
|
|
if (parms->dev)
|
|
NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
|
|
|
|
NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
|
|
NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
|
|
NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
|
|
NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
|
|
NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
|
|
NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
|
|
NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
|
|
NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
|
|
parms->base_reachable_time);
|
|
NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
|
|
NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
|
|
NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
|
|
NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
|
|
NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
|
|
NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
|
|
|
|
return nla_nest_end(skb, nest);
|
|
|
|
nla_put_failure:
|
|
return nla_nest_cancel(skb, nest);
|
|
}
|
|
|
|
static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
|
|
u32 pid, u32 seq, int type, int flags)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ndtmsg *ndtmsg;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
ndtmsg->ndtm_family = tbl->family;
|
|
ndtmsg->ndtm_pad1 = 0;
|
|
ndtmsg->ndtm_pad2 = 0;
|
|
|
|
NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
|
|
NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
|
|
NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
|
|
NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
|
|
NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
|
|
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned int flush_delta = now - tbl->last_flush;
|
|
unsigned int rand_delta = now - tbl->last_rand;
|
|
|
|
struct ndt_config ndc = {
|
|
.ndtc_key_len = tbl->key_len,
|
|
.ndtc_entry_size = tbl->entry_size,
|
|
.ndtc_entries = atomic_read(&tbl->entries),
|
|
.ndtc_last_flush = jiffies_to_msecs(flush_delta),
|
|
.ndtc_last_rand = jiffies_to_msecs(rand_delta),
|
|
.ndtc_hash_rnd = tbl->hash_rnd,
|
|
.ndtc_hash_mask = tbl->hash_mask,
|
|
.ndtc_hash_chain_gc = tbl->hash_chain_gc,
|
|
.ndtc_proxy_qlen = tbl->proxy_queue.qlen,
|
|
};
|
|
|
|
NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
|
|
}
|
|
|
|
{
|
|
int cpu;
|
|
struct ndt_stats ndst;
|
|
|
|
memset(&ndst, 0, sizeof(ndst));
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct neigh_statistics *st;
|
|
|
|
st = per_cpu_ptr(tbl->stats, cpu);
|
|
ndst.ndts_allocs += st->allocs;
|
|
ndst.ndts_destroys += st->destroys;
|
|
ndst.ndts_hash_grows += st->hash_grows;
|
|
ndst.ndts_res_failed += st->res_failed;
|
|
ndst.ndts_lookups += st->lookups;
|
|
ndst.ndts_hits += st->hits;
|
|
ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
|
|
ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
|
|
ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
|
|
ndst.ndts_forced_gc_runs += st->forced_gc_runs;
|
|
}
|
|
|
|
NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
|
|
}
|
|
|
|
BUG_ON(tbl->parms.dev);
|
|
if (neightbl_fill_parms(skb, &tbl->parms) < 0)
|
|
goto nla_put_failure;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
return nlmsg_end(skb, nlh);
|
|
|
|
nla_put_failure:
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int neightbl_fill_param_info(struct sk_buff *skb,
|
|
struct neigh_table *tbl,
|
|
struct neigh_parms *parms,
|
|
u32 pid, u32 seq, int type,
|
|
unsigned int flags)
|
|
{
|
|
struct ndtmsg *ndtmsg;
|
|
struct nlmsghdr *nlh;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
ndtmsg->ndtm_family = tbl->family;
|
|
ndtmsg->ndtm_pad1 = 0;
|
|
ndtmsg->ndtm_pad2 = 0;
|
|
|
|
if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
|
|
neightbl_fill_parms(skb, parms) < 0)
|
|
goto errout;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
return nlmsg_end(skb, nlh);
|
|
errout:
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
|
|
int ifindex)
|
|
{
|
|
struct neigh_parms *p;
|
|
|
|
for (p = &tbl->parms; p; p = p->next)
|
|
if ((p->dev && p->dev->ifindex == ifindex) ||
|
|
(!p->dev && !ifindex))
|
|
return p;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
|
|
[NDTA_NAME] = { .type = NLA_STRING },
|
|
[NDTA_THRESH1] = { .type = NLA_U32 },
|
|
[NDTA_THRESH2] = { .type = NLA_U32 },
|
|
[NDTA_THRESH3] = { .type = NLA_U32 },
|
|
[NDTA_GC_INTERVAL] = { .type = NLA_U64 },
|
|
[NDTA_PARMS] = { .type = NLA_NESTED },
|
|
};
|
|
|
|
static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
|
|
[NDTPA_IFINDEX] = { .type = NLA_U32 },
|
|
[NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
|
|
[NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
|
|
[NDTPA_APP_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_GC_STALETIME] = { .type = NLA_U64 },
|
|
[NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
|
|
[NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
|
|
[NDTPA_LOCKTIME] = { .type = NLA_U64 },
|
|
};
|
|
|
|
static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
|
|
{
|
|
struct neigh_table *tbl;
|
|
struct ndtmsg *ndtmsg;
|
|
struct nlattr *tb[NDTA_MAX+1];
|
|
int err;
|
|
|
|
err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
|
|
nl_neightbl_policy);
|
|
if (err < 0)
|
|
goto errout;
|
|
|
|
if (tb[NDTA_NAME] == NULL) {
|
|
err = -EINVAL;
|
|
goto errout;
|
|
}
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
read_lock(&neigh_tbl_lock);
|
|
for (tbl = neigh_tables; tbl; tbl = tbl->next) {
|
|
if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
|
|
continue;
|
|
|
|
if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
|
|
break;
|
|
}
|
|
|
|
if (tbl == NULL) {
|
|
err = -ENOENT;
|
|
goto errout_locked;
|
|
}
|
|
|
|
/*
|
|
* We acquire tbl->lock to be nice to the periodic timers and
|
|
* make sure they always see a consistent set of values.
|
|
*/
|
|
write_lock_bh(&tbl->lock);
|
|
|
|
if (tb[NDTA_PARMS]) {
|
|
struct nlattr *tbp[NDTPA_MAX+1];
|
|
struct neigh_parms *p;
|
|
int i, ifindex = 0;
|
|
|
|
err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
|
|
nl_ntbl_parm_policy);
|
|
if (err < 0)
|
|
goto errout_tbl_lock;
|
|
|
|
if (tbp[NDTPA_IFINDEX])
|
|
ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
|
|
|
|
p = lookup_neigh_params(tbl, ifindex);
|
|
if (p == NULL) {
|
|
err = -ENOENT;
|
|
goto errout_tbl_lock;
|
|
}
|
|
|
|
for (i = 1; i <= NDTPA_MAX; i++) {
|
|
if (tbp[i] == NULL)
|
|
continue;
|
|
|
|
switch (i) {
|
|
case NDTPA_QUEUE_LEN:
|
|
p->queue_len = nla_get_u32(tbp[i]);
|
|
break;
|
|
case NDTPA_PROXY_QLEN:
|
|
p->proxy_qlen = nla_get_u32(tbp[i]);
|
|
break;
|
|
case NDTPA_APP_PROBES:
|
|
p->app_probes = nla_get_u32(tbp[i]);
|
|
break;
|
|
case NDTPA_UCAST_PROBES:
|
|
p->ucast_probes = nla_get_u32(tbp[i]);
|
|
break;
|
|
case NDTPA_MCAST_PROBES:
|
|
p->mcast_probes = nla_get_u32(tbp[i]);
|
|
break;
|
|
case NDTPA_BASE_REACHABLE_TIME:
|
|
p->base_reachable_time = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_GC_STALETIME:
|
|
p->gc_staletime = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_DELAY_PROBE_TIME:
|
|
p->delay_probe_time = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_RETRANS_TIME:
|
|
p->retrans_time = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_ANYCAST_DELAY:
|
|
p->anycast_delay = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_PROXY_DELAY:
|
|
p->proxy_delay = nla_get_msecs(tbp[i]);
|
|
break;
|
|
case NDTPA_LOCKTIME:
|
|
p->locktime = nla_get_msecs(tbp[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tb[NDTA_THRESH1])
|
|
tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
|
|
|
|
if (tb[NDTA_THRESH2])
|
|
tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
|
|
|
|
if (tb[NDTA_THRESH3])
|
|
tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
|
|
|
|
if (tb[NDTA_GC_INTERVAL])
|
|
tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
|
|
|
|
err = 0;
|
|
|
|
errout_tbl_lock:
|
|
write_unlock_bh(&tbl->lock);
|
|
errout_locked:
|
|
read_unlock(&neigh_tbl_lock);
|
|
errout:
|
|
return err;
|
|
}
|
|
|
|
static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
int family, tidx, nidx = 0;
|
|
int tbl_skip = cb->args[0];
|
|
int neigh_skip = cb->args[1];
|
|
struct neigh_table *tbl;
|
|
|
|
family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
|
|
|
|
read_lock(&neigh_tbl_lock);
|
|
for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
|
|
struct neigh_parms *p;
|
|
|
|
if (tidx < tbl_skip || (family && tbl->family != family))
|
|
continue;
|
|
|
|
if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
|
|
cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
|
|
NLM_F_MULTI) <= 0)
|
|
break;
|
|
|
|
for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
|
|
if (nidx < neigh_skip)
|
|
continue;
|
|
|
|
if (neightbl_fill_param_info(skb, tbl, p,
|
|
NETLINK_CB(cb->skb).pid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWNEIGHTBL,
|
|
NLM_F_MULTI) <= 0)
|
|
goto out;
|
|
}
|
|
|
|
neigh_skip = 0;
|
|
}
|
|
out:
|
|
read_unlock(&neigh_tbl_lock);
|
|
cb->args[0] = tidx;
|
|
cb->args[1] = nidx;
|
|
|
|
return skb->len;
|
|
}
|
|
|
|
static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
|
|
u32 pid, u32 seq, int type, unsigned int flags)
|
|
{
|
|
unsigned long now = jiffies;
|
|
struct nda_cacheinfo ci;
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
ndm->ndm_family = neigh->ops->family;
|
|
ndm->ndm_pad1 = 0;
|
|
ndm->ndm_pad2 = 0;
|
|
ndm->ndm_flags = neigh->flags;
|
|
ndm->ndm_type = neigh->type;
|
|
ndm->ndm_ifindex = neigh->dev->ifindex;
|
|
|
|
NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
|
|
|
|
read_lock_bh(&neigh->lock);
|
|
ndm->ndm_state = neigh->nud_state;
|
|
if ((neigh->nud_state & NUD_VALID) &&
|
|
nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
|
|
read_unlock_bh(&neigh->lock);
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
ci.ndm_used = now - neigh->used;
|
|
ci.ndm_confirmed = now - neigh->confirmed;
|
|
ci.ndm_updated = now - neigh->updated;
|
|
ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
|
|
read_unlock_bh(&neigh->lock);
|
|
|
|
NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
|
|
NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
|
|
|
|
return nlmsg_end(skb, nlh);
|
|
|
|
nla_put_failure:
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static void neigh_update_notify(struct neighbour *neigh)
|
|
{
|
|
call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
|
|
__neigh_notify(neigh, RTM_NEWNEIGH, 0);
|
|
}
|
|
|
|
static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
|
|
struct netlink_callback *cb)
|
|
{
|
|
struct neighbour *n;
|
|
int rc, h, s_h = cb->args[1];
|
|
int idx, s_idx = idx = cb->args[2];
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
for (h = 0; h <= tbl->hash_mask; h++) {
|
|
if (h < s_h)
|
|
continue;
|
|
if (h > s_h)
|
|
s_idx = 0;
|
|
for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
|
|
if (idx < s_idx)
|
|
continue;
|
|
if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWNEIGH,
|
|
NLM_F_MULTI) <= 0) {
|
|
read_unlock_bh(&tbl->lock);
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
rc = skb->len;
|
|
out:
|
|
cb->args[1] = h;
|
|
cb->args[2] = idx;
|
|
return rc;
|
|
}
|
|
|
|
static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
struct neigh_table *tbl;
|
|
int t, family, s_t;
|
|
|
|
read_lock(&neigh_tbl_lock);
|
|
family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
|
|
s_t = cb->args[0];
|
|
|
|
for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
|
|
if (t < s_t || (family && tbl->family != family))
|
|
continue;
|
|
if (t > s_t)
|
|
memset(&cb->args[1], 0, sizeof(cb->args) -
|
|
sizeof(cb->args[0]));
|
|
if (neigh_dump_table(tbl, skb, cb) < 0)
|
|
break;
|
|
}
|
|
read_unlock(&neigh_tbl_lock);
|
|
|
|
cb->args[0] = t;
|
|
return skb->len;
|
|
}
|
|
|
|
void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
|
|
{
|
|
int chain;
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
for (chain = 0; chain <= tbl->hash_mask; chain++) {
|
|
struct neighbour *n;
|
|
|
|
for (n = tbl->hash_buckets[chain]; n; n = n->next)
|
|
cb(n, cookie);
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
}
|
|
EXPORT_SYMBOL(neigh_for_each);
|
|
|
|
/* The tbl->lock must be held as a writer and BH disabled. */
|
|
void __neigh_for_each_release(struct neigh_table *tbl,
|
|
int (*cb)(struct neighbour *))
|
|
{
|
|
int chain;
|
|
|
|
for (chain = 0; chain <= tbl->hash_mask; chain++) {
|
|
struct neighbour *n, **np;
|
|
|
|
np = &tbl->hash_buckets[chain];
|
|
while ((n = *np) != NULL) {
|
|
int release;
|
|
|
|
write_lock(&n->lock);
|
|
release = cb(n);
|
|
if (release) {
|
|
*np = n->next;
|
|
n->dead = 1;
|
|
} else
|
|
np = &n->next;
|
|
write_unlock(&n->lock);
|
|
if (release)
|
|
neigh_cleanup_and_release(n);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__neigh_for_each_release);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static struct neighbour *neigh_get_first(struct seq_file *seq)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
struct neighbour *n = NULL;
|
|
int bucket = state->bucket;
|
|
|
|
state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
|
|
for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
|
|
n = tbl->hash_buckets[bucket];
|
|
|
|
while (n) {
|
|
if (state->neigh_sub_iter) {
|
|
loff_t fakep = 0;
|
|
void *v;
|
|
|
|
v = state->neigh_sub_iter(state, n, &fakep);
|
|
if (!v)
|
|
goto next;
|
|
}
|
|
if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
|
|
break;
|
|
if (n->nud_state & ~NUD_NOARP)
|
|
break;
|
|
next:
|
|
n = n->next;
|
|
}
|
|
|
|
if (n)
|
|
break;
|
|
}
|
|
state->bucket = bucket;
|
|
|
|
return n;
|
|
}
|
|
|
|
static struct neighbour *neigh_get_next(struct seq_file *seq,
|
|
struct neighbour *n,
|
|
loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
|
|
if (state->neigh_sub_iter) {
|
|
void *v = state->neigh_sub_iter(state, n, pos);
|
|
if (v)
|
|
return n;
|
|
}
|
|
n = n->next;
|
|
|
|
while (1) {
|
|
while (n) {
|
|
if (state->neigh_sub_iter) {
|
|
void *v = state->neigh_sub_iter(state, n, pos);
|
|
if (v)
|
|
return n;
|
|
goto next;
|
|
}
|
|
if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
|
|
break;
|
|
|
|
if (n->nud_state & ~NUD_NOARP)
|
|
break;
|
|
next:
|
|
n = n->next;
|
|
}
|
|
|
|
if (n)
|
|
break;
|
|
|
|
if (++state->bucket > tbl->hash_mask)
|
|
break;
|
|
|
|
n = tbl->hash_buckets[state->bucket];
|
|
}
|
|
|
|
if (n && pos)
|
|
--(*pos);
|
|
return n;
|
|
}
|
|
|
|
static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct neighbour *n = neigh_get_first(seq);
|
|
|
|
if (n) {
|
|
while (*pos) {
|
|
n = neigh_get_next(seq, n, pos);
|
|
if (!n)
|
|
break;
|
|
}
|
|
}
|
|
return *pos ? NULL : n;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
struct pneigh_entry *pn = NULL;
|
|
int bucket = state->bucket;
|
|
|
|
state->flags |= NEIGH_SEQ_IS_PNEIGH;
|
|
for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
|
|
pn = tbl->phash_buckets[bucket];
|
|
if (pn)
|
|
break;
|
|
}
|
|
state->bucket = bucket;
|
|
|
|
return pn;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
|
|
struct pneigh_entry *pn,
|
|
loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
|
|
pn = pn->next;
|
|
while (!pn) {
|
|
if (++state->bucket > PNEIGH_HASHMASK)
|
|
break;
|
|
pn = tbl->phash_buckets[state->bucket];
|
|
if (pn)
|
|
break;
|
|
}
|
|
|
|
if (pn && pos)
|
|
--(*pos);
|
|
|
|
return pn;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct pneigh_entry *pn = pneigh_get_first(seq);
|
|
|
|
if (pn) {
|
|
while (*pos) {
|
|
pn = pneigh_get_next(seq, pn, pos);
|
|
if (!pn)
|
|
break;
|
|
}
|
|
}
|
|
return *pos ? NULL : pn;
|
|
}
|
|
|
|
static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
void *rc;
|
|
|
|
rc = neigh_get_idx(seq, pos);
|
|
if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
|
|
rc = pneigh_get_idx(seq, pos);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
loff_t pos_minus_one;
|
|
|
|
state->tbl = tbl;
|
|
state->bucket = 0;
|
|
state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
|
|
pos_minus_one = *pos - 1;
|
|
return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_start);
|
|
|
|
void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state;
|
|
void *rc;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
rc = neigh_get_idx(seq, pos);
|
|
goto out;
|
|
}
|
|
|
|
state = seq->private;
|
|
if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
|
|
rc = neigh_get_next(seq, v, NULL);
|
|
if (rc)
|
|
goto out;
|
|
if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
|
|
rc = pneigh_get_first(seq);
|
|
} else {
|
|
BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
|
|
rc = pneigh_get_next(seq, v, NULL);
|
|
}
|
|
out:
|
|
++(*pos);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_next);
|
|
|
|
void neigh_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_stop);
|
|
|
|
/* statistics via seq_file */
|
|
|
|
static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct proc_dir_entry *pde = seq->private;
|
|
struct neigh_table *tbl = pde->data;
|
|
int cpu;
|
|
|
|
if (*pos == 0)
|
|
return SEQ_START_TOKEN;
|
|
|
|
for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
|
|
if (!cpu_possible(cpu))
|
|
continue;
|
|
*pos = cpu+1;
|
|
return per_cpu_ptr(tbl->stats, cpu);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct proc_dir_entry *pde = seq->private;
|
|
struct neigh_table *tbl = pde->data;
|
|
int cpu;
|
|
|
|
for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
|
|
if (!cpu_possible(cpu))
|
|
continue;
|
|
*pos = cpu+1;
|
|
return per_cpu_ptr(tbl->stats, cpu);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
|
|
}
|
|
|
|
static int neigh_stat_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct proc_dir_entry *pde = seq->private;
|
|
struct neigh_table *tbl = pde->data;
|
|
struct neigh_statistics *st = v;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
|
|
return 0;
|
|
}
|
|
|
|
seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
|
|
"%08lx %08lx %08lx %08lx\n",
|
|
atomic_read(&tbl->entries),
|
|
|
|
st->allocs,
|
|
st->destroys,
|
|
st->hash_grows,
|
|
|
|
st->lookups,
|
|
st->hits,
|
|
|
|
st->res_failed,
|
|
|
|
st->rcv_probes_mcast,
|
|
st->rcv_probes_ucast,
|
|
|
|
st->periodic_gc_runs,
|
|
st->forced_gc_runs
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations neigh_stat_seq_ops = {
|
|
.start = neigh_stat_seq_start,
|
|
.next = neigh_stat_seq_next,
|
|
.stop = neigh_stat_seq_stop,
|
|
.show = neigh_stat_seq_show,
|
|
};
|
|
|
|
static int neigh_stat_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
int ret = seq_open(file, &neigh_stat_seq_ops);
|
|
|
|
if (!ret) {
|
|
struct seq_file *sf = file->private_data;
|
|
sf->private = PDE(inode);
|
|
}
|
|
return ret;
|
|
};
|
|
|
|
static const struct file_operations neigh_stat_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = neigh_stat_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
static inline size_t neigh_nlmsg_size(void)
|
|
{
|
|
return NLMSG_ALIGN(sizeof(struct ndmsg))
|
|
+ nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
|
|
+ nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
|
|
+ nla_total_size(sizeof(struct nda_cacheinfo))
|
|
+ nla_total_size(4); /* NDA_PROBES */
|
|
}
|
|
|
|
static void __neigh_notify(struct neighbour *n, int type, int flags)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err = -ENOBUFS;
|
|
|
|
skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
|
|
if (skb == NULL)
|
|
goto errout;
|
|
|
|
err = neigh_fill_info(skb, n, 0, 0, type, flags);
|
|
if (err < 0) {
|
|
/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
|
|
WARN_ON(err == -EMSGSIZE);
|
|
kfree_skb(skb);
|
|
goto errout;
|
|
}
|
|
err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
|
|
errout:
|
|
if (err < 0)
|
|
rtnl_set_sk_err(RTNLGRP_NEIGH, err);
|
|
}
|
|
|
|
#ifdef CONFIG_ARPD
|
|
void neigh_app_ns(struct neighbour *n)
|
|
{
|
|
__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
|
|
}
|
|
#endif /* CONFIG_ARPD */
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
static struct neigh_sysctl_table {
|
|
struct ctl_table_header *sysctl_header;
|
|
ctl_table neigh_vars[__NET_NEIGH_MAX];
|
|
ctl_table neigh_dev[2];
|
|
ctl_table neigh_neigh_dir[2];
|
|
ctl_table neigh_proto_dir[2];
|
|
ctl_table neigh_root_dir[2];
|
|
} neigh_sysctl_template __read_mostly = {
|
|
.neigh_vars = {
|
|
{
|
|
.ctl_name = NET_NEIGH_MCAST_SOLICIT,
|
|
.procname = "mcast_solicit",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_UCAST_SOLICIT,
|
|
.procname = "ucast_solicit",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_APP_SOLICIT,
|
|
.procname = "app_solicit",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "retrans_time",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_userhz_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_REACHABLE_TIME,
|
|
.procname = "base_reachable_time",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_jiffies,
|
|
.strategy = &sysctl_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
|
|
.procname = "delay_first_probe_time",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_jiffies,
|
|
.strategy = &sysctl_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_GC_STALE_TIME,
|
|
.procname = "gc_stale_time",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_jiffies,
|
|
.strategy = &sysctl_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_UNRES_QLEN,
|
|
.procname = "unres_qlen",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_PROXY_QLEN,
|
|
.procname = "proxy_qlen",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "anycast_delay",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_userhz_jiffies,
|
|
},
|
|
{
|
|
.procname = "proxy_delay",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_userhz_jiffies,
|
|
},
|
|
{
|
|
.procname = "locktime",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_userhz_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_RETRANS_TIME_MS,
|
|
.procname = "retrans_time_ms",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_ms_jiffies,
|
|
.strategy = &sysctl_ms_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
|
|
.procname = "base_reachable_time_ms",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_ms_jiffies,
|
|
.strategy = &sysctl_ms_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_GC_INTERVAL,
|
|
.procname = "gc_interval",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_jiffies,
|
|
.strategy = &sysctl_jiffies,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_GC_THRESH1,
|
|
.procname = "gc_thresh1",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_GC_THRESH2,
|
|
.procname = "gc_thresh2",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{
|
|
.ctl_name = NET_NEIGH_GC_THRESH3,
|
|
.procname = "gc_thresh3",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
{}
|
|
},
|
|
.neigh_dev = {
|
|
{
|
|
.ctl_name = NET_PROTO_CONF_DEFAULT,
|
|
.procname = "default",
|
|
.mode = 0555,
|
|
},
|
|
},
|
|
.neigh_neigh_dir = {
|
|
{
|
|
.procname = "neigh",
|
|
.mode = 0555,
|
|
},
|
|
},
|
|
.neigh_proto_dir = {
|
|
{
|
|
.mode = 0555,
|
|
},
|
|
},
|
|
.neigh_root_dir = {
|
|
{
|
|
.ctl_name = CTL_NET,
|
|
.procname = "net",
|
|
.mode = 0555,
|
|
},
|
|
},
|
|
};
|
|
|
|
int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
|
|
int p_id, int pdev_id, char *p_name,
|
|
proc_handler *handler, ctl_handler *strategy)
|
|
{
|
|
struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template,
|
|
sizeof(*t), GFP_KERNEL);
|
|
const char *dev_name_source = NULL;
|
|
char *dev_name = NULL;
|
|
int err = 0;
|
|
|
|
if (!t)
|
|
return -ENOBUFS;
|
|
t->neigh_vars[0].data = &p->mcast_probes;
|
|
t->neigh_vars[1].data = &p->ucast_probes;
|
|
t->neigh_vars[2].data = &p->app_probes;
|
|
t->neigh_vars[3].data = &p->retrans_time;
|
|
t->neigh_vars[4].data = &p->base_reachable_time;
|
|
t->neigh_vars[5].data = &p->delay_probe_time;
|
|
t->neigh_vars[6].data = &p->gc_staletime;
|
|
t->neigh_vars[7].data = &p->queue_len;
|
|
t->neigh_vars[8].data = &p->proxy_qlen;
|
|
t->neigh_vars[9].data = &p->anycast_delay;
|
|
t->neigh_vars[10].data = &p->proxy_delay;
|
|
t->neigh_vars[11].data = &p->locktime;
|
|
t->neigh_vars[12].data = &p->retrans_time;
|
|
t->neigh_vars[13].data = &p->base_reachable_time;
|
|
|
|
if (dev) {
|
|
dev_name_source = dev->name;
|
|
t->neigh_dev[0].ctl_name = dev->ifindex;
|
|
/* Terminate the table early */
|
|
memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
|
|
} else {
|
|
dev_name_source = t->neigh_dev[0].procname;
|
|
t->neigh_vars[14].data = (int *)(p + 1);
|
|
t->neigh_vars[15].data = (int *)(p + 1) + 1;
|
|
t->neigh_vars[16].data = (int *)(p + 1) + 2;
|
|
t->neigh_vars[17].data = (int *)(p + 1) + 3;
|
|
}
|
|
|
|
|
|
if (handler || strategy) {
|
|
/* RetransTime */
|
|
t->neigh_vars[3].proc_handler = handler;
|
|
t->neigh_vars[3].strategy = strategy;
|
|
t->neigh_vars[3].extra1 = dev;
|
|
if (!strategy)
|
|
t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
|
|
/* ReachableTime */
|
|
t->neigh_vars[4].proc_handler = handler;
|
|
t->neigh_vars[4].strategy = strategy;
|
|
t->neigh_vars[4].extra1 = dev;
|
|
if (!strategy)
|
|
t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
|
|
/* RetransTime (in milliseconds)*/
|
|
t->neigh_vars[12].proc_handler = handler;
|
|
t->neigh_vars[12].strategy = strategy;
|
|
t->neigh_vars[12].extra1 = dev;
|
|
if (!strategy)
|
|
t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
|
|
/* ReachableTime (in milliseconds) */
|
|
t->neigh_vars[13].proc_handler = handler;
|
|
t->neigh_vars[13].strategy = strategy;
|
|
t->neigh_vars[13].extra1 = dev;
|
|
if (!strategy)
|
|
t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
|
|
}
|
|
|
|
dev_name = kstrdup(dev_name_source, GFP_KERNEL);
|
|
if (!dev_name) {
|
|
err = -ENOBUFS;
|
|
goto free;
|
|
}
|
|
|
|
t->neigh_dev[0].procname = dev_name;
|
|
|
|
t->neigh_neigh_dir[0].ctl_name = pdev_id;
|
|
|
|
t->neigh_proto_dir[0].procname = p_name;
|
|
t->neigh_proto_dir[0].ctl_name = p_id;
|
|
|
|
t->neigh_dev[0].child = t->neigh_vars;
|
|
t->neigh_neigh_dir[0].child = t->neigh_dev;
|
|
t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
|
|
t->neigh_root_dir[0].child = t->neigh_proto_dir;
|
|
|
|
t->sysctl_header = register_sysctl_table(t->neigh_root_dir);
|
|
if (!t->sysctl_header) {
|
|
err = -ENOBUFS;
|
|
goto free_procname;
|
|
}
|
|
p->sysctl_table = t;
|
|
return 0;
|
|
|
|
/* error path */
|
|
free_procname:
|
|
kfree(dev_name);
|
|
free:
|
|
kfree(t);
|
|
|
|
return err;
|
|
}
|
|
|
|
void neigh_sysctl_unregister(struct neigh_parms *p)
|
|
{
|
|
if (p->sysctl_table) {
|
|
struct neigh_sysctl_table *t = p->sysctl_table;
|
|
p->sysctl_table = NULL;
|
|
unregister_sysctl_table(t->sysctl_header);
|
|
kfree(t->neigh_dev[0].procname);
|
|
kfree(t);
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
static int __init neigh_init(void)
|
|
{
|
|
rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
|
|
rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
|
|
rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
|
|
|
|
rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
|
|
rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(neigh_init);
|
|
|
|
EXPORT_SYMBOL(__neigh_event_send);
|
|
EXPORT_SYMBOL(neigh_changeaddr);
|
|
EXPORT_SYMBOL(neigh_compat_output);
|
|
EXPORT_SYMBOL(neigh_connected_output);
|
|
EXPORT_SYMBOL(neigh_create);
|
|
EXPORT_SYMBOL(neigh_destroy);
|
|
EXPORT_SYMBOL(neigh_event_ns);
|
|
EXPORT_SYMBOL(neigh_ifdown);
|
|
EXPORT_SYMBOL(neigh_lookup);
|
|
EXPORT_SYMBOL(neigh_lookup_nodev);
|
|
EXPORT_SYMBOL(neigh_parms_alloc);
|
|
EXPORT_SYMBOL(neigh_parms_release);
|
|
EXPORT_SYMBOL(neigh_rand_reach_time);
|
|
EXPORT_SYMBOL(neigh_resolve_output);
|
|
EXPORT_SYMBOL(neigh_table_clear);
|
|
EXPORT_SYMBOL(neigh_table_init);
|
|
EXPORT_SYMBOL(neigh_table_init_no_netlink);
|
|
EXPORT_SYMBOL(neigh_update);
|
|
EXPORT_SYMBOL(pneigh_enqueue);
|
|
EXPORT_SYMBOL(pneigh_lookup);
|
|
|
|
#ifdef CONFIG_ARPD
|
|
EXPORT_SYMBOL(neigh_app_ns);
|
|
#endif
|
|
#ifdef CONFIG_SYSCTL
|
|
EXPORT_SYMBOL(neigh_sysctl_register);
|
|
EXPORT_SYMBOL(neigh_sysctl_unregister);
|
|
#endif
|