4350 lines
109 KiB
C
4350 lines
109 KiB
C
/*
|
|
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
|
|
* Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
|
|
* Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
|
|
* Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
|
|
* Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
|
|
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* HW related functions for Atheros Wireless LAN devices.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "reg.h"
|
|
#include "base.h"
|
|
#include "debug.h"
|
|
|
|
/*Rate tables*/
|
|
static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
|
|
static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
|
|
static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
|
|
static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
|
|
static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
|
|
|
|
/*Prototypes*/
|
|
static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
|
|
static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
|
|
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
|
|
unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
|
|
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
|
|
unsigned int, unsigned int);
|
|
static bool ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
|
|
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
|
|
unsigned int);
|
|
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
|
|
static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
|
|
unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
|
|
unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
|
|
unsigned int, unsigned int);
|
|
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
|
|
static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *, struct ath5k_desc *);
|
|
static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *, struct ath5k_desc *);
|
|
static int ath5k_hw_get_capabilities(struct ath5k_hw *);
|
|
|
|
static int ath5k_eeprom_init(struct ath5k_hw *);
|
|
static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
|
|
|
|
static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
|
|
static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
|
|
|
|
/*
|
|
* Enable to overwrite the country code (use "00" for debug)
|
|
*/
|
|
#if 0
|
|
#define COUNTRYCODE "00"
|
|
#endif
|
|
|
|
/*******************\
|
|
General Functions
|
|
\*******************/
|
|
|
|
/*
|
|
* Functions used internaly
|
|
*/
|
|
|
|
static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
|
|
{
|
|
return turbo == true ? (usec * 80) : (usec * 40);
|
|
}
|
|
|
|
static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
|
|
{
|
|
return turbo == true ? (clock / 80) : (clock / 40);
|
|
}
|
|
|
|
/*
|
|
* Check if a register write has been completed
|
|
*/
|
|
int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
|
|
bool is_set)
|
|
{
|
|
int i;
|
|
u32 data;
|
|
|
|
for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
|
|
data = ath5k_hw_reg_read(ah, reg);
|
|
if ((is_set == true) && (data & flag))
|
|
break;
|
|
else if ((data & flag) == val)
|
|
break;
|
|
udelay(15);
|
|
}
|
|
|
|
return (i <= 0) ? -EAGAIN : 0;
|
|
}
|
|
|
|
|
|
/***************************************\
|
|
Attach/Detach Functions
|
|
\***************************************/
|
|
|
|
/*
|
|
* Check if the device is supported and initialize the needed structs
|
|
*/
|
|
struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
|
|
{
|
|
struct ath5k_hw *ah;
|
|
u8 mac[ETH_ALEN];
|
|
int ret;
|
|
u32 srev;
|
|
|
|
/*If we passed the test malloc a ath5k_hw struct*/
|
|
ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
|
|
if (ah == NULL) {
|
|
ret = -ENOMEM;
|
|
ATH5K_ERR(sc, "out of memory\n");
|
|
goto err;
|
|
}
|
|
|
|
ah->ah_sc = sc;
|
|
ah->ah_iobase = sc->iobase;
|
|
|
|
/*
|
|
* HW information
|
|
*/
|
|
|
|
/* Get reg domain from eeprom */
|
|
ath5k_get_regdomain(ah);
|
|
|
|
ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
|
|
ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
|
|
ah->ah_turbo = false;
|
|
ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
|
|
ah->ah_imr = 0;
|
|
ah->ah_atim_window = 0;
|
|
ah->ah_aifs = AR5K_TUNE_AIFS;
|
|
ah->ah_cw_min = AR5K_TUNE_CWMIN;
|
|
ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
|
|
ah->ah_software_retry = false;
|
|
ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
|
|
|
|
/*
|
|
* Set the mac revision based on the pci id
|
|
*/
|
|
ah->ah_version = mac_version;
|
|
|
|
/*Fill the ath5k_hw struct with the needed functions*/
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
|
|
else if (ah->ah_version == AR5K_AR5211)
|
|
ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
|
|
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
|
|
ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
|
|
ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
|
|
} else {
|
|
ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
|
|
ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
|
|
ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
|
|
}
|
|
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
ah->ah_proc_rx_desc = ath5k_hw_proc_new_rx_status;
|
|
else if (ah->ah_version <= AR5K_AR5211)
|
|
ah->ah_proc_rx_desc = ath5k_hw_proc_old_rx_status;
|
|
|
|
/* Bring device out of sleep and reset it's units */
|
|
ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
/* Get MAC, PHY and RADIO revisions */
|
|
srev = ath5k_hw_reg_read(ah, AR5K_SREV);
|
|
ah->ah_mac_srev = srev;
|
|
ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
|
|
ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
|
|
ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
|
|
0xffffffff;
|
|
ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
|
|
CHANNEL_5GHZ);
|
|
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
ah->ah_radio_2ghz_revision = 0;
|
|
else
|
|
ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
|
|
CHANNEL_2GHZ);
|
|
|
|
/* Return on unsuported chips (unsupported eeprom etc) */
|
|
if(srev >= AR5K_SREV_VER_AR5416){
|
|
ATH5K_ERR(sc, "Device not yet supported.\n");
|
|
ret = -ENODEV;
|
|
goto err_free;
|
|
}
|
|
|
|
/* Identify single chip solutions */
|
|
if((srev <= AR5K_SREV_VER_AR5414) &&
|
|
(srev >= AR5K_SREV_VER_AR2424)) {
|
|
ah->ah_single_chip = true;
|
|
} else {
|
|
ah->ah_single_chip = false;
|
|
}
|
|
|
|
/* Single chip radio */
|
|
if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
|
|
ah->ah_radio_2ghz_revision = 0;
|
|
|
|
/* Identify the radio chip*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
ah->ah_radio = AR5K_RF5110;
|
|
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
|
|
ah->ah_radio = AR5K_RF5111;
|
|
} else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
|
|
ah->ah_radio = AR5K_RF5112;
|
|
} else {
|
|
ah->ah_radio = AR5K_RF5413;
|
|
}
|
|
|
|
ah->ah_phy = AR5K_PHY(0);
|
|
|
|
/*
|
|
* Get card capabilities, values, ...
|
|
*/
|
|
|
|
ret = ath5k_eeprom_init(ah);
|
|
if (ret) {
|
|
ATH5K_ERR(sc, "unable to init EEPROM\n");
|
|
goto err_free;
|
|
}
|
|
|
|
/* Get misc capabilities */
|
|
ret = ath5k_hw_get_capabilities(ah);
|
|
if (ret) {
|
|
ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
|
|
sc->pdev->device);
|
|
goto err_free;
|
|
}
|
|
|
|
/* Get MAC address */
|
|
ret = ath5k_eeprom_read_mac(ah, mac);
|
|
if (ret) {
|
|
ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
|
|
sc->pdev->device);
|
|
goto err_free;
|
|
}
|
|
|
|
ath5k_hw_set_lladdr(ah, mac);
|
|
/* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
|
|
memset(ah->ah_bssid, 0xff, ETH_ALEN);
|
|
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
|
|
ath5k_hw_set_opmode(ah);
|
|
|
|
ath5k_hw_set_rfgain_opt(ah);
|
|
|
|
return ah;
|
|
err_free:
|
|
kfree(ah);
|
|
err:
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* Bring up MAC + PHY Chips
|
|
*/
|
|
static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
|
|
{
|
|
u32 turbo, mode, clock;
|
|
int ret;
|
|
|
|
turbo = 0;
|
|
mode = 0;
|
|
clock = 0;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* Wakeup the device */
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
|
|
return ret;
|
|
}
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
/*
|
|
* Get channel mode flags
|
|
*/
|
|
|
|
if (ah->ah_radio >= AR5K_RF5112) {
|
|
mode = AR5K_PHY_MODE_RAD_RF5112;
|
|
clock = AR5K_PHY_PLL_RF5112;
|
|
} else {
|
|
mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
|
|
clock = AR5K_PHY_PLL_RF5111; /*Zero*/
|
|
}
|
|
|
|
if (flags & CHANNEL_2GHZ) {
|
|
mode |= AR5K_PHY_MODE_FREQ_2GHZ;
|
|
clock |= AR5K_PHY_PLL_44MHZ;
|
|
|
|
if (flags & CHANNEL_CCK) {
|
|
mode |= AR5K_PHY_MODE_MOD_CCK;
|
|
} else if (flags & CHANNEL_OFDM) {
|
|
/* XXX Dynamic OFDM/CCK is not supported by the
|
|
* AR5211 so we set MOD_OFDM for plain g (no
|
|
* CCK headers) operation. We need to test
|
|
* this, 5211 might support ofdm-only g after
|
|
* all, there are also initial register values
|
|
* in the code for g mode (see initvals.c). */
|
|
if (ah->ah_version == AR5K_AR5211)
|
|
mode |= AR5K_PHY_MODE_MOD_OFDM;
|
|
else
|
|
mode |= AR5K_PHY_MODE_MOD_DYN;
|
|
} else {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid radio modulation mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else if (flags & CHANNEL_5GHZ) {
|
|
mode |= AR5K_PHY_MODE_FREQ_5GHZ;
|
|
clock |= AR5K_PHY_PLL_40MHZ;
|
|
|
|
if (flags & CHANNEL_OFDM)
|
|
mode |= AR5K_PHY_MODE_MOD_OFDM;
|
|
else {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid radio modulation mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (flags & CHANNEL_TURBO)
|
|
turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
|
|
} else { /* Reset the device */
|
|
|
|
/* ...enable Atheros turbo mode if requested */
|
|
if (flags & CHANNEL_TURBO)
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
|
|
AR5K_PHY_TURBO);
|
|
}
|
|
|
|
/* ...reset chipset and PCI device */
|
|
if (ah->ah_single_chip == false && ath5k_hw_nic_reset(ah,
|
|
AR5K_RESET_CTL_CHIP | AR5K_RESET_CTL_PCI)) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
udelay(2300);
|
|
|
|
/* ...wakeup again!*/
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
|
|
return ret;
|
|
}
|
|
|
|
/* ...final warm reset */
|
|
if (ath5k_hw_nic_reset(ah, 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
/* ...set the PHY operating mode */
|
|
ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
|
|
udelay(300);
|
|
|
|
ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
|
|
ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get the rate table for a specific operation mode
|
|
*/
|
|
const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
|
|
unsigned int mode)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (!test_bit(mode, ah->ah_capabilities.cap_mode))
|
|
return NULL;
|
|
|
|
/* Get rate tables */
|
|
switch (mode) {
|
|
case MODE_IEEE80211A:
|
|
return &ath5k_rt_11a;
|
|
case MODE_ATHEROS_TURBO:
|
|
return &ath5k_rt_turbo;
|
|
case MODE_IEEE80211B:
|
|
return &ath5k_rt_11b;
|
|
case MODE_IEEE80211G:
|
|
return &ath5k_rt_11g;
|
|
case MODE_ATHEROS_TURBOG:
|
|
return &ath5k_rt_xr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Free the ath5k_hw struct
|
|
*/
|
|
void ath5k_hw_detach(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (ah->ah_rf_banks != NULL)
|
|
kfree(ah->ah_rf_banks);
|
|
|
|
/* assume interrupts are down */
|
|
kfree(ah);
|
|
}
|
|
|
|
/****************************\
|
|
Reset function and helpers
|
|
\****************************/
|
|
|
|
/**
|
|
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @channel: the currently set channel upon reset
|
|
*
|
|
* Write the OFDM timings for the AR5212 upon reset. This is a helper for
|
|
* ath5k_hw_reset(). This seems to tune the PLL a specified frequency
|
|
* depending on the bandwidth of the channel.
|
|
*
|
|
*/
|
|
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
|
|
struct ieee80211_channel *channel)
|
|
{
|
|
/* Get exponent and mantissa and set it */
|
|
u32 coef_scaled, coef_exp, coef_man,
|
|
ds_coef_exp, ds_coef_man, clock;
|
|
|
|
if (!(ah->ah_version == AR5K_AR5212) ||
|
|
!(channel->val & CHANNEL_OFDM))
|
|
BUG();
|
|
|
|
/* Seems there are two PLLs, one for baseband sampling and one
|
|
* for tuning. Tuning basebands are 40 MHz or 80MHz when in
|
|
* turbo. */
|
|
clock = channel->val & CHANNEL_TURBO ? 80 : 40;
|
|
coef_scaled = ((5 * (clock << 24)) / 2) /
|
|
channel->freq;
|
|
|
|
for (coef_exp = 31; coef_exp > 0; coef_exp--)
|
|
if ((coef_scaled >> coef_exp) & 0x1)
|
|
break;
|
|
|
|
if (!coef_exp)
|
|
return -EINVAL;
|
|
|
|
coef_exp = 14 - (coef_exp - 24);
|
|
coef_man = coef_scaled +
|
|
(1 << (24 - coef_exp - 1));
|
|
ds_coef_man = coef_man >> (24 - coef_exp);
|
|
ds_coef_exp = coef_exp - 16;
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
|
|
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
|
|
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ath5k_hw_write_rate_duration - set rate duration during hw resets
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @driver_mode: one of enum ieee80211_phymode or our one of our own
|
|
* vendor modes
|
|
*
|
|
* Write the rate duration table for the current mode upon hw reset. This
|
|
* is a helper for ath5k_hw_reset(). It seems all this is doing is setting
|
|
* an ACK timeout for the hardware for the current mode for each rate. The
|
|
* rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
|
|
* and 11Mbps) have another register for the short preamble ACK timeout
|
|
* calculation.
|
|
*
|
|
*/
|
|
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
|
|
unsigned int driver_mode)
|
|
{
|
|
struct ath5k_softc *sc = ah->ah_sc;
|
|
const struct ath5k_rate_table *rt;
|
|
unsigned int i;
|
|
|
|
/* Get rate table for the current operating mode */
|
|
rt = ath5k_hw_get_rate_table(ah,
|
|
driver_mode);
|
|
|
|
/* Write rate duration table */
|
|
for (i = 0; i < rt->rate_count; i++) {
|
|
const struct ath5k_rate *rate, *control_rate;
|
|
u32 reg;
|
|
u16 tx_time;
|
|
|
|
rate = &rt->rates[i];
|
|
control_rate = &rt->rates[rate->control_rate];
|
|
|
|
/* Set ACK timeout */
|
|
reg = AR5K_RATE_DUR(rate->rate_code);
|
|
|
|
/* An ACK frame consists of 10 bytes. If you add the FCS,
|
|
* which ieee80211_generic_frame_duration() adds,
|
|
* its 14 bytes. Note we use the control rate and not the
|
|
* actual rate for this rate. See mac80211 tx.c
|
|
* ieee80211_duration() for a brief description of
|
|
* what rate we should choose to TX ACKs. */
|
|
tx_time = ieee80211_generic_frame_duration(sc->hw,
|
|
sc->iface_id, 10, control_rate->rate_kbps/100);
|
|
|
|
ath5k_hw_reg_write(ah, tx_time, reg);
|
|
|
|
if (!HAS_SHPREAMBLE(i))
|
|
continue;
|
|
|
|
/*
|
|
* We're not distinguishing short preamble here,
|
|
* This is true, all we'll get is a longer value here
|
|
* which is not necessarilly bad. We could use
|
|
* export ieee80211_frame_duration() but that needs to be
|
|
* fixed first to be properly used by mac802111 drivers:
|
|
*
|
|
* - remove erp stuff and let the routine figure ofdm
|
|
* erp rates
|
|
* - remove passing argument ieee80211_local as
|
|
* drivers don't have access to it
|
|
* - move drivers using ieee80211_generic_frame_duration()
|
|
* to this
|
|
*/
|
|
ath5k_hw_reg_write(ah, tx_time,
|
|
reg + (AR5K_SET_SHORT_PREAMBLE << 2));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Main reset function
|
|
*/
|
|
int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
|
|
struct ieee80211_channel *channel, bool change_channel)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 data, s_seq, s_ant, s_led[3];
|
|
unsigned int i, mode, freq, ee_mode, ant[2], driver_mode = -1;
|
|
int ret;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
s_seq = 0;
|
|
s_ant = 0;
|
|
ee_mode = 0;
|
|
freq = 0;
|
|
mode = 0;
|
|
|
|
/*
|
|
* Save some registers before a reset
|
|
*/
|
|
/*DCU/Antenna selection not available on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
if (change_channel == true) {
|
|
/* Seq number for queue 0 -do this for all queues ? */
|
|
s_seq = ath5k_hw_reg_read(ah,
|
|
AR5K_QUEUE_DFS_SEQNUM(0));
|
|
/*Default antenna*/
|
|
s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
|
|
}
|
|
}
|
|
|
|
/*GPIOs*/
|
|
s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
|
|
s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
|
|
s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
|
|
|
|
if (change_channel == true && ah->ah_rf_banks != NULL)
|
|
ath5k_hw_get_rf_gain(ah);
|
|
|
|
|
|
/*Wakeup the device*/
|
|
ret = ath5k_hw_nic_wakeup(ah, channel->val, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Initialize operating mode
|
|
*/
|
|
ah->ah_op_mode = op_mode;
|
|
|
|
/*
|
|
* 5111/5112 Settings
|
|
* 5210 only comes with RF5110
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
if (ah->ah_radio != AR5K_RF5111 &&
|
|
ah->ah_radio != AR5K_RF5112 &&
|
|
ah->ah_radio != AR5K_RF5413) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid phy radio: %u\n", ah->ah_radio);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (channel->val & CHANNEL_MODES) {
|
|
case CHANNEL_A:
|
|
mode = AR5K_INI_VAL_11A;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
driver_mode = MODE_IEEE80211A;
|
|
break;
|
|
case CHANNEL_G:
|
|
mode = AR5K_INI_VAL_11G;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11G;
|
|
driver_mode = MODE_IEEE80211G;
|
|
break;
|
|
case CHANNEL_B:
|
|
mode = AR5K_INI_VAL_11B;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11B;
|
|
driver_mode = MODE_IEEE80211B;
|
|
break;
|
|
case CHANNEL_T:
|
|
mode = AR5K_INI_VAL_11A_TURBO;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
driver_mode = MODE_ATHEROS_TURBO;
|
|
break;
|
|
/*Is this ok on 5211 too ?*/
|
|
case CHANNEL_TG:
|
|
mode = AR5K_INI_VAL_11G_TURBO;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11G;
|
|
driver_mode = MODE_ATHEROS_TURBOG;
|
|
break;
|
|
case CHANNEL_XR:
|
|
if (ah->ah_version == AR5K_AR5211) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"XR mode not available on 5211");
|
|
return -EINVAL;
|
|
}
|
|
mode = AR5K_INI_VAL_XR;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
driver_mode = MODE_IEEE80211A;
|
|
break;
|
|
default:
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid channel: %d\n", channel->freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* PHY access enable */
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
|
|
|
|
}
|
|
|
|
ret = ath5k_hw_write_initvals(ah, mode, change_channel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* 5211/5212 Specific
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
/*
|
|
* Write initial RF gain settings
|
|
* This should work for both 5111/5112
|
|
*/
|
|
ret = ath5k_hw_rfgain(ah, freq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mdelay(1);
|
|
|
|
/*
|
|
* Write some more initial register settings
|
|
*/
|
|
if (ah->ah_version > AR5K_AR5211){ /* found on 5213+ */
|
|
ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
|
|
|
|
if (channel->val == CHANNEL_G)
|
|
ath5k_hw_reg_write(ah, 0x00f80d80, AR5K_PHY(83)); /* 0x00fc0ec0 */
|
|
else
|
|
ath5k_hw_reg_write(ah, 0x00000000, AR5K_PHY(83));
|
|
|
|
ath5k_hw_reg_write(ah, 0x000001b5, 0xa228); /* 0x000009b5 */
|
|
ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
|
|
ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
|
|
ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
|
|
ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
|
|
}
|
|
|
|
/* Fix for first revision of the RF5112 RF chipset */
|
|
if (ah->ah_radio >= AR5K_RF5112 &&
|
|
ah->ah_radio_5ghz_revision <
|
|
AR5K_SREV_RAD_5112A) {
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
|
|
AR5K_PHY_CCKTXCTL);
|
|
if (channel->val & CHANNEL_5GHZ)
|
|
data = 0xffb81020;
|
|
else
|
|
data = 0xffb80d20;
|
|
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
|
|
}
|
|
|
|
/*
|
|
* Set TX power (FIXME)
|
|
*/
|
|
ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write rate duration table */
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
ath5k_hw_write_rate_duration(ah, driver_mode);
|
|
|
|
/*
|
|
* Write RF registers
|
|
* TODO:Does this work on 5211 (5111) ?
|
|
*/
|
|
ret = ath5k_hw_rfregs(ah, channel, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Configure additional registers
|
|
*/
|
|
|
|
/* Write OFDM timings on 5212*/
|
|
if (ah->ah_version == AR5K_AR5212 &&
|
|
channel->val & CHANNEL_OFDM) {
|
|
ret = ath5k_hw_write_ofdm_timings(ah, channel);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*Enable/disable 802.11b mode on 5111
|
|
(enable 2111 frequency converter + CCK)*/
|
|
if (ah->ah_radio == AR5K_RF5111) {
|
|
if (driver_mode == MODE_IEEE80211B)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_B_MODE);
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_B_MODE);
|
|
}
|
|
|
|
/*
|
|
* Set channel and calibrate the PHY
|
|
*/
|
|
ret = ath5k_hw_channel(ah, channel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Set antenna mode */
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
|
|
ah->ah_antenna[ee_mode][0], 0xfffffc06);
|
|
|
|
/*
|
|
* In case a fixed antenna was set as default
|
|
* write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
|
|
* registers.
|
|
*/
|
|
if (s_ant != 0){
|
|
if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
|
|
ant[0] = ant[1] = AR5K_ANT_FIXED_A;
|
|
else /* 2 - Aux */
|
|
ant[0] = ant[1] = AR5K_ANT_FIXED_B;
|
|
} else {
|
|
ant[0] = AR5K_ANT_FIXED_A;
|
|
ant[1] = AR5K_ANT_FIXED_B;
|
|
}
|
|
|
|
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
|
|
AR5K_PHY_ANT_SWITCH_TABLE_0);
|
|
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
|
|
AR5K_PHY_ANT_SWITCH_TABLE_1);
|
|
|
|
/* Commit values from EEPROM */
|
|
if (ah->ah_radio == AR5K_RF5111)
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
|
|
AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
|
|
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
|
|
AR5K_PHY(0x5a));
|
|
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
|
|
(ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
|
|
0xffffc07f);
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
|
|
(ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
|
|
0xfffc0fff);
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
|
|
(ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
|
|
((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
|
|
0xffff0000);
|
|
|
|
ath5k_hw_reg_write(ah,
|
|
(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
|
|
(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
|
|
(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
|
|
(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
|
|
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
|
|
ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
|
|
(ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
|
|
AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
|
|
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_CORR_ENABLE |
|
|
(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
|
|
ee->ee_q_cal[ee_mode]);
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
|
|
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
|
|
ee->ee_margin_tx_rx[ee_mode]);
|
|
|
|
} else {
|
|
mdelay(1);
|
|
/* Disable phy and wait */
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
|
|
mdelay(1);
|
|
}
|
|
|
|
/*
|
|
* Restore saved values
|
|
*/
|
|
/*DCU/Antenna selection not available on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
|
|
ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
|
|
}
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
|
|
ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
|
|
ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
/* XXX: add ah->aid once mac80211 gives this to us */
|
|
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
|
|
|
|
ath5k_hw_set_opmode(ah);
|
|
/*PISR/SISR Not available on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
|
|
/* If we later allow tuning for this, store into sc structure */
|
|
data = AR5K_TUNE_RSSI_THRES |
|
|
AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
|
|
ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
|
|
}
|
|
|
|
/*
|
|
* Set Rx/Tx DMA Configuration
|
|
*(passing dma size not available on 5210)
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR,
|
|
AR5K_DMASIZE_512B | AR5K_TXCFG_DMASIZE);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW,
|
|
AR5K_DMASIZE_512B);
|
|
}
|
|
|
|
/*
|
|
* Enable the PHY and wait until completion
|
|
*/
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
|
|
|
|
/*
|
|
* 5111/5112 Specific
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
|
|
AR5K_PHY_RX_DELAY_M;
|
|
data = (channel->val & CHANNEL_CCK) ?
|
|
((data << 2) / 22) : (data / 10);
|
|
|
|
udelay(100 + data);
|
|
} else {
|
|
mdelay(1);
|
|
}
|
|
|
|
/*
|
|
* Enable calibration and wait until completion
|
|
*/
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
|
|
AR5K_PHY_AGCCTL_CAL);
|
|
|
|
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
|
|
AR5K_PHY_AGCCTL_CAL, 0, false)) {
|
|
ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
|
|
channel->freq);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
ret = ath5k_hw_noise_floor_calibration(ah, channel->freq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ah->ah_calibration = false;
|
|
|
|
/* A and G modes can use QAM modulation which requires enabling
|
|
* I and Q calibration. Don't bother in B mode. */
|
|
if (!(driver_mode == MODE_IEEE80211B)) {
|
|
ah->ah_calibration = true;
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_RUN);
|
|
}
|
|
|
|
/*
|
|
* Reset queues and start beacon timers at the end of the reset routine
|
|
*/
|
|
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
|
|
/*No QCU on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
|
|
|
|
ret = ath5k_hw_reset_tx_queue(ah, i);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"failed to reset TX queue #%d\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Pre-enable interrupts on 5211/5212*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
|
|
AR5K_INT_FATAL);
|
|
|
|
/*
|
|
* Set RF kill flags if supported by the device (read from the EEPROM)
|
|
* Disable gpio_intr for now since it results system hang.
|
|
* TODO: Handle this in ath5k_intr
|
|
*/
|
|
#if 0
|
|
if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
|
|
ath5k_hw_set_gpio_input(ah, 0);
|
|
ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
|
|
if (ah->ah_gpio[0] == 0)
|
|
ath5k_hw_set_gpio_intr(ah, 0, 1);
|
|
else
|
|
ath5k_hw_set_gpio_intr(ah, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set the 32MHz reference clock on 5212 phy clock sleep register
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
|
|
ath5k_hw_reg_write(ah, ah->ah_radio == AR5K_RF5111 ?
|
|
AR5K_PHY_SPENDING_RF5111 : AR5K_PHY_SPENDING_RF5112,
|
|
AR5K_PHY_SPENDING);
|
|
}
|
|
|
|
/*
|
|
* Disable beacons and reset the register
|
|
*/
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
|
|
AR5K_BEACON_RESET_TSF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset chipset
|
|
*/
|
|
static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
|
|
{
|
|
int ret;
|
|
u32 mask = val ? val : ~0U;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* Read-and-clear RX Descriptor Pointer*/
|
|
ath5k_hw_reg_read(ah, AR5K_RXDP);
|
|
|
|
/*
|
|
* Reset the device and wait until success
|
|
*/
|
|
ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
|
|
|
|
/* Wait at least 128 PCI clocks */
|
|
udelay(15);
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
val &= AR5K_RESET_CTL_CHIP;
|
|
mask &= AR5K_RESET_CTL_CHIP;
|
|
} else {
|
|
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
|
|
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
|
|
}
|
|
|
|
ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
|
|
|
|
/*
|
|
* Reset configuration register (for hw byte-swap). Note that this
|
|
* is only set for big endian. We do the necessary magic in
|
|
* AR5K_INIT_CFG.
|
|
*/
|
|
if ((val & AR5K_RESET_CTL_PCU) == 0)
|
|
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Power management functions
|
|
*/
|
|
|
|
/*
|
|
* Sleep control
|
|
*/
|
|
int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
|
|
bool set_chip, u16 sleep_duration)
|
|
{
|
|
unsigned int i;
|
|
u32 staid;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
|
|
|
|
switch (mode) {
|
|
case AR5K_PM_AUTO:
|
|
staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
|
|
/* fallthrough */
|
|
case AR5K_PM_NETWORK_SLEEP:
|
|
if (set_chip == true)
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_SLEEP_CTL_SLE | sleep_duration,
|
|
AR5K_SLEEP_CTL);
|
|
|
|
staid |= AR5K_STA_ID1_PWR_SV;
|
|
break;
|
|
|
|
case AR5K_PM_FULL_SLEEP:
|
|
if (set_chip == true)
|
|
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
|
|
AR5K_SLEEP_CTL);
|
|
|
|
staid |= AR5K_STA_ID1_PWR_SV;
|
|
break;
|
|
|
|
case AR5K_PM_AWAKE:
|
|
if (set_chip == false)
|
|
goto commit;
|
|
|
|
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
|
|
AR5K_SLEEP_CTL);
|
|
|
|
for (i = 5000; i > 0; i--) {
|
|
/* Check if the chip did wake up */
|
|
if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
|
|
AR5K_PCICFG_SPWR_DN) == 0)
|
|
break;
|
|
|
|
/* Wait a bit and retry */
|
|
udelay(200);
|
|
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
|
|
AR5K_SLEEP_CTL);
|
|
}
|
|
|
|
/* Fail if the chip didn't wake up */
|
|
if (i <= 0)
|
|
return -EIO;
|
|
|
|
staid &= ~AR5K_STA_ID1_PWR_SV;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
commit:
|
|
ah->ah_power_mode = mode;
|
|
ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/***********************\
|
|
DMA Related Functions
|
|
\***********************/
|
|
|
|
/*
|
|
* Receive functions
|
|
*/
|
|
|
|
/*
|
|
* Start DMA receive
|
|
*/
|
|
void ath5k_hw_start_rx(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
|
|
}
|
|
|
|
/*
|
|
* Stop DMA receive
|
|
*/
|
|
int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
|
|
{
|
|
unsigned int i;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
|
|
|
|
/*
|
|
* It may take some time to disable the DMA receive unit
|
|
*/
|
|
for (i = 2000; i > 0 &&
|
|
(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
|
|
i--)
|
|
udelay(10);
|
|
|
|
return i ? 0 : -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Get the address of the RX Descriptor
|
|
*/
|
|
u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
|
|
{
|
|
return ath5k_hw_reg_read(ah, AR5K_RXDP);
|
|
}
|
|
|
|
/*
|
|
* Set the address of the RX Descriptor
|
|
*/
|
|
void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*TODO:Shouldn't we check if RX is enabled first ?*/
|
|
ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
|
|
}
|
|
|
|
/*
|
|
* Transmit functions
|
|
*/
|
|
|
|
/*
|
|
* Start DMA transmit for a specific queue
|
|
* (see also QCU/DCU functions)
|
|
*/
|
|
int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
|
|
{
|
|
u32 tx_queue;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
/* Return if queue is declared inactive */
|
|
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
|
|
return -EIO;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
|
|
|
|
/*
|
|
* Set the queue by type on 5210
|
|
*/
|
|
switch (ah->ah_txq[queue].tqi_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
|
|
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
|
|
AR5K_BSR);
|
|
break;
|
|
case AR5K_TX_QUEUE_CAB:
|
|
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
|
|
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
|
|
AR5K_BCR_BDMAE, AR5K_BSR);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* Start queue */
|
|
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
|
|
} else {
|
|
/* Return if queue is disabled */
|
|
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
|
|
return -EIO;
|
|
|
|
/* Start queue */
|
|
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop DMA transmit for a specific queue
|
|
* (see also QCU/DCU functions)
|
|
*/
|
|
int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
|
|
{
|
|
unsigned int i = 100;
|
|
u32 tx_queue, pending;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
/* Return if queue is declared inactive */
|
|
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
|
|
return -EIO;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
|
|
|
|
/*
|
|
* Set by queue type
|
|
*/
|
|
switch (ah->ah_txq[queue].tqi_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
case AR5K_TX_QUEUE_CAB:
|
|
/* XXX Fix me... */
|
|
tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
|
|
ath5k_hw_reg_write(ah, 0, AR5K_BSR);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Stop queue */
|
|
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
|
|
} else {
|
|
/*
|
|
* Schedule TX disable and wait until queue is empty
|
|
*/
|
|
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
|
|
|
|
/*Check for pending frames*/
|
|
do {
|
|
pending = ath5k_hw_reg_read(ah,
|
|
AR5K_QUEUE_STATUS(queue)) &
|
|
AR5K_QCU_STS_FRMPENDCNT;
|
|
udelay(100);
|
|
} while (--i && pending);
|
|
|
|
/* Clear register */
|
|
ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
|
|
}
|
|
|
|
/* TODO: Check for success else return error */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get the address of the TX Descriptor for a specific queue
|
|
* (see also QCU/DCU functions)
|
|
*/
|
|
u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
|
|
{
|
|
u16 tx_reg;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
/*
|
|
* Get the transmit queue descriptor pointer from the selected queue
|
|
*/
|
|
/*5210 doesn't have QCU*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
switch (ah->ah_txq[queue].tqi_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
tx_reg = AR5K_NOQCU_TXDP0;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
case AR5K_TX_QUEUE_CAB:
|
|
tx_reg = AR5K_NOQCU_TXDP1;
|
|
break;
|
|
default:
|
|
return 0xffffffff;
|
|
}
|
|
} else {
|
|
tx_reg = AR5K_QUEUE_TXDP(queue);
|
|
}
|
|
|
|
return ath5k_hw_reg_read(ah, tx_reg);
|
|
}
|
|
|
|
/*
|
|
* Set the address of the TX Descriptor for a specific queue
|
|
* (see also QCU/DCU functions)
|
|
*/
|
|
int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
|
|
{
|
|
u16 tx_reg;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
/*
|
|
* Set the transmit queue descriptor pointer register by type
|
|
* on 5210
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
switch (ah->ah_txq[queue].tqi_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
tx_reg = AR5K_NOQCU_TXDP0;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
case AR5K_TX_QUEUE_CAB:
|
|
tx_reg = AR5K_NOQCU_TXDP1;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
/*
|
|
* Set the transmit queue descriptor pointer for
|
|
* the selected queue on QCU for 5211+
|
|
* (this won't work if the queue is still active)
|
|
*/
|
|
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
|
|
return -EIO;
|
|
|
|
tx_reg = AR5K_QUEUE_TXDP(queue);
|
|
}
|
|
|
|
/* Set descriptor pointer */
|
|
ath5k_hw_reg_write(ah, phys_addr, tx_reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update tx trigger level
|
|
*/
|
|
int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
|
|
{
|
|
u32 trigger_level, imr;
|
|
int ret = -EIO;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*
|
|
* Disable interrupts by setting the mask
|
|
*/
|
|
imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
|
|
|
|
/*TODO: Boundary check on trigger_level*/
|
|
trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
|
|
AR5K_TXCFG_TXFULL);
|
|
|
|
if (increase == false) {
|
|
if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
|
|
goto done;
|
|
} else
|
|
trigger_level +=
|
|
((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
|
|
|
|
/*
|
|
* Update trigger level on success
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
|
|
else
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_TXFULL, trigger_level);
|
|
|
|
ret = 0;
|
|
|
|
done:
|
|
/*
|
|
* Restore interrupt mask
|
|
*/
|
|
ath5k_hw_set_intr(ah, imr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Interrupt handling
|
|
*/
|
|
|
|
/*
|
|
* Check if we have pending interrupts
|
|
*/
|
|
bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
return ath5k_hw_reg_read(ah, AR5K_INTPEND);
|
|
}
|
|
|
|
/*
|
|
* Get interrupt mask (ISR)
|
|
*/
|
|
int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
|
|
{
|
|
u32 data;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*
|
|
* Read interrupt status from the Interrupt Status register
|
|
* on 5210
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
data = ath5k_hw_reg_read(ah, AR5K_ISR);
|
|
if (unlikely(data == AR5K_INT_NOCARD)) {
|
|
*interrupt_mask = data;
|
|
return -ENODEV;
|
|
}
|
|
} else {
|
|
/*
|
|
* Read interrupt status from the Read-And-Clear shadow register
|
|
* Note: PISR/SISR Not available on 5210
|
|
*/
|
|
data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
|
|
}
|
|
|
|
/*
|
|
* Get abstract interrupt mask (driver-compatible)
|
|
*/
|
|
*interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
|
|
|
|
if (unlikely(data == AR5K_INT_NOCARD))
|
|
return -ENODEV;
|
|
|
|
if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
|
|
*interrupt_mask |= AR5K_INT_RX;
|
|
|
|
if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
|
|
| AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
|
|
*interrupt_mask |= AR5K_INT_TX;
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
/*HIU = Host Interface Unit (PCI etc)*/
|
|
if (unlikely(data & (AR5K_ISR_HIUERR)))
|
|
*interrupt_mask |= AR5K_INT_FATAL;
|
|
|
|
/*Beacon Not Ready*/
|
|
if (unlikely(data & (AR5K_ISR_BNR)))
|
|
*interrupt_mask |= AR5K_INT_BNR;
|
|
}
|
|
|
|
/*
|
|
* XXX: BMISS interrupts may occur after association.
|
|
* I found this on 5210 code but it needs testing. If this is
|
|
* true we should disable them before assoc and re-enable them
|
|
* after a successfull assoc + some jiffies.
|
|
*/
|
|
#if 0
|
|
interrupt_mask &= ~AR5K_INT_BMISS;
|
|
#endif
|
|
|
|
/*
|
|
* In case we didn't handle anything,
|
|
* print the register value.
|
|
*/
|
|
if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
|
|
ATH5K_PRINTF("0x%08x\n", data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set interrupt mask
|
|
*/
|
|
enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
|
|
{
|
|
enum ath5k_int old_mask, int_mask;
|
|
|
|
/*
|
|
* Disable card interrupts to prevent any race conditions
|
|
* (they will be re-enabled afterwards).
|
|
*/
|
|
ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
|
|
|
|
old_mask = ah->ah_imr;
|
|
|
|
/*
|
|
* Add additional, chipset-dependent interrupt mask flags
|
|
* and write them to the IMR (interrupt mask register).
|
|
*/
|
|
int_mask = new_mask & AR5K_INT_COMMON;
|
|
|
|
if (new_mask & AR5K_INT_RX)
|
|
int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
|
|
AR5K_IMR_RXDESC;
|
|
|
|
if (new_mask & AR5K_INT_TX)
|
|
int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
|
|
AR5K_IMR_TXURN;
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
if (new_mask & AR5K_INT_FATAL) {
|
|
int_mask |= AR5K_IMR_HIUERR;
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
|
|
AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
|
|
}
|
|
}
|
|
|
|
ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
|
|
|
|
/* Store new interrupt mask */
|
|
ah->ah_imr = new_mask;
|
|
|
|
/* ..re-enable interrupts */
|
|
ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
|
|
|
|
return old_mask;
|
|
}
|
|
|
|
|
|
/*************************\
|
|
EEPROM access functions
|
|
\*************************/
|
|
|
|
/*
|
|
* Read from eeprom
|
|
*/
|
|
static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
|
|
{
|
|
u32 status, timeout;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/*
|
|
* Initialize EEPROM access
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
|
|
(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
|
|
} else {
|
|
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
|
|
AR5K_EEPROM_CMD_READ);
|
|
}
|
|
|
|
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
|
|
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
|
|
if (status & AR5K_EEPROM_STAT_RDDONE) {
|
|
if (status & AR5K_EEPROM_STAT_RDERR)
|
|
return -EIO;
|
|
*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
|
|
0xffff);
|
|
return 0;
|
|
}
|
|
udelay(15);
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Write to eeprom - currently disabled, use at your own risk
|
|
*/
|
|
static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
|
|
{
|
|
#if 0
|
|
u32 status, timeout;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*
|
|
* Initialize eeprom access
|
|
*/
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
|
|
} else {
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
|
|
AR5K_EEPROM_CMD_RESET);
|
|
}
|
|
|
|
/*
|
|
* Write data to data register
|
|
*/
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
|
|
} else {
|
|
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
|
|
ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
|
|
AR5K_EEPROM_CMD_WRITE);
|
|
}
|
|
|
|
/*
|
|
* Check status
|
|
*/
|
|
|
|
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
|
|
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
|
|
if (status & AR5K_EEPROM_STAT_WRDONE) {
|
|
if (status & AR5K_EEPROM_STAT_WRERR)
|
|
return EIO;
|
|
return 0;
|
|
}
|
|
udelay(15);
|
|
}
|
|
#endif
|
|
ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Translate binary channel representation in EEPROM to frequency
|
|
*/
|
|
static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
|
|
{
|
|
u16 val;
|
|
|
|
if (bin == AR5K_EEPROM_CHANNEL_DIS)
|
|
return bin;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11A) {
|
|
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
|
|
val = (5 * bin) + 4800;
|
|
else
|
|
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
|
|
(bin * 10) + 5100;
|
|
} else {
|
|
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
|
|
val = bin + 2300;
|
|
else
|
|
val = bin + 2400;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Read antenna infos from eeprom
|
|
*/
|
|
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
|
|
unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 o = *offset;
|
|
u16 val;
|
|
int ret, i = 0;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
|
|
ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
|
|
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = val & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
|
|
ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
|
|
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = val & 0x3f;
|
|
|
|
/* Get antenna modes */
|
|
ah->ah_antenna[mode][0] =
|
|
(ee->ee_ant_control[mode][0] << 4) | 0x1;
|
|
ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
|
|
ee->ee_ant_control[mode][1] |
|
|
(ee->ee_ant_control[mode][2] << 6) |
|
|
(ee->ee_ant_control[mode][3] << 12) |
|
|
(ee->ee_ant_control[mode][4] << 18) |
|
|
(ee->ee_ant_control[mode][5] << 24);
|
|
ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
|
|
ee->ee_ant_control[mode][6] |
|
|
(ee->ee_ant_control[mode][7] << 6) |
|
|
(ee->ee_ant_control[mode][8] << 12) |
|
|
(ee->ee_ant_control[mode][9] << 18) |
|
|
(ee->ee_ant_control[mode][10] << 24);
|
|
|
|
/* return new offset */
|
|
*offset = o;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read supported modes from eeprom
|
|
*/
|
|
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
|
|
unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 o = *offset;
|
|
u16 val;
|
|
int ret;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
|
|
ee->ee_thr_62[mode] = val & 0xff;
|
|
|
|
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
|
|
ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
|
|
ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
|
|
|
|
if ((val & 0xff) & 0x80)
|
|
ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
|
|
else
|
|
ee->ee_noise_floor_thr[mode] = val & 0xff;
|
|
|
|
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
|
|
ee->ee_noise_floor_thr[mode] =
|
|
mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
|
|
ee->ee_x_gain[mode] = (val >> 1) & 0xf;
|
|
ee->ee_xpd[mode] = val & 0x1;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
|
|
ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11A)
|
|
ee->ee_xr_power[mode] = val & 0x3f;
|
|
else {
|
|
ee->ee_ob[mode][0] = val & 0x7;
|
|
ee->ee_db[mode][0] = (val >> 3) & 0x7;
|
|
}
|
|
}
|
|
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
|
|
ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
|
|
ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
|
|
} else {
|
|
ee->ee_i_gain[mode] = (val >> 13) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_i_gain[mode] |= (val << 3) & 0x38;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11G)
|
|
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
|
|
}
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
|
|
mode == AR5K_EEPROM_MODE_11A) {
|
|
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
|
|
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
|
|
}
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
|
|
mode == AR5K_EEPROM_MODE_11G)
|
|
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
|
|
|
|
/* return new offset */
|
|
*offset = o;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize eeprom & capabilities structs
|
|
*/
|
|
static int ath5k_eeprom_init(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
unsigned int mode, i;
|
|
int ret;
|
|
u32 offset;
|
|
u16 val;
|
|
|
|
/* Initial TX thermal adjustment values */
|
|
ee->ee_tx_clip = 4;
|
|
ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
|
|
ee->ee_gain_select = 1;
|
|
|
|
/*
|
|
* Read values from EEPROM and store them in the capability structure
|
|
*/
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
|
|
|
|
/* Return if we have an old EEPROM */
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
|
|
return 0;
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* Validate the checksum of the EEPROM date. There are some
|
|
* devices with invalid EEPROMs.
|
|
*/
|
|
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
|
|
cksum ^= val;
|
|
}
|
|
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
|
|
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
|
|
return -EIO;
|
|
}
|
|
#endif
|
|
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
|
|
ee_ant_gain);
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
|
|
}
|
|
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
|
|
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
|
|
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
|
|
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
|
|
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
|
|
}
|
|
|
|
/*
|
|
* Get conformance test limit values
|
|
*/
|
|
offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
|
|
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
|
|
|
|
for (i = 0; i < ee->ee_ctls; i++) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_ctl[i] = (val >> 8) & 0xff;
|
|
ee->ee_ctl[i + 1] = val & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Get values for 802.11a (5GHz)
|
|
*/
|
|
mode = AR5K_EEPROM_MODE_11A;
|
|
|
|
ee->ee_turbo_max_power[mode] =
|
|
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
|
|
|
|
offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
|
|
|
|
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
|
|
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
|
|
ee->ee_db[mode][3] = (val >> 2) & 0x7;
|
|
ee->ee_ob[mode][2] = (val << 1) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
|
|
ee->ee_db[mode][2] = (val >> 12) & 0x7;
|
|
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
|
|
ee->ee_db[mode][1] = (val >> 6) & 0x7;
|
|
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
|
|
ee->ee_db[mode][0] = val & 0x7;
|
|
|
|
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_margin_tx_rx[mode] = val & 0x3f;
|
|
}
|
|
|
|
/*
|
|
* Get values for 802.11b (2.4GHz)
|
|
*/
|
|
mode = AR5K_EEPROM_MODE_11B;
|
|
offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
|
|
|
|
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
|
|
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
|
|
ee->ee_db[mode][1] = val & 0x7;
|
|
|
|
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_cal_pier[mode][0] =
|
|
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
|
|
ee->ee_cal_pier[mode][1] =
|
|
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_cal_pier[mode][2] =
|
|
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
|
|
}
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
|
|
|
|
/*
|
|
* Get values for 802.11g (2.4GHz)
|
|
*/
|
|
mode = AR5K_EEPROM_MODE_11G;
|
|
offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
|
|
|
|
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
|
|
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
|
|
ee->ee_db[mode][1] = val & 0x7;
|
|
|
|
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_cal_pier[mode][0] =
|
|
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
|
|
ee->ee_cal_pier[mode][1] =
|
|
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_turbo_max_power[mode] = val & 0x7f;
|
|
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_cal_pier[mode][2] =
|
|
ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
|
|
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_cck_ofdm_gain_delta = val & 0xff;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read 5GHz EEPROM channels
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the MAC address from eeprom
|
|
*/
|
|
static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
|
|
{
|
|
u8 mac_d[ETH_ALEN];
|
|
u32 total, offset;
|
|
u16 data;
|
|
int octet, ret;
|
|
|
|
memset(mac, 0, ETH_ALEN);
|
|
memset(mac_d, 0, ETH_ALEN);
|
|
|
|
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
|
|
ret = ath5k_hw_eeprom_read(ah, offset, &data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
total += data;
|
|
mac_d[octet + 1] = data & 0xff;
|
|
mac_d[octet] = data >> 8;
|
|
octet += 2;
|
|
}
|
|
|
|
memcpy(mac, mac_d, ETH_ALEN);
|
|
|
|
if (!total || total == 3 * 0xffff)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read/Write regulatory domain
|
|
*/
|
|
static bool ath5k_eeprom_regulation_domain(struct ath5k_hw *ah, bool write,
|
|
enum ath5k_regdom *regdomain)
|
|
{
|
|
u16 ee_regdomain;
|
|
|
|
/* Read current value */
|
|
if (write != true) {
|
|
ee_regdomain = ah->ah_capabilities.cap_eeprom.ee_regdomain;
|
|
*regdomain = ath5k_regdom_to_ieee(ee_regdomain);
|
|
return true;
|
|
}
|
|
|
|
ee_regdomain = ath5k_regdom_from_ieee(*regdomain);
|
|
|
|
/* Try to write a new value */
|
|
if (ah->ah_capabilities.cap_eeprom.ee_protect &
|
|
AR5K_EEPROM_PROTECT_WR_128_191)
|
|
return false;
|
|
if (ath5k_hw_eeprom_write(ah, AR5K_EEPROM_REG_DOMAIN, ee_regdomain)!=0)
|
|
return false;
|
|
|
|
ah->ah_capabilities.cap_eeprom.ee_regdomain = ee_regdomain;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Use the above to write a new regulatory domain
|
|
*/
|
|
int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain)
|
|
{
|
|
enum ath5k_regdom ieee_regdomain;
|
|
|
|
ieee_regdomain = ath5k_regdom_to_ieee(regdomain);
|
|
|
|
if (ath5k_eeprom_regulation_domain(ah, true, &ieee_regdomain) == true)
|
|
return 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Fill the capabilities struct
|
|
*/
|
|
static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
|
|
{
|
|
u16 ee_header;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Capabilities stored in the EEPROM */
|
|
ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
/*
|
|
* Set radio capabilities
|
|
* (The AR5110 only supports the middle 5GHz band)
|
|
*/
|
|
ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
|
|
ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
|
|
ah->ah_capabilities.cap_range.range_2ghz_min = 0;
|
|
ah->ah_capabilities.cap_range.range_2ghz_max = 0;
|
|
|
|
/* Set supported modes */
|
|
__set_bit(MODE_IEEE80211A, ah->ah_capabilities.cap_mode);
|
|
__set_bit(MODE_ATHEROS_TURBO, ah->ah_capabilities.cap_mode);
|
|
} else {
|
|
/*
|
|
* XXX The tranceiver supports frequencies from 4920 to 6100GHz
|
|
* XXX and from 2312 to 2732GHz. There are problems with the
|
|
* XXX current ieee80211 implementation because the IEEE
|
|
* XXX channel mapping does not support negative channel
|
|
* XXX numbers (2312MHz is channel -19). Of course, this
|
|
* XXX doesn't matter because these channels are out of range
|
|
* XXX but some regulation domains like MKK (Japan) will
|
|
* XXX support frequencies somewhere around 4.8GHz.
|
|
*/
|
|
|
|
/*
|
|
* Set radio capabilities
|
|
*/
|
|
|
|
if (AR5K_EEPROM_HDR_11A(ee_header)) {
|
|
ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
|
|
ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
|
|
|
|
/* Set supported modes */
|
|
__set_bit(MODE_IEEE80211A,
|
|
ah->ah_capabilities.cap_mode);
|
|
__set_bit(MODE_ATHEROS_TURBO,
|
|
ah->ah_capabilities.cap_mode);
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
__set_bit(MODE_ATHEROS_TURBOG,
|
|
ah->ah_capabilities.cap_mode);
|
|
}
|
|
|
|
/* Enable 802.11b if a 2GHz capable radio (2111/5112) is
|
|
* connected */
|
|
if (AR5K_EEPROM_HDR_11B(ee_header) ||
|
|
AR5K_EEPROM_HDR_11G(ee_header)) {
|
|
ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
|
|
ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
|
|
|
|
if (AR5K_EEPROM_HDR_11B(ee_header))
|
|
__set_bit(MODE_IEEE80211B,
|
|
ah->ah_capabilities.cap_mode);
|
|
|
|
if (AR5K_EEPROM_HDR_11G(ee_header))
|
|
__set_bit(MODE_IEEE80211G,
|
|
ah->ah_capabilities.cap_mode);
|
|
}
|
|
}
|
|
|
|
/* GPIO */
|
|
ah->ah_gpio_npins = AR5K_NUM_GPIO;
|
|
|
|
/* Set number of supported TX queues */
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
ah->ah_capabilities.cap_queues.q_tx_num =
|
|
AR5K_NUM_TX_QUEUES_NOQCU;
|
|
else
|
|
ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*********************************\
|
|
Protocol Control Unit Functions
|
|
\*********************************/
|
|
|
|
/*
|
|
* Set Operation mode
|
|
*/
|
|
int ath5k_hw_set_opmode(struct ath5k_hw *ah)
|
|
{
|
|
u32 pcu_reg, beacon_reg, low_id, high_id;
|
|
|
|
pcu_reg = 0;
|
|
beacon_reg = 0;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
switch (ah->ah_op_mode) {
|
|
case IEEE80211_IF_TYPE_IBSS:
|
|
pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
|
|
(ah->ah_version == AR5K_AR5210 ?
|
|
AR5K_STA_ID1_NO_PSPOLL : 0);
|
|
beacon_reg |= AR5K_BCR_ADHOC;
|
|
break;
|
|
|
|
case IEEE80211_IF_TYPE_AP:
|
|
pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
|
|
(ah->ah_version == AR5K_AR5210 ?
|
|
AR5K_STA_ID1_NO_PSPOLL : 0);
|
|
beacon_reg |= AR5K_BCR_AP;
|
|
break;
|
|
|
|
case IEEE80211_IF_TYPE_STA:
|
|
pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
|
|
(ah->ah_version == AR5K_AR5210 ?
|
|
AR5K_STA_ID1_PWR_SV : 0);
|
|
case IEEE80211_IF_TYPE_MNTR:
|
|
pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
|
|
(ah->ah_version == AR5K_AR5210 ?
|
|
AR5K_STA_ID1_NO_PSPOLL : 0);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Set PCU registers
|
|
*/
|
|
low_id = AR5K_LOW_ID(ah->ah_sta_id);
|
|
high_id = AR5K_HIGH_ID(ah->ah_sta_id);
|
|
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
|
|
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
|
|
|
|
/*
|
|
* Set Beacon Control Register on 5210
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* BSSID Functions
|
|
*/
|
|
|
|
/*
|
|
* Get station id
|
|
*/
|
|
void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
memcpy(mac, ah->ah_sta_id, ETH_ALEN);
|
|
}
|
|
|
|
/*
|
|
* Set station id
|
|
*/
|
|
int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
|
|
{
|
|
u32 low_id, high_id;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Set new station ID */
|
|
memcpy(ah->ah_sta_id, mac, ETH_ALEN);
|
|
|
|
low_id = AR5K_LOW_ID(mac);
|
|
high_id = AR5K_HIGH_ID(mac);
|
|
|
|
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
|
|
ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set BSSID
|
|
*/
|
|
void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
|
|
{
|
|
u32 low_id, high_id;
|
|
u16 tim_offset = 0;
|
|
|
|
/*
|
|
* Set simple BSSID mask on 5212
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM0);
|
|
ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM1);
|
|
}
|
|
|
|
/*
|
|
* Set BSSID which triggers the "SME Join" operation
|
|
*/
|
|
low_id = AR5K_LOW_ID(bssid);
|
|
high_id = AR5K_HIGH_ID(bssid);
|
|
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
|
|
ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
|
|
AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
|
|
|
|
if (assoc_id == 0) {
|
|
ath5k_hw_disable_pspoll(ah);
|
|
return;
|
|
}
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
|
|
tim_offset ? tim_offset + 4 : 0);
|
|
|
|
ath5k_hw_enable_pspoll(ah, NULL, 0);
|
|
}
|
|
/**
|
|
* ath5k_hw_set_bssid_mask - set common bits we should listen to
|
|
*
|
|
* The bssid_mask is a utility used by AR5212 hardware to inform the hardware
|
|
* which bits of the interface's MAC address should be looked at when trying
|
|
* to decide which packets to ACK. In station mode every bit matters. In AP
|
|
* mode with a single BSS every bit matters as well. In AP mode with
|
|
* multiple BSSes not every bit matters.
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @mask: the bssid_mask, a u8 array of size ETH_ALEN
|
|
*
|
|
* Note that this is a simple filter and *does* not filter out all
|
|
* relevant frames. Some non-relevant frames will get through, probability
|
|
* jocks are welcomed to compute.
|
|
*
|
|
* When handling multiple BSSes (or VAPs) you can get the BSSID mask by
|
|
* computing the set of:
|
|
*
|
|
* ~ ( MAC XOR BSSID )
|
|
*
|
|
* When you do this you are essentially computing the common bits. Later it
|
|
* is assumed the harware will "and" (&) the BSSID mask with the MAC address
|
|
* to obtain the relevant bits which should match on the destination frame.
|
|
*
|
|
* Simple example: on your card you have have two BSSes you have created with
|
|
* BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
|
|
* There is another BSSID-03 but you are not part of it. For simplicity's sake,
|
|
* assuming only 4 bits for a mac address and for BSSIDs you can then have:
|
|
*
|
|
* \
|
|
* MAC: 0001 |
|
|
* BSSID-01: 0100 | --> Belongs to us
|
|
* BSSID-02: 1001 |
|
|
* /
|
|
* -------------------
|
|
* BSSID-03: 0110 | --> External
|
|
* -------------------
|
|
*
|
|
* Our bssid_mask would then be:
|
|
*
|
|
* On loop iteration for BSSID-01:
|
|
* ~(0001 ^ 0100) -> ~(0101)
|
|
* -> 1010
|
|
* bssid_mask = 1010
|
|
*
|
|
* On loop iteration for BSSID-02:
|
|
* bssid_mask &= ~(0001 ^ 1001)
|
|
* bssid_mask = (1010) & ~(0001 ^ 1001)
|
|
* bssid_mask = (1010) & ~(1001)
|
|
* bssid_mask = (1010) & (0110)
|
|
* bssid_mask = 0010
|
|
*
|
|
* A bssid_mask of 0010 means "only pay attention to the second least
|
|
* significant bit". This is because its the only bit common
|
|
* amongst the MAC and all BSSIDs we support. To findout what the real
|
|
* common bit is we can simply "&" the bssid_mask now with any BSSID we have
|
|
* or our MAC address (we assume the hardware uses the MAC address).
|
|
*
|
|
* Now, suppose there's an incoming frame for BSSID-03:
|
|
*
|
|
* IFRAME-01: 0110
|
|
*
|
|
* An easy eye-inspeciton of this already should tell you that this frame
|
|
* will not pass our check. This is beacuse the bssid_mask tells the
|
|
* hardware to only look at the second least significant bit and the
|
|
* common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
|
|
* as 1, which does not match 0.
|
|
*
|
|
* So with IFRAME-01 we *assume* the hardware will do:
|
|
*
|
|
* allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
|
|
* --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
|
|
* --> allow = (0010) == 0000 ? 1 : 0;
|
|
* --> allow = 0
|
|
*
|
|
* Lets now test a frame that should work:
|
|
*
|
|
* IFRAME-02: 0001 (we should allow)
|
|
*
|
|
* allow = (0001 & 1010) == 1010
|
|
*
|
|
* allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
|
|
* --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
|
|
* --> allow = (0010) == (0010)
|
|
* --> allow = 1
|
|
*
|
|
* Other examples:
|
|
*
|
|
* IFRAME-03: 0100 --> allowed
|
|
* IFRAME-04: 1001 --> allowed
|
|
* IFRAME-05: 1101 --> allowed but its not for us!!!
|
|
*
|
|
*/
|
|
int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
|
|
{
|
|
u32 low_id, high_id;
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
low_id = AR5K_LOW_ID(mask);
|
|
high_id = AR5K_HIGH_ID(mask);
|
|
|
|
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
|
|
ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Receive start/stop functions
|
|
*/
|
|
|
|
/*
|
|
* Start receive on PCU
|
|
*/
|
|
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
|
|
}
|
|
|
|
/*
|
|
* Stop receive on PCU
|
|
*/
|
|
void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
|
|
}
|
|
|
|
/*
|
|
* RX Filter functions
|
|
*/
|
|
|
|
/*
|
|
* Set multicast filter
|
|
*/
|
|
void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Set the multicat filter */
|
|
ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
|
|
ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
|
|
}
|
|
|
|
/*
|
|
* Set multicast filter by index
|
|
*/
|
|
int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
|
|
{
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (index >= 64)
|
|
return -EINVAL;
|
|
else if (index >= 32)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
|
|
(1 << (index - 32)));
|
|
else
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear Multicast filter by index
|
|
*/
|
|
int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
|
|
{
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (index >= 64)
|
|
return -EINVAL;
|
|
else if (index >= 32)
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
|
|
(1 << (index - 32)));
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get current rx filter
|
|
*/
|
|
u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
|
|
{
|
|
u32 data, filter = 0;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
|
|
|
|
/*Radar detection for 5212*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
|
|
|
|
if (data & AR5K_PHY_ERR_FIL_RADAR)
|
|
filter |= AR5K_RX_FILTER_RADARERR;
|
|
if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
|
|
filter |= AR5K_RX_FILTER_PHYERR;
|
|
}
|
|
|
|
return filter;
|
|
}
|
|
|
|
/*
|
|
* Set rx filter
|
|
*/
|
|
void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
|
|
{
|
|
u32 data = 0;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* Set PHY error filter register on 5212*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
if (filter & AR5K_RX_FILTER_RADARERR)
|
|
data |= AR5K_PHY_ERR_FIL_RADAR;
|
|
if (filter & AR5K_RX_FILTER_PHYERR)
|
|
data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
|
|
}
|
|
|
|
/*
|
|
* The AR5210 uses promiscous mode to detect radar activity
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210 &&
|
|
(filter & AR5K_RX_FILTER_RADARERR)) {
|
|
filter &= ~AR5K_RX_FILTER_RADARERR;
|
|
filter |= AR5K_RX_FILTER_PROM;
|
|
}
|
|
|
|
/*Zero length DMA*/
|
|
if (data)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
|
|
|
|
/*Write RX Filter register*/
|
|
ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
|
|
|
|
/*Write PHY error filter register on 5212*/
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
|
|
|
|
}
|
|
|
|
/*
|
|
* Beacon related functions
|
|
*/
|
|
|
|
/*
|
|
* Get a 32bit TSF
|
|
*/
|
|
u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
|
|
}
|
|
|
|
/*
|
|
* Get the full 64bit TSF
|
|
*/
|
|
u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
|
|
{
|
|
u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
|
|
}
|
|
|
|
/*
|
|
* Force a TSF reset
|
|
*/
|
|
void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
|
|
}
|
|
|
|
/*
|
|
* Initialize beacon timers
|
|
*/
|
|
void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
|
|
{
|
|
u32 timer1, timer2, timer3;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/*
|
|
* Set the additional timers by mode
|
|
*/
|
|
switch (ah->ah_op_mode) {
|
|
case IEEE80211_IF_TYPE_STA:
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
timer1 = 0xffffffff;
|
|
timer2 = 0xffffffff;
|
|
} else {
|
|
timer1 = 0x0000ffff;
|
|
timer2 = 0x0007ffff;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
|
|
0x00000003;
|
|
timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
|
|
0x00000003;
|
|
}
|
|
|
|
timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
|
|
|
|
/*
|
|
* Set the beacon register and enable all timers.
|
|
* (next beacon, DMA beacon, software beacon, ATIM window time)
|
|
*/
|
|
ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
|
|
ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
|
|
ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
|
|
ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
|
|
|
|
ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
|
|
AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
|
|
AR5K_BEACON);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Set beacon timers
|
|
*/
|
|
int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
|
|
const struct ath5k_beacon_state *state)
|
|
{
|
|
u32 cfp_period, next_cfp, dtim, interval, next_beacon;
|
|
|
|
/*
|
|
* TODO: should be changed through *state
|
|
* review struct ath5k_beacon_state struct
|
|
*
|
|
* XXX: These are used for cfp period bellow, are they
|
|
* ok ? Is it O.K. for tsf here to be 0 or should we use
|
|
* get_tsf ?
|
|
*/
|
|
u32 dtim_count = 0; /* XXX */
|
|
u32 cfp_count = 0; /* XXX */
|
|
u32 tsf = 0; /* XXX */
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Return on an invalid beacon state */
|
|
if (state->bs_interval < 1)
|
|
return -EINVAL;
|
|
|
|
interval = state->bs_interval;
|
|
dtim = state->bs_dtim_period;
|
|
|
|
/*
|
|
* PCF support?
|
|
*/
|
|
if (state->bs_cfp_period > 0) {
|
|
/*
|
|
* Enable PCF mode and set the CFP
|
|
* (Contention Free Period) and timer registers
|
|
*/
|
|
cfp_period = state->bs_cfp_period * state->bs_dtim_period *
|
|
state->bs_interval;
|
|
next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
|
|
state->bs_interval;
|
|
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
|
|
AR5K_STA_ID1_DEFAULT_ANTENNA |
|
|
AR5K_STA_ID1_PCF);
|
|
ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
|
|
ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
|
|
AR5K_CFP_DUR);
|
|
ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
|
|
next_cfp)) << 3, AR5K_TIMER2);
|
|
} else {
|
|
/* Disable PCF mode */
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
|
|
AR5K_STA_ID1_DEFAULT_ANTENNA |
|
|
AR5K_STA_ID1_PCF);
|
|
}
|
|
|
|
/*
|
|
* Enable the beacon timer register
|
|
*/
|
|
ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
|
|
|
|
/*
|
|
* Start the beacon timers
|
|
*/
|
|
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
|
|
(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
|
|
AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
|
|
AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
|
|
AR5K_BEACON_PERIOD), AR5K_BEACON);
|
|
|
|
/*
|
|
* Write new beacon miss threshold, if it appears to be valid
|
|
* XXX: Figure out right values for min <= bs_bmiss_threshold <= max
|
|
* and return if its not in range. We can test this by reading value and
|
|
* setting value to a largest value and seeing which values register.
|
|
*/
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
|
|
state->bs_bmiss_threshold);
|
|
|
|
/*
|
|
* Set sleep control register
|
|
* XXX: Didn't find this in 5210 code but since this register
|
|
* exists also in ar5k's 5210 headers i leave it as common code.
|
|
*/
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
|
|
(state->bs_sleep_duration - 3) << 3);
|
|
|
|
/*
|
|
* Set enhanced sleep registers on 5212
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
if (state->bs_sleep_duration > state->bs_interval &&
|
|
roundup(state->bs_sleep_duration, interval) ==
|
|
state->bs_sleep_duration)
|
|
interval = state->bs_sleep_duration;
|
|
|
|
if (state->bs_sleep_duration > dtim && (dtim == 0 ||
|
|
roundup(state->bs_sleep_duration, dtim) ==
|
|
state->bs_sleep_duration))
|
|
dtim = state->bs_sleep_duration;
|
|
|
|
if (interval > dtim)
|
|
return -EINVAL;
|
|
|
|
next_beacon = interval == dtim ? state->bs_next_dtim :
|
|
state->bs_next_beacon;
|
|
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
|
|
AR5K_SLEEP0_NEXT_DTIM) |
|
|
AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
|
|
AR5K_SLEEP0_ENH_SLEEP_EN |
|
|
AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
|
|
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
|
|
AR5K_SLEEP1_NEXT_TIM) |
|
|
AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
|
|
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
|
|
AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset beacon timers
|
|
*/
|
|
void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/*
|
|
* Disable beacon timer
|
|
*/
|
|
ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
|
|
|
|
/*
|
|
* Disable some beacon register values
|
|
*/
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
|
|
AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
|
|
ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
|
|
}
|
|
|
|
/*
|
|
* Wait for beacon queue to finish
|
|
*/
|
|
int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* 5210 doesn't have QCU*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
/*
|
|
* Wait for beaconn queue to finish by checking
|
|
* Control Register and Beacon Status Register.
|
|
*/
|
|
for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
|
|
if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
|
|
||
|
|
!(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
/* Timeout... */
|
|
if (i <= 0) {
|
|
/*
|
|
* Re-schedule the beacon queue
|
|
*/
|
|
ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
|
|
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
|
|
AR5K_BCR);
|
|
|
|
return -EIO;
|
|
}
|
|
ret = 0;
|
|
} else {
|
|
/*5211/5212*/
|
|
ret = ath5k_hw_register_timeout(ah,
|
|
AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
|
|
AR5K_QCU_STS_FRMPENDCNT, 0, false);
|
|
|
|
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
|
|
return -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Update mib counters (statistics)
|
|
*/
|
|
void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
|
|
struct ath5k_mib_stats *statistics)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Read-And-Clear */
|
|
statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
|
|
statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
|
|
statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
|
|
statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
|
|
statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
|
|
|
|
/* Reset profile count registers on 5212*/
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
|
|
}
|
|
}
|
|
|
|
/** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @high: determines if to use low bit rate or now
|
|
*/
|
|
void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
|
|
{
|
|
if (ah->ah_version != AR5K_AR5212)
|
|
return;
|
|
else {
|
|
u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
|
|
if (high)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ACK/CTS Timeouts
|
|
*/
|
|
|
|
/*
|
|
* Set ACK timeout on PCU
|
|
*/
|
|
int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
|
|
ah->ah_turbo) <= timeout)
|
|
return -EINVAL;
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
|
|
ath5k_hw_htoclock(timeout, ah->ah_turbo));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the ACK timeout from PCU
|
|
*/
|
|
unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
|
|
AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
|
|
}
|
|
|
|
/*
|
|
* Set CTS timeout on PCU
|
|
*/
|
|
int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
|
|
ah->ah_turbo) <= timeout)
|
|
return -EINVAL;
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
|
|
ath5k_hw_htoclock(timeout, ah->ah_turbo));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read CTS timeout from PCU
|
|
*/
|
|
unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
|
|
AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
|
|
}
|
|
|
|
/*
|
|
* Key table (WEP) functions
|
|
*/
|
|
|
|
int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
|
|
{
|
|
unsigned int i;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
|
|
|
|
for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
|
|
ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
|
|
|
|
/* Set NULL encryption on non-5210*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
|
|
AR5K_KEYTABLE_TYPE(entry));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
|
|
|
|
/* Check the validation flag at the end of the entry */
|
|
return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
|
|
AR5K_KEYTABLE_VALID;
|
|
}
|
|
|
|
int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
|
|
const struct ieee80211_key_conf *key, const u8 *mac)
|
|
{
|
|
unsigned int i;
|
|
__le32 key_v[5] = {};
|
|
u32 keytype;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* key->keylen comes in from mac80211 in bytes */
|
|
|
|
if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (key->keylen) {
|
|
/* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
|
|
case 40 / 8:
|
|
memcpy(&key_v[0], key->key, 5);
|
|
keytype = AR5K_KEYTABLE_TYPE_40;
|
|
break;
|
|
|
|
/* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
|
|
case 104 / 8:
|
|
memcpy(&key_v[0], &key->key[0], 6);
|
|
memcpy(&key_v[2], &key->key[6], 6);
|
|
memcpy(&key_v[4], &key->key[12], 1);
|
|
keytype = AR5K_KEYTABLE_TYPE_104;
|
|
break;
|
|
/* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
|
|
case 128 / 8:
|
|
memcpy(&key_v[0], &key->key[0], 6);
|
|
memcpy(&key_v[2], &key->key[6], 6);
|
|
memcpy(&key_v[4], &key->key[12], 4);
|
|
keytype = AR5K_KEYTABLE_TYPE_128;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL; /* shouldn't happen */
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(key_v); i++)
|
|
ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
|
|
AR5K_KEYTABLE_OFF(entry, i));
|
|
|
|
ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
|
|
|
|
return ath5k_hw_set_key_lladdr(ah, entry, mac);
|
|
}
|
|
|
|
int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
|
|
{
|
|
u32 low_id, high_id;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/* Invalid entry (key table overflow) */
|
|
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
|
|
|
|
/* MAC may be NULL if it's a broadcast key. In this case no need to
|
|
* to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
|
|
if (unlikely(mac == NULL)) {
|
|
low_id = 0xffffffff;
|
|
high_id = 0xffff | AR5K_KEYTABLE_VALID;
|
|
} else {
|
|
low_id = AR5K_LOW_ID(mac);
|
|
high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
|
|
}
|
|
|
|
ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
|
|
ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/********************************************\
|
|
Queue Control Unit, DFS Control Unit Functions
|
|
\********************************************/
|
|
|
|
/*
|
|
* Initialize a transmit queue
|
|
*/
|
|
int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
|
|
struct ath5k_txq_info *queue_info)
|
|
{
|
|
unsigned int queue;
|
|
int ret;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*
|
|
* Get queue by type
|
|
*/
|
|
/*5210 only has 2 queues*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
switch (queue_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
case AR5K_TX_QUEUE_CAB:
|
|
queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
switch (queue_type) {
|
|
case AR5K_TX_QUEUE_DATA:
|
|
for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
|
|
ah->ah_txq[queue].tqi_type !=
|
|
AR5K_TX_QUEUE_INACTIVE; queue++) {
|
|
|
|
if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case AR5K_TX_QUEUE_UAPSD:
|
|
queue = AR5K_TX_QUEUE_ID_UAPSD;
|
|
break;
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
queue = AR5K_TX_QUEUE_ID_BEACON;
|
|
break;
|
|
case AR5K_TX_QUEUE_CAB:
|
|
queue = AR5K_TX_QUEUE_ID_CAB;
|
|
break;
|
|
case AR5K_TX_QUEUE_XR_DATA:
|
|
if (ah->ah_version != AR5K_AR5212)
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"XR data queues only supported in"
|
|
" 5212!\n");
|
|
queue = AR5K_TX_QUEUE_ID_XR_DATA;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup internal queue structure
|
|
*/
|
|
memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
|
|
ah->ah_txq[queue].tqi_type = queue_type;
|
|
|
|
if (queue_info != NULL) {
|
|
queue_info->tqi_type = queue_type;
|
|
ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/*
|
|
* We use ah_txq_status to hold a temp value for
|
|
* the Secondary interrupt mask registers on 5211+
|
|
* check out ath5k_hw_reset_tx_queue
|
|
*/
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
|
|
|
|
return queue;
|
|
}
|
|
|
|
/*
|
|
* Setup a transmit queue
|
|
*/
|
|
int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
|
|
const struct ath5k_txq_info *queue_info)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
|
|
return -EIO;
|
|
|
|
memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
|
|
|
|
/*XXX: Is this supported on 5210 ?*/
|
|
if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
|
|
((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
|
|
(queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
|
|
queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
|
|
ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get properties for a specific transmit queue
|
|
*/
|
|
int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
|
|
struct ath5k_txq_info *queue_info)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set a transmit queue inactive
|
|
*/
|
|
void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
|
|
return;
|
|
|
|
/* This queue will be skipped in further operations */
|
|
ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
|
|
/*For SIMR setup*/
|
|
AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
|
|
}
|
|
|
|
/*
|
|
* Set DFS params for a transmit queue
|
|
*/
|
|
int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
|
|
{
|
|
u32 cw_min, cw_max, retry_lg, retry_sh;
|
|
struct ath5k_txq_info *tq = &ah->ah_txq[queue];
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
tq = &ah->ah_txq[queue];
|
|
|
|
if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
|
|
return 0;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
/* Only handle data queues, others will be ignored */
|
|
if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
|
|
return 0;
|
|
|
|
/* Set Slot time */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
|
|
AR5K_SLOT_TIME);
|
|
/* Set ACK_CTS timeout */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
|
|
AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
|
|
/* Set Transmit Latency */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
AR5K_INIT_TRANSMIT_LATENCY_TURBO :
|
|
AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
|
|
/* Set IFS0 */
|
|
if (ah->ah_turbo == true)
|
|
ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
|
|
(ah->ah_aifs + tq->tqi_aifs) *
|
|
AR5K_INIT_SLOT_TIME_TURBO) <<
|
|
AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
|
|
AR5K_IFS0);
|
|
else
|
|
ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
|
|
(ah->ah_aifs + tq->tqi_aifs) *
|
|
AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
|
|
AR5K_INIT_SIFS, AR5K_IFS0);
|
|
|
|
/* Set IFS1 */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
|
|
AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
|
|
/* Set PHY register 0x9844 (??) */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
(ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
|
|
(ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
|
|
AR5K_PHY(17));
|
|
/* Set Frame Control Register */
|
|
ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
|
|
(AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
|
|
AR5K_PHY_TURBO_SHORT | 0x2020) :
|
|
(AR5K_PHY_FRAME_CTL_INI | 0x1020),
|
|
AR5K_PHY_FRAME_CTL_5210);
|
|
}
|
|
|
|
/*
|
|
* Calculate cwmin/max by channel mode
|
|
*/
|
|
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
|
|
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
|
|
ah->ah_aifs = AR5K_TUNE_AIFS;
|
|
/*XR is only supported on 5212*/
|
|
if (IS_CHAN_XR(ah->ah_current_channel) &&
|
|
ah->ah_version == AR5K_AR5212) {
|
|
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
|
|
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
|
|
ah->ah_aifs = AR5K_TUNE_AIFS_XR;
|
|
/*B mode is not supported on 5210*/
|
|
} else if (IS_CHAN_B(ah->ah_current_channel) &&
|
|
ah->ah_version != AR5K_AR5210) {
|
|
cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
|
|
cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
|
|
ah->ah_aifs = AR5K_TUNE_AIFS_11B;
|
|
}
|
|
|
|
cw_min = 1;
|
|
while (cw_min < ah->ah_cw_min)
|
|
cw_min = (cw_min << 1) | 1;
|
|
|
|
cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
|
|
((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
|
|
cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
|
|
((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
|
|
|
|
/*
|
|
* Calculate and set retry limits
|
|
*/
|
|
if (ah->ah_software_retry == true) {
|
|
/* XXX Need to test this */
|
|
retry_lg = ah->ah_limit_tx_retries;
|
|
retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
|
|
AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
|
|
} else {
|
|
retry_lg = AR5K_INIT_LG_RETRY;
|
|
retry_sh = AR5K_INIT_SH_RETRY;
|
|
}
|
|
|
|
/*No QCU/DCU [5210]*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
ath5k_hw_reg_write(ah,
|
|
(cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
|
|
| AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
|
|
AR5K_NODCU_RETRY_LMT_SLG_RETRY)
|
|
| AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
|
|
AR5K_NODCU_RETRY_LMT_SSH_RETRY)
|
|
| AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
|
|
| AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
|
|
AR5K_NODCU_RETRY_LMT);
|
|
} else {
|
|
/*QCU/DCU [5211+]*/
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
|
|
AR5K_DCU_RETRY_LMT_SLG_RETRY) |
|
|
AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
|
|
AR5K_DCU_RETRY_LMT_SSH_RETRY) |
|
|
AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
|
|
AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
|
|
AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
|
|
|
|
/*===Rest is also for QCU/DCU only [5211+]===*/
|
|
|
|
/*
|
|
* Set initial content window (cw_min/cw_max)
|
|
* and arbitrated interframe space (aifs)...
|
|
*/
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
|
|
AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
|
|
AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
|
|
AR5K_DCU_LCL_IFS_AIFS),
|
|
AR5K_QUEUE_DFS_LOCAL_IFS(queue));
|
|
|
|
/*
|
|
* Set misc registers
|
|
*/
|
|
ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
|
|
AR5K_QUEUE_MISC(queue));
|
|
|
|
if (tq->tqi_cbr_period) {
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
|
|
AR5K_QCU_CBRCFG_INTVAL) |
|
|
AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
|
|
AR5K_QCU_CBRCFG_ORN_THRES),
|
|
AR5K_QUEUE_CBRCFG(queue));
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_FRSHED_CBR);
|
|
if (tq->tqi_cbr_overflow_limit)
|
|
AR5K_REG_ENABLE_BITS(ah,
|
|
AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_CBR_THRES_ENABLE);
|
|
}
|
|
|
|
if (tq->tqi_ready_time)
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
|
|
AR5K_QCU_RDYTIMECFG_INTVAL) |
|
|
AR5K_QCU_RDYTIMECFG_ENABLE,
|
|
AR5K_QUEUE_RDYTIMECFG(queue));
|
|
|
|
if (tq->tqi_burst_time) {
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
|
|
AR5K_DCU_CHAN_TIME_DUR) |
|
|
AR5K_DCU_CHAN_TIME_ENABLE,
|
|
AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
|
|
AR5K_REG_ENABLE_BITS(ah,
|
|
AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_TXE);
|
|
}
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
|
|
ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
|
|
AR5K_QUEUE_DFS_MISC(queue));
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
|
|
ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
|
|
AR5K_QUEUE_DFS_MISC(queue));
|
|
|
|
/*
|
|
* Set registers by queue type
|
|
*/
|
|
switch (tq->tqi_type) {
|
|
case AR5K_TX_QUEUE_BEACON:
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_FRSHED_DBA_GT |
|
|
AR5K_QCU_MISC_CBREXP_BCN |
|
|
AR5K_QCU_MISC_BCN_ENABLE);
|
|
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
|
|
(AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
|
|
AR5K_DCU_MISC_ARBLOCK_CTL_S) |
|
|
AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
|
|
AR5K_DCU_MISC_BCN_ENABLE);
|
|
|
|
ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
|
|
(AR5K_TUNE_SW_BEACON_RESP -
|
|
AR5K_TUNE_DMA_BEACON_RESP) -
|
|
AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
|
|
AR5K_QCU_RDYTIMECFG_ENABLE,
|
|
AR5K_QUEUE_RDYTIMECFG(queue));
|
|
break;
|
|
|
|
case AR5K_TX_QUEUE_CAB:
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_FRSHED_DBA_GT |
|
|
AR5K_QCU_MISC_CBREXP |
|
|
AR5K_QCU_MISC_CBREXP_BCN);
|
|
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
|
|
(AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
|
|
AR5K_DCU_MISC_ARBLOCK_CTL_S));
|
|
break;
|
|
|
|
case AR5K_TX_QUEUE_UAPSD:
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
|
|
AR5K_QCU_MISC_CBREXP);
|
|
break;
|
|
|
|
case AR5K_TX_QUEUE_DATA:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts for this tx queue
|
|
* in the secondary interrupt mask registers
|
|
*/
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
|
|
|
|
if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
|
|
AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
|
|
|
|
|
|
/* Update secondary interrupt mask registers */
|
|
ah->ah_txq_imr_txok &= ah->ah_txq_status;
|
|
ah->ah_txq_imr_txerr &= ah->ah_txq_status;
|
|
ah->ah_txq_imr_txurn &= ah->ah_txq_status;
|
|
ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
|
|
ah->ah_txq_imr_txeol &= ah->ah_txq_status;
|
|
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
|
|
AR5K_SIMR0_QCU_TXOK) |
|
|
AR5K_REG_SM(ah->ah_txq_imr_txdesc,
|
|
AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
|
|
AR5K_SIMR1_QCU_TXERR) |
|
|
AR5K_REG_SM(ah->ah_txq_imr_txeol,
|
|
AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
|
|
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
|
|
AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get number of pending frames
|
|
* for a specific queue [5211+]
|
|
*/
|
|
u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
|
|
|
|
/* Return if queue is declared inactive */
|
|
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
|
|
return false;
|
|
|
|
/* XXX: How about AR5K_CFG_TXCNT ? */
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
return false;
|
|
|
|
return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
|
|
}
|
|
|
|
/*
|
|
* Set slot time
|
|
*/
|
|
int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
|
|
return -EINVAL;
|
|
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
|
|
ah->ah_turbo), AR5K_SLOT_TIME);
|
|
else
|
|
ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get slot time
|
|
*/
|
|
unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
|
|
AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
|
|
else
|
|
return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
|
|
}
|
|
|
|
|
|
/******************************\
|
|
Hardware Descriptor Functions
|
|
\******************************/
|
|
|
|
/*
|
|
* TX Descriptor
|
|
*/
|
|
|
|
/*
|
|
* Initialize the 2-word tx descriptor on 5210/5211
|
|
*/
|
|
static int
|
|
ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
|
|
unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
|
|
unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
|
|
unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
|
|
unsigned int rtscts_rate, unsigned int rtscts_duration)
|
|
{
|
|
u32 frame_type;
|
|
struct ath5k_hw_2w_tx_desc *tx_desc;
|
|
unsigned int buff_len;
|
|
|
|
tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
|
|
|
|
/*
|
|
* Validate input
|
|
* - Zero retries don't make sense.
|
|
* - A zero rate will put the HW into a mode where it continously sends
|
|
* noise on the channel, so it is important to avoid this.
|
|
*/
|
|
if (unlikely(tx_tries0 == 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "zero retries\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(tx_rate0 == 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "zero rate\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Clear status descriptor */
|
|
memset(desc->ds_hw, 0, sizeof(struct ath5k_hw_tx_status));
|
|
|
|
/* Initialize control descriptor */
|
|
tx_desc->tx_control_0 = 0;
|
|
tx_desc->tx_control_1 = 0;
|
|
|
|
/* Setup control descriptor */
|
|
|
|
/* Verify and set frame length */
|
|
if (pkt_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
|
|
return -EINVAL;
|
|
|
|
tx_desc->tx_control_0 = pkt_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
|
|
|
|
/* Verify and set buffer length */
|
|
buff_len = pkt_len - FCS_LEN;
|
|
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
if(type == AR5K_PKT_TYPE_BEACON)
|
|
buff_len = roundup(buff_len, 4);
|
|
|
|
if (buff_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
|
|
return -EINVAL;
|
|
|
|
tx_desc->tx_control_1 = buff_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
|
|
|
|
/*
|
|
* Verify and set header length
|
|
* XXX: I only found that on 5210 code, does it work on 5211 ?
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
|
|
return -EINVAL;
|
|
tx_desc->tx_control_0 |=
|
|
AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
|
|
}
|
|
|
|
/*Diferences between 5210-5211*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
switch (type) {
|
|
case AR5K_PKT_TYPE_BEACON:
|
|
case AR5K_PKT_TYPE_PROBE_RESP:
|
|
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
|
|
case AR5K_PKT_TYPE_PIFS:
|
|
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
|
|
default:
|
|
frame_type = type /*<< 2 ?*/;
|
|
}
|
|
|
|
tx_desc->tx_control_0 |=
|
|
AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
|
|
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
|
|
} else {
|
|
tx_desc->tx_control_0 |=
|
|
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
|
|
AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
|
|
tx_desc->tx_control_1 |=
|
|
AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
|
|
}
|
|
#define _TX_FLAGS(_c, _flag) \
|
|
if (flags & AR5K_TXDESC_##_flag) \
|
|
tx_desc->tx_control_##_c |= \
|
|
AR5K_2W_TX_DESC_CTL##_c##_##_flag
|
|
|
|
_TX_FLAGS(0, CLRDMASK);
|
|
_TX_FLAGS(0, VEOL);
|
|
_TX_FLAGS(0, INTREQ);
|
|
_TX_FLAGS(0, RTSENA);
|
|
_TX_FLAGS(1, NOACK);
|
|
|
|
#undef _TX_FLAGS
|
|
|
|
/*
|
|
* WEP crap
|
|
*/
|
|
if (key_index != AR5K_TXKEYIX_INVALID) {
|
|
tx_desc->tx_control_0 |=
|
|
AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
|
|
tx_desc->tx_control_1 |=
|
|
AR5K_REG_SM(key_index,
|
|
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
|
|
}
|
|
|
|
/*
|
|
* RTS/CTS Duration [5210 ?]
|
|
*/
|
|
if ((ah->ah_version == AR5K_AR5210) &&
|
|
(flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
|
|
tx_desc->tx_control_1 |= rtscts_duration &
|
|
AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the 4-word tx descriptor on 5212
|
|
*/
|
|
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
|
|
struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
|
|
enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
|
|
unsigned int tx_tries0, unsigned int key_index,
|
|
unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
|
|
unsigned int rtscts_duration)
|
|
{
|
|
struct ath5k_hw_4w_tx_desc *tx_desc;
|
|
struct ath5k_hw_tx_status *tx_status;
|
|
unsigned int buff_len;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
|
|
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
|
|
|
|
/*
|
|
* Validate input
|
|
* - Zero retries don't make sense.
|
|
* - A zero rate will put the HW into a mode where it continously sends
|
|
* noise on the channel, so it is important to avoid this.
|
|
*/
|
|
if (unlikely(tx_tries0 == 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "zero retries\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(tx_rate0 == 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "zero rate\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Clear status descriptor */
|
|
memset(tx_status, 0, sizeof(struct ath5k_hw_tx_status));
|
|
|
|
/* Initialize control descriptor */
|
|
tx_desc->tx_control_0 = 0;
|
|
tx_desc->tx_control_1 = 0;
|
|
tx_desc->tx_control_2 = 0;
|
|
tx_desc->tx_control_3 = 0;
|
|
|
|
/* Setup control descriptor */
|
|
|
|
/* Verify and set frame length */
|
|
if (pkt_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
|
|
return -EINVAL;
|
|
|
|
tx_desc->tx_control_0 = pkt_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
|
|
|
|
/* Verify and set buffer length */
|
|
buff_len = pkt_len - FCS_LEN;
|
|
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
if(type == AR5K_PKT_TYPE_BEACON)
|
|
buff_len = roundup(buff_len, 4);
|
|
|
|
if (buff_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
|
|
return -EINVAL;
|
|
|
|
tx_desc->tx_control_1 = buff_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
|
|
|
|
tx_desc->tx_control_0 |=
|
|
AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
|
|
AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
|
|
tx_desc->tx_control_1 |= AR5K_REG_SM(type,
|
|
AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
|
|
tx_desc->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
|
|
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
|
|
tx_desc->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
|
|
|
|
#define _TX_FLAGS(_c, _flag) \
|
|
if (flags & AR5K_TXDESC_##_flag) \
|
|
tx_desc->tx_control_##_c |= \
|
|
AR5K_4W_TX_DESC_CTL##_c##_##_flag
|
|
|
|
_TX_FLAGS(0, CLRDMASK);
|
|
_TX_FLAGS(0, VEOL);
|
|
_TX_FLAGS(0, INTREQ);
|
|
_TX_FLAGS(0, RTSENA);
|
|
_TX_FLAGS(0, CTSENA);
|
|
_TX_FLAGS(1, NOACK);
|
|
|
|
#undef _TX_FLAGS
|
|
|
|
/*
|
|
* WEP crap
|
|
*/
|
|
if (key_index != AR5K_TXKEYIX_INVALID) {
|
|
tx_desc->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
|
|
tx_desc->tx_control_1 |= AR5K_REG_SM(key_index,
|
|
AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
|
|
}
|
|
|
|
/*
|
|
* RTS/CTS
|
|
*/
|
|
if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
|
|
if ((flags & AR5K_TXDESC_RTSENA) &&
|
|
(flags & AR5K_TXDESC_CTSENA))
|
|
return -EINVAL;
|
|
tx_desc->tx_control_2 |= rtscts_duration &
|
|
AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
|
|
tx_desc->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
|
|
AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize a 4-word multirate tx descriptor on 5212
|
|
*/
|
|
static bool
|
|
ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
|
|
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
|
|
unsigned int tx_rate3, u_int tx_tries3)
|
|
{
|
|
struct ath5k_hw_4w_tx_desc *tx_desc;
|
|
|
|
/*
|
|
* Rates can be 0 as long as the retry count is 0 too.
|
|
* A zero rate and nonzero retry count will put the HW into a mode where
|
|
* it continously sends noise on the channel, so it is important to
|
|
* avoid this.
|
|
*/
|
|
if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
|
|
(tx_rate2 == 0 && tx_tries2 != 0) ||
|
|
(tx_rate3 == 0 && tx_tries3 != 0))) {
|
|
ATH5K_ERR(ah->ah_sc, "zero rate\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
|
|
|
|
#define _XTX_TRIES(_n) \
|
|
if (tx_tries##_n) { \
|
|
tx_desc->tx_control_2 |= \
|
|
AR5K_REG_SM(tx_tries##_n, \
|
|
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
|
|
tx_desc->tx_control_3 |= \
|
|
AR5K_REG_SM(tx_rate##_n, \
|
|
AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
|
|
}
|
|
|
|
_XTX_TRIES(1);
|
|
_XTX_TRIES(2);
|
|
_XTX_TRIES(3);
|
|
|
|
#undef _XTX_TRIES
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Proccess the tx status descriptor on 5210/5211
|
|
*/
|
|
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
|
|
struct ath5k_desc *desc)
|
|
{
|
|
struct ath5k_hw_tx_status *tx_status;
|
|
struct ath5k_hw_2w_tx_desc *tx_desc;
|
|
|
|
tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
|
|
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[0];
|
|
|
|
/* No frame has been send or error */
|
|
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
|
|
return -EINPROGRESS;
|
|
|
|
/*
|
|
* Get descriptor status
|
|
*/
|
|
desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
|
|
desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
|
|
desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
|
|
/*TODO: desc->ds_us.tx.ts_virtcol + test*/
|
|
desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
|
|
AR5K_DESC_TX_STATUS1_SEQ_NUM);
|
|
desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
|
|
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
|
|
desc->ds_us.tx.ts_antenna = 1;
|
|
desc->ds_us.tx.ts_status = 0;
|
|
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_0,
|
|
AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
|
|
|
|
if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
|
|
if (tx_status->tx_status_0 &
|
|
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
|
|
|
|
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
|
|
|
|
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Proccess a tx descriptor on 5212
|
|
*/
|
|
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
|
|
struct ath5k_desc *desc)
|
|
{
|
|
struct ath5k_hw_tx_status *tx_status;
|
|
struct ath5k_hw_4w_tx_desc *tx_desc;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
|
|
tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
|
|
|
|
/* No frame has been send or error */
|
|
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
|
|
return -EINPROGRESS;
|
|
|
|
/*
|
|
* Get descriptor status
|
|
*/
|
|
desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
|
|
desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
|
|
desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
|
|
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
|
|
desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
|
|
AR5K_DESC_TX_STATUS1_SEQ_NUM);
|
|
desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
|
|
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
|
|
desc->ds_us.tx.ts_antenna = (tx_status->tx_status_1 &
|
|
AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
|
|
desc->ds_us.tx.ts_status = 0;
|
|
|
|
switch (AR5K_REG_MS(tx_status->tx_status_1,
|
|
AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
|
|
case 0:
|
|
desc->ds_us.tx.ts_rate = tx_desc->tx_control_3 &
|
|
AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
|
|
break;
|
|
case 1:
|
|
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
|
|
AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
|
|
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
|
|
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
|
|
break;
|
|
case 2:
|
|
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
|
|
AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
|
|
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
|
|
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
|
|
break;
|
|
case 3:
|
|
desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
|
|
AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
|
|
desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
|
|
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
|
|
break;
|
|
}
|
|
|
|
if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
|
|
if (tx_status->tx_status_0 &
|
|
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
|
|
|
|
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
|
|
|
|
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
|
|
desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RX Descriptor
|
|
*/
|
|
|
|
/*
|
|
* Initialize an rx descriptor
|
|
*/
|
|
int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
|
|
u32 size, unsigned int flags)
|
|
{
|
|
struct ath5k_rx_desc *rx_desc;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
rx_desc = (struct ath5k_rx_desc *)&desc->ds_ctl0;
|
|
|
|
/*
|
|
*Clear ds_hw
|
|
* If we don't clean the status descriptor,
|
|
* while scanning we get too many results,
|
|
* most of them virtual, after some secs
|
|
* of scanning system hangs. M.F.
|
|
*/
|
|
memset(desc->ds_hw, 0, sizeof(desc->ds_hw));
|
|
|
|
/*Initialize rx descriptor*/
|
|
rx_desc->rx_control_0 = 0;
|
|
rx_desc->rx_control_1 = 0;
|
|
|
|
/* Setup descriptor */
|
|
rx_desc->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
|
|
if (unlikely(rx_desc->rx_control_1 != size))
|
|
return -EINVAL;
|
|
|
|
if (flags & AR5K_RXDESC_INTREQ)
|
|
rx_desc->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Proccess the rx status descriptor on 5210/5211
|
|
*/
|
|
static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *ah,
|
|
struct ath5k_desc *desc)
|
|
{
|
|
struct ath5k_hw_old_rx_status *rx_status;
|
|
|
|
rx_status = (struct ath5k_hw_old_rx_status *)&desc->ds_hw[0];
|
|
|
|
/* No frame received / not ready */
|
|
if (unlikely((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_DONE)
|
|
== 0))
|
|
return -EINPROGRESS;
|
|
|
|
/*
|
|
* Frame receive status
|
|
*/
|
|
desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
|
|
AR5K_OLD_RX_DESC_STATUS0_DATA_LEN;
|
|
desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
|
|
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_SIGNAL);
|
|
desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
|
|
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_RATE);
|
|
desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
|
|
AR5K_OLD_RX_DESC_STATUS0_RECEIVE_ANTENNA;
|
|
desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
|
|
AR5K_OLD_RX_DESC_STATUS0_MORE;
|
|
desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
|
|
AR5K_OLD_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
|
|
desc->ds_us.rx.rs_status = 0;
|
|
|
|
/*
|
|
* Key table status
|
|
*/
|
|
if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX_VALID)
|
|
desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
|
|
AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX);
|
|
else
|
|
desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
|
|
|
|
/*
|
|
* Receive/descriptor errors
|
|
*/
|
|
if ((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_FRAME_RECEIVE_OK)
|
|
== 0) {
|
|
if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_CRC_ERROR)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
|
|
|
|
if (rx_status->rx_status_1 &
|
|
AR5K_OLD_RX_DESC_STATUS1_FIFO_OVERRUN)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_FIFO;
|
|
|
|
if (rx_status->rx_status_1 &
|
|
AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR) {
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
|
|
desc->ds_us.rx.rs_phyerr =
|
|
AR5K_REG_MS(rx_status->rx_status_1,
|
|
AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR);
|
|
}
|
|
|
|
if (rx_status->rx_status_1 &
|
|
AR5K_OLD_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Proccess the rx status descriptor on 5212
|
|
*/
|
|
static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *ah,
|
|
struct ath5k_desc *desc)
|
|
{
|
|
struct ath5k_hw_new_rx_status *rx_status;
|
|
struct ath5k_hw_rx_error *rx_err;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
rx_status = (struct ath5k_hw_new_rx_status *)&desc->ds_hw[0];
|
|
|
|
/* Overlay on error */
|
|
rx_err = (struct ath5k_hw_rx_error *)&desc->ds_hw[0];
|
|
|
|
/* No frame received / not ready */
|
|
if (unlikely((rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_DONE)
|
|
== 0))
|
|
return -EINPROGRESS;
|
|
|
|
/*
|
|
* Frame receive status
|
|
*/
|
|
desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
|
|
AR5K_NEW_RX_DESC_STATUS0_DATA_LEN;
|
|
desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
|
|
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_SIGNAL);
|
|
desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
|
|
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_RATE);
|
|
desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
|
|
AR5K_NEW_RX_DESC_STATUS0_RECEIVE_ANTENNA;
|
|
desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
|
|
AR5K_NEW_RX_DESC_STATUS0_MORE;
|
|
desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
|
|
AR5K_NEW_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
|
|
desc->ds_us.rx.rs_status = 0;
|
|
|
|
/*
|
|
* Key table status
|
|
*/
|
|
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX_VALID)
|
|
desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
|
|
AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX);
|
|
else
|
|
desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
|
|
|
|
/*
|
|
* Receive/descriptor errors
|
|
*/
|
|
if ((rx_status->rx_status_1 &
|
|
AR5K_NEW_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
|
|
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_CRC_ERROR)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
|
|
|
|
if (rx_status->rx_status_1 &
|
|
AR5K_NEW_RX_DESC_STATUS1_PHY_ERROR) {
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
|
|
desc->ds_us.rx.rs_phyerr =
|
|
AR5K_REG_MS(rx_err->rx_error_1,
|
|
AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
|
|
}
|
|
|
|
if (rx_status->rx_status_1 &
|
|
AR5K_NEW_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
|
|
|
|
if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_MIC_ERROR)
|
|
desc->ds_us.rx.rs_status |= AR5K_RXERR_MIC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************\
|
|
GPIO Functions
|
|
\****************/
|
|
|
|
/*
|
|
* Set led state
|
|
*/
|
|
void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
|
|
{
|
|
u32 led;
|
|
/*5210 has different led mode handling*/
|
|
u32 led_5210;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/*Reset led status*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
|
|
|
|
/*
|
|
* Some blinking values, define at your wish
|
|
*/
|
|
switch (state) {
|
|
case AR5K_LED_SCAN:
|
|
case AR5K_LED_AUTH:
|
|
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
|
|
led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
|
|
break;
|
|
|
|
case AR5K_LED_INIT:
|
|
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
|
|
led_5210 = AR5K_PCICFG_LED_PEND;
|
|
break;
|
|
|
|
case AR5K_LED_ASSOC:
|
|
case AR5K_LED_RUN:
|
|
led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
|
|
led_5210 = AR5K_PCICFG_LED_ASSOC;
|
|
break;
|
|
|
|
default:
|
|
led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
|
|
led_5210 = AR5K_PCICFG_LED_PEND;
|
|
break;
|
|
}
|
|
|
|
/*Write new status to the register*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
|
|
else
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
|
|
}
|
|
|
|
/*
|
|
* Set GPIO outputs
|
|
*/
|
|
int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (gpio > AR5K_NUM_GPIO)
|
|
return -EINVAL;
|
|
|
|
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
|
|
AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set GPIO inputs
|
|
*/
|
|
int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (gpio > AR5K_NUM_GPIO)
|
|
return -EINVAL;
|
|
|
|
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
|
|
AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get GPIO state
|
|
*/
|
|
u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (gpio > AR5K_NUM_GPIO)
|
|
return 0xffffffff;
|
|
|
|
/* GPIO input magic */
|
|
return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
|
|
0x1;
|
|
}
|
|
|
|
/*
|
|
* Set GPIO state
|
|
*/
|
|
int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
|
|
{
|
|
u32 data;
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (gpio > AR5K_NUM_GPIO)
|
|
return -EINVAL;
|
|
|
|
/* GPIO output magic */
|
|
data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
|
|
|
|
data &= ~(1 << gpio);
|
|
data |= (val & 1) << gpio;
|
|
|
|
ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the GPIO interrupt (RFKill switch)
|
|
*/
|
|
void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
|
|
u32 interrupt_level)
|
|
{
|
|
u32 data;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
if (gpio > AR5K_NUM_GPIO)
|
|
return;
|
|
|
|
/*
|
|
* Set the GPIO interrupt
|
|
*/
|
|
data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
|
|
~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
|
|
AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
|
|
(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
|
|
|
|
ath5k_hw_reg_write(ah, interrupt_level ? data :
|
|
(data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
|
|
|
|
ah->ah_imr |= AR5K_IMR_GPIO;
|
|
|
|
/* Enable GPIO interrupts */
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
|
|
}
|
|
|
|
|
|
/*********************************\
|
|
Regulatory Domain/Channels Setup
|
|
\*********************************/
|
|
|
|
u16 ath5k_get_regdomain(struct ath5k_hw *ah)
|
|
{
|
|
u16 regdomain;
|
|
enum ath5k_regdom ieee_regdomain;
|
|
#ifdef COUNTRYCODE
|
|
u16 code;
|
|
#endif
|
|
|
|
ath5k_eeprom_regulation_domain(ah, false, &ieee_regdomain);
|
|
ah->ah_capabilities.cap_regdomain.reg_hw = ieee_regdomain;
|
|
|
|
#ifdef COUNTRYCODE
|
|
/*
|
|
* Get the regulation domain by country code. This will ignore
|
|
* the settings found in the EEPROM.
|
|
*/
|
|
code = ieee80211_name2countrycode(COUNTRYCODE);
|
|
ieee_regdomain = ieee80211_countrycode2regdomain(code);
|
|
#endif
|
|
|
|
regdomain = ath5k_regdom_from_ieee(ieee_regdomain);
|
|
ah->ah_capabilities.cap_regdomain.reg_current = regdomain;
|
|
|
|
return regdomain;
|
|
}
|
|
|
|
|
|
/****************\
|
|
Misc functions
|
|
\****************/
|
|
|
|
int ath5k_hw_get_capability(struct ath5k_hw *ah,
|
|
enum ath5k_capability_type cap_type,
|
|
u32 capability, u32 *result)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
switch (cap_type) {
|
|
case AR5K_CAP_NUM_TXQUEUES:
|
|
if (result) {
|
|
if (ah->ah_version == AR5K_AR5210)
|
|
*result = AR5K_NUM_TX_QUEUES_NOQCU;
|
|
else
|
|
*result = AR5K_NUM_TX_QUEUES;
|
|
goto yes;
|
|
}
|
|
case AR5K_CAP_VEOL:
|
|
goto yes;
|
|
case AR5K_CAP_COMPRESSION:
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
goto yes;
|
|
else
|
|
goto no;
|
|
case AR5K_CAP_BURST:
|
|
goto yes;
|
|
case AR5K_CAP_TPC:
|
|
goto yes;
|
|
case AR5K_CAP_BSSIDMASK:
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
goto yes;
|
|
else
|
|
goto no;
|
|
case AR5K_CAP_XR:
|
|
if (ah->ah_version == AR5K_AR5212)
|
|
goto yes;
|
|
else
|
|
goto no;
|
|
default:
|
|
goto no;
|
|
}
|
|
|
|
no:
|
|
return -EINVAL;
|
|
yes:
|
|
return 0;
|
|
}
|
|
|
|
static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
|
|
u16 assoc_id)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
|
|
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
|
|
{
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
|
|
AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|